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REGIMES OF SPRAY VAPORIZATION AND COMBUSTION
IN COUNTERFLOW CONFIGURATIONS

Amable Liñán,1 Daniel Martínez-Ruiz,2 Antonio L. Sánchez,2
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1E. T. S. I. Aeronáuticos, Madrid, Spain
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3Center for Turbulence Research, Stanford University, Stanford, California, USA

This article addresses the problem of spray vaporization and combustion in axisymmetric
opposed-jet configurations involving a stream of hot air counterflowing against a stream of
nitrogen carrying a spray of fuel droplets. The Reynolds numbers of the jets are assumed
to be large, so that mixing of the two streams is restricted to a thin mixing layer that sepa-
rates the counterflowing streams. The evolution of the droplets in their feed stream from the
injection location is seen to depend fundamentally on the value of the droplet Stokes num-
ber, St, defined as the ratio of the droplet acceleration time to the mixing-layer strain time
close to the stagnation point. Two different regimes of spray vaporization and combustion
can be identified depending on the value of St. For values of St below a critical value, equal
to 1/4 for dilute sprays with small values of the spray liquid mass-loading ratio, the droplets
decelerate to approach the gas stagnation plane with a vanishing axial velocity. In this case,
the droplets located initially near the axis reach the mixing layer, where they can vaporize
due to the heat received from the hot air, producing fuel vapor that can burn with the oxygen
in a diffusion flame located on the air side of the mixing layer. The character of the spray
combustion is different for values of St of order unity, because the droplets cross the stagna-
tion plane and move into the opposing air stream, reaching distances that are much larger
than the mixing-layer thickness before they turn around. The vaporization of these crossing
droplets, and also the combustion of the fuel vapor generated by them, occur in the hot air
stream, without significant effects of molecular diffusion, generating a vaporization-assisted
nonpremixed flame that stands on the air side outside the mixing layer. Separate formu-
lations will be given below for these two regimes of combustion, with attention restricted
to the near-stagnation-point region, where the solution is self-similar and all variables are
only dependent on the distance to the stagnation plane. The resulting formulations display a
reduced number of controlling parameters that effectively embody dependences of the struc-
ture of the spray flame on spray dilution, droplet inertia, and fuel preferential diffusion.
Sample solutions are given for the limiting cases of pure vaporization and of infinitely fast
chemistry, with the latter limit formulated in terms of chemistry-free coupling functions that
allow for general nonunity Lewis numbers of the fuel vapor.
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104 A. LIÑÁN ET AL.
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INTRODUCTION

For the high Reynolds numbers typically encountered in combustion applications the
flow is turbulent and the flames appear embedded in thin mixing layers that are locally
distorted and strained by the turbulent motion (Peters, 2000). In applications involving
spray combustion, the interactions of the flame with the flow are also dependent on the
presence of the fuel droplets (Sirignano, 2010). These interactions can be investigated by
consideration of simple laminar problems, an example being the counterflow mixing layer
investigated here, which has been widely used as a cartoon to represent local flow condi-
tions in strained mixing layers (Peters, 2000). Counterflow structures that move with the
mean velocity can be abstracted from the interface dynamics of shear and mixing layers
(Corcos and Sherman, 1976). Local counterflow spray configurations are encountered in
typical combustion chambers around the stagnation point that forms near the injector exit
as a result of vortex breakdown of the swirling air-feed stream (see, for example, Edwards
and Rudoff, 1990).

Counterflow configurations have been employed in previous experimental analyses
of spray diffusion flames, with numerous fundamental contributions originating from the
combustion laboratories at UCSD (Li, 1997; Li and Williams, 2000; Li et al., 1993; Puri
and Libby, 1989) and at Yale university (Chen and Gomez, 1992; Gao et al., 1996; Massot
et al., 1998; Santoro and Gomez, 2002; Santoro et al., 2002). Numerical analyses were
developed in parallel efforts. Continillo and Sirignano (1990) provided for the first time a
two-continua formulation for spray flames in counterflow mixing layers and the conditions
needed for the solution to remain self-similar in the vicinity of the stagnation point, where
fluid properties are functions of the distance to the stagnation plane. The two-continua
description applies to the dilute spray conditions typically found in the main vaporization
and combustion region of practical liquid-fueled combustion devices (Sirignano, 2010),
when the interdroplet distances are significantly larger than the droplet diameter and, for
the counterflow configuration, smaller than the mixing-layer thickness. Then each droplet
moves and vaporizes individually in the gas environment provided collectively by the
droplets, which includes the statistically smoothed effect of the wakes of the neighbor-
ing droplets, where the exchanges of fuel, energy, and momentum with the gas have been
dumped. This allows us to use a homogenized treatment of the dispersed phase, in which
the droplets appear as distributed point sources, resulting in source terms in the gas-phase
equations that are proportional to the number of droplets per unit volume.

The two-continua formulation, termed multicontinua formulation when used for the
analysis of polydisperse sprays by incorporation of several droplet classes in the compu-
tation, has been used to explore different aspects of counterflow spray diffusion flames.
The computation is simplified when the droplets are sufficiently small that they vaporize
completely before crossing the stagnation plane (Kee et al., 2011; Laurent and Massot,
2001; Schlotz and Gutheil, 2000; Wang et al. 2013; Zhu et al., 2012). However, as noted by
Puri and Libby (1989) and Chen et al. (1992), sufficiently large droplets cross the stagna-
tion plane and even undergo oscillatory trajectories, a general complicating characteristic
of particle-laden stagnation-point flows (Fernández de la Mora and Riesco-Chueca, 1988;
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SPRAY VAPORIZATION AND COMBUSTION 105
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Figure 1 Schematic view of the typical experimental arrangement employed in experimental studies of
counterflow spray flames.

Robinson, 1956). As shown by Gutheil and Sirignano (1998), this can be successfully han-
dled in the self-similar counterflow formulation by consideration of different “sheets of
solutions,” thereby enabling computations that may account for oscillatory droplet tra-
jectories (Gutheil, 2001; Hollmann and Gutheil, 1998; Olguin and Gutheil, 2014). The
multicontinua formulation can be extended to the treatment of realistic droplet-size distri-
butions by consideration of a large number of droplet classes (or “sectionals”). A different
sectional approach is followed by other authors (Gao et al., 1996; Massot et al., 1998), who
used as starting point the spray equation originally derived by Williams (1985).

THE COUNTERFLOW PROBLEM

In this article, we shall analyze the vaporization and combustion of sprays in axisym-
metric counterflow arrangements involving two high-Reynolds-number opposing streams,
one of air and the other containing a polydisperse fuel spray carried by nitrogen. Figure 1
represents the typical setup used in experimental studies, which involves two opposing noz-
zles of radius R whose exits are located a distance 2H apart. The resulting axisymmetric
coaxial counterflowing jets are separated by a laminar stagnation-point mixing layer, to be
described in terms of the radial and axial coordinates r and z measured from the stagnation
point. The Reynolds number Re = UsR/νs, based on the characteristic injection velocity
Us and kinematic viscosity νs of the spray-carrier gas, and the accompanying Reynolds
number of the hotter air stream are moderately large in typical applications. Under those
conditions, the flow of the counterflowing streams is nearly inviscid and includes a poten-
tial region near the stagnation point where the gas velocity v = (u, v) is determined by the
uniform strain rate found on each side of the stagnation plane. On the spray side the flow is
given by

u = −Asz and v = Asr/2 (1)
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106 A. LIÑÁN ET AL.

in terms of the spray-side strain rate As, a quantity of order Us/R. The corresponding strain
rate found on the air side is, in general, different, with a value AA = As

√
ρs/ρA dictated in

terms of the inert-to-air density ratio by the condition of negligible pressure variation across
the mixing layer. Because of the prevailing large Reynolds number flow, mixing between
both streams occurs only in a thin layer at the separating surface, whose characteristic
thickness is δm ∼(νs/As)

1/2 ∼ R/Re1/2 � R. In the vicinity of the central stagnation point,
the mixing layer exhibits a self-similar structure in terms of the strain rate As in which v/r
and the other fluid variables are a function of the distance z to the stagnation plane.

Typically in experiments the droplets are injected at a distance zI from the stagnation
plane much larger than the mixing-layer thickness. The initial temperature of the droplets
and of the inert gas are often sufficiently lower than the boiling temperature of the liquid
fuel for droplet vaporization in the spray stream to be negligible. The description of the
motion of the nonvaporizing droplets in the nearly-inviscid inert stream is given in the
Appendix. Because of their diverging radial motion, only the droplets initially located near
the axis, where r � R, eventually enter the self-similar region of the mixing layer around
the stagnation point.

Two important parameters, dependent on the droplet size, govern the coupling
between the liquid and gas phases in vaporizing sprays, namely, the Stokes number St,
defined in (9), and the ratio α of the liquid mass to the mass of gas per unit volume, defined
in (10) (Sánchez et al., in press). The Stokes number, which for the counterflow is the ratio
of the droplet acceleration time (which is of the order of its vaporization time) to the char-
acteristic strain time A−1

s of the counterflow mixing layer, measures the coupling of the
droplets with the gas flow, whereas the ratio α/St measures the coupling of the gas phase
with the droplets. In vaporizing sprays, effective two-way coupling occurs in the double
distinguished limit St = O(1) and α = O(1). The coupling is more pronounced in the pres-
ence of combustion, because the heat released by burning the fuel vapor is enough to lead
to flame temperatures several times larger than the spray feed temperatures. In analyzing
the interphase coupling in burning sprays one should bear in mind that in the combustion of
typical hydrocarbon fuels the air-to-fuel stoichiometric ratio S (i.e., the mass of air needed
to burn the unit mass of fuel) is a large quantity of order S ∼ 15. As a result, very dilute
sprays with relatively small values of α ∼ S−1 � 1 may generate diffusion-flame temper-
atures of the order of the stoichiometric adiabatic flame temperature, thereby producing a
strong effect on the gas flow through the associated gas expansion.

The analysis in this article will focus on values of the Stokes number of order unity
and values of the liquid mass-loading ratio α of order S−1. Since α � 1, we find one-way
coupling of the droplets in the spray stream, but strong two-way coupling in regions affected
by the fuel-vapor combustion if the gas-phase reaction has been ignited. For these dilute
sprays, the computation of the droplet motion downstream from the injection plane, given
in the Appendix, reveals different behaviors depending on the value of St. For St < 1/4,
the droplets are seen to approach the stagnation plane with a vanishing transverse velocity,
whereas for St > 1/4 they cross the stagnation plane and move into the opposing air stream.
These two behaviors lead to two distinct regimes of spray vaporization and combustion,
which are analyzed separately below. For St < 1/4, we find that the droplets are trapped
in the mixing layer, where droplet vaporization and gas-phase chemical reactions occur.
For St > 1/4, on the other hand, the droplets traverse the stagnation plane with a crossing
velocity that is much larger than the transverse gas velocity in the mixing layer, penetrating
large distances of the order of the initial injection distance into the counterflowing stream
before they turn around. Droplet vaporization occurs in this case on the air side, with the
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SPRAY VAPORIZATION AND COMBUSTION 107

inertial droplets distributing the fuel vapor over transverse distances much larger than the
mixing-layer thickness. Correspondingly, when this fuel vapor reacts with the oxygen of
the air, the diffusion flame that forms stands away from the mixing layer, with a structure
markedly different from that found for St < 1/4.

SPRAY VAPORIZATION AND COMBUSTION IN THE COUNTERFLOW

MIXING LAYER

The droplet velocity vd = (ud, vd) and the droplet number density found near the
stagnation plane outside the mixing layer are determined by the evolution of the near-
axis droplets as they move from z = zI until they finally reach the stagnation plane z = 0.
As shown in the Appendix, for dilute sprays with small values of the liquid mass-loading
ratio, the droplets with Stokes number St < 1/4 approach the stagnation-point region with
axial and radial velocity components

ud = −1 − √
1 − 4St

2St
Asz (2)

and

vd =
√

2St + 1 − 1

St
Asr/2, (3)

independent of the injection conditions. Because of their vanishing axial velocity, instead
of crossing to the air side, these droplets remain in the mixing layer, corresponding to small
axial distances z of the order of the mixing-layer thickness δm, where they vaporize when
encountering the hot air.

In this section we give the multi-continua formulation for spray vaporization and
combustion in the counterflow mixing layer, the relevant regime for droplets with St <

1/4. Attention is restricted to the near-stagnation-point region, where the flow has a self-
similar structure determined by the strain rate As, in which the gas phase is described in
terms of the radial and axial velocity components v = A(z) r

/
2 and u(z), temperature and

density T (z) and ρ(z), and mass fractions Yi(z). A polydisperse spray with Nc different
droplet classes is considered. For each droplet class j, the continuum solution is given in
terms of the droplet number density nj(z), droplet radial and axial velocity components
v j

d = Aj
d(z) r

/
2 and uj

d(z), and droplet radius aj(z) and temperature T j
d(z), the latter assumed

to be uniform inside the droplet, a valid approximation when the thermal conductivity of the
liquid fuel is much larger than that of the gas surrounding the droplet (Law and Sirignano,
1977). We begin by giving the expressions for the exchange rates of momentum, energy, and
mass between the two phases, followed by the equations and boundary conditions for the
liquid and gas phases. The formulation includes in the boundary conditions for the liquid
phase the droplet velocity distributions given in (2) and (3) and the accompanying droplet
number density given in (A10), which hold at intermediate distances δm � z � R. Together
with the case of pure spray vaporization, specific consideration will be given below to the
limit of infinitely fast reaction and its formulation in terms of coupling functions (Arrieta-
Sanagustín et al., 2013; Sánchez et al., in press).
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108 A. LIÑÁN ET AL.

Droplet Submodels

The drag force f j acting on the individual droplet of each class, its rate of vaporiza-
tion ṁ j, and heating rate q̇ j

d, which depend in general on the droplet-gas slip motion, are
evaluated below for the case of droplet Reynolds numbers small compared with unity, lead-
ing to a set of compact expressions. Effects of near-droplet convection associated with the
slip velocity introduce corrections to the exchange rates that, surprisingly, remain moder-
ately small as the slip-flow Reynolds number increases to values of order unity, so that the
description given in (4)–(8) provides sufficient accuracy under most conditions of interest.
More complete droplet models, incorporating dependences on droplet Reynolds number as
well as influences of additional effects not contemplated in the derivation given below are
available (Abramzon and Sirignano, 1989) and could be incorporated in the counterflow
formulation.

The expressions given below result from the quasi-steady analysis of the flow field
near the individual droplet, using the local gas-phase values for the outer conditions. They
include the familiar Stokes law for the force of the gas on the individual droplet

f j = 6πμaj
(

v − v j
d

)
= 6πμaj

[
u − uj

d,
(

A − Aj
d

)
r
/

2
]

(4)

where μ is the viscosity of the gas surrounding the droplet. The rate of vaporization and the
rate of heating of the individual droplet

ṁ j =(4πκaj
/

cp
)
λ j (5)

and

q̇ j
d = 4πκaj

(
T − T j

d

eλ j − 1
− Lv

cp

)
λ j (6)

are expressed in terms of the dimensionless vaporization rate λ j, an eigenvalue of the prob-
lem, representing a Stefan-flow Peclet number based on the mean radial gas velocity at the
droplet surface. Here, κ and cp are the thermal conductivity and the specific heat at constant
pressure of the gas and Lv is the latent heat of vaporization of the fuel. The value of λ j is
found to be given by

λ j = 1

LeF
ln

(
1 − YF

1 − Y j
F,S

)
(7)

in terms of the fuel-vapor Lewis number LeF and the values of its mass fraction in the
atmosphere surrounding the droplet YF and at the liquid surface Y j

F,S; the latter determined
by the Clasius–Clapeyron relation in terms of the droplet temperature

M j
S

MF
Y j

F,S = exp

(
Lv

RFTB
− Lv

RFT j
d

)
(8)
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SPRAY VAPORIZATION AND COMBUSTION 109

Here, MF and M j
S are the molecular mass of the fuel and the mean molecular mass of the gas

at the droplet surface, RF = Ro
/

MF is the fuel gas constant, and TB is the boiling tempera-
ture of the fuel at the chamber pressure. The computation is simplified here by employing

the expression MF
/

M j
S = Y j

FS +
(

1 − Y j
FS

)
MF
/

MN2 , an approximation that accounts for

the large differences of the molecular masses of the fuel vapor and N2, while taking the
molecular mass of all other species equal to that of nitrogen. In that case, Eq. (8) can be
used to determine Y j

F,S as a function of T j
d, while (7) gives explicitly λ j in terms of Y j

F,S
and YF.

For most liquid fuels, the latent heat of vaporization is sufficiently large that the
condition Lv � RFTB is satisfied. According to (8), the fuel-vapor mass fraction on the
droplet surface YF,S remains exponentially small as long as the droplet temperature T j

d stays

sufficiently below TB, i.e., its value is such that
(

TB − T j
d

)/
TB � [

Lv
/
(RFTB)

]−1
. As a

result, when the droplets are injected in a cold carrier gas, the initial rate of vaporization
becomes negligibly small, as can be seen from (7) with YF = 0 and Y j

F,S � 1. In this case,
significant vaporization is seen to occur only after the droplets enter in contact with the hot
air in the mixing layer; and changes in the droplet radius can be neglected altogether when
studying the droplet evolution in the outer stream, as done in the Appendix.

Dimensionless Formulation

The spray-side value of the strain rate As and the associated characteristic mixing-

layer thickness δm =(DTs

/
As
)1/2, where DTs is the thermal diffusivity of the unperturbed

carrier gas, will be used as scales in defining the dimensionless variables z̃ = z
/
δm, Ã =

A
/

As, ũ = u
/
(Asδm), Ã j

d = Aj
d

/
As, and ũ j

d = uj
d

/
(Asδm). Similarly, the unperturbed density

ρs and temperature Ts of the carrier gas will be used to scale ρ̃ = ρ
/
ρs, T̃ = T

/
Ts, and

T̃ j
d = T j

d

/
Ts. The initial radius of each droplet class at the injection location aj

I will be

used to define the dimensionless value of the droplet radius ã j = aj
/

aj
I . For counterflow

configurations with large Reynolds numbers Re, the analysis given in the Appendix reveals
that nj, the number of droplets per unit volume, has a characteristic value in the mixing layer

nj
m much larger than the value at the injection plane nj

I according to nj
m

/
nj

I = B
(
R
/
δm
)C j ∼

ReC
j
/

2, where C j = 1 − 2
(√

2St j + 1 − 1
)/(

1 − √
1 − 4St j

)
and B is a constant of order

unity. Hence, to investigate the solution in the mixing layer, we use nj
m to scale the number

density according to ñ j = nj
/

nj
m. For each droplet class, the droplet radius at injection aj

I
and the characteristic number density nj

m will be seen to appearin the resulting formulation
through the Stokes number

St j = 2

9
As

(
aj

I

)2
ρl/μs (9)

and the liquid mass-loading ratio

α j =
(4π/3)

(
aj

I

)3
nj

mρl

ρs
(10)
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110 A. LIÑÁN ET AL.

where ρ l is the density of the liquid fuel. For simplicity, the tilde denoting nondimensional
quantities is removed in the remainder of the article.

Given the gas-phase distributions of temperature and velocity, the evolution of each
droplet class j requires integration of the equations following the droplet trajectories

uj
d

duj
d

dz
= 1

St j

Tσ(
aj
)2

(
u − uj

d

)
(11)

(
Aj

d

)2

2
+ uj

d

dAj
d

dz
= 1

St j

Tσ(
aj
)2

(
A − Aj

d

)
(12)

uj
d

d
(
aj
)3

dz
= − 2

3PrSt j a jTσ λ j (13)

uj
d

dT j
d

dz
= 2cp/cl

3PrSt j

Tσ(
aj
)2

(
T − T j

d

eλ j − 1
− Lv

cpTs

)
λ j (14)

d

dz

(
nju j

d

)
+ njAj

d = 0 (15)

supplemented with the expressions (7) and (8), needed to compute the dimensionless vapor-
ization rate λ j. For droplets with St < 1/4, the initial conditions consistent with the solution
found at intermediate distances δm � z � R, given in (2), (3), and (A10), are

aj − 1 = uj
d + 1 −

√
1 − 4St j

2St j z

= Aj
d −

√
2St j + 1 − 1

St j = T j
d − 1 = nj − z−C j = 0 as z → ∞

(16)

yielding a convenient description independent of the specific injection conditions. In writ-
ing (16), droplet vaporization prior to entering the mixing layer has been neglected along
with differences of the droplet temperature from that of the carrier gas.

To complete the formulation we give now, using the nondimensional variables defined
above, the gas-phase conservation equations, beginning with the continuity and radial
momentum equations

d

dz
(ρu) + ρA = 2

3Pr

Nc∑
j=1

α j

St j n ja jTσ λ j (17)

ρA2

2
+ ρu

dA

dz
= 1

2
+ Pr

d

dz

(
Tσ dA

dz

)
+

Nc∑
j=1

α j

St j n ja jTσ
(

Aj
d − A

)(
1 + 2

3Pr
λ j

)
(18)
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SPRAY VAPORIZATION AND COMBUSTION 111

If the chemical reaction between the oxygen of the air and the fuel vapor is assumed to
occur according to the global irreversible step F + sO2 →(1 + s) P + q′, where s and q′
are the mass of oxygen consumed and the amount of heat released per unit mass of fuel
burned, then the equations for energy and reactants become

d

dz
(ρuT) + ρAT = d

dz

(
Tσ dT

dz

)

+ q

S

(
SωF

ρsAs

)
+ 2

3Pr

Nc∑
j=1

α j

St j n ja jTσ λ j

(
T j

d − T − T j
d

eλ j − 1

) (19)

d

dz
(ρuYF) + ρAYF = 1

LeF

d

dz

(
Tσ dYF

dz

)
− 1

S

(
SωF

ρsAs

)
+ 2

3Pr

Nc∑
j=1

α j

St j n ja jTσ λ j (20)

d

dz

(
ρuŶO

)
+ ρAŶO = d

dz

(
Tσ dŶO

dz

)
−
(

SωF

ρsAs

)
(21)

where q = q′/
(
cpTs

)
is a dimensionless combustion heat per unit mass of fuel, and the fac-

tor S = s/YO2A in (21) represents the amount of air needed to burn the unit mass of fuel
vapor, a fairly large quantity for most fuels of practical interest (e.g., S 	 15 for dodecane).
Here, ωF is the mass of fuel consumed per unit volume per unit time and ŶO = YO2/YO2A is
the mass fraction of oxygen scaled with its value on the air side YO2A 	 0.232. A Fickian
description is adopted for the species diffusion velocities, with LeF denoting the Lewis
number of the fuel vapor and a unity value assumed for that of O2. The gas Prandtl num-
ber Pr appearing in (19) and (20) is assumed to be Pr = 0.7. A simple power-law ∝ Tσ

with exponent σ = 0.7 has been assumed for the temperature dependence of the different
transport coefficients.

The chemical-reaction terms appear written in (19)–(21) in terms of the
dimensionless oxygen-consumption rate (SωF) / (ρsAs), which when important should
result in changes of order unity in ŶO, as can be inferred from (21). The same dimensionless
rate is multiplied by q/S in (19), thereby introducing changes in the dimensionless temper-
ature T of order q/S, and by S−1in (20), generating changes in YF of order S−1. This fuel
mass fraction will be provided by the last term in (20) if α j is of order S−1, as it is in the
distinguished regime α j ∼ S−1 considered below.

The above equations (17)–(21) are to be integrated with the boundary conditions

{
u + z = A − 1 = T − 1 = YF = ŶO = 0 as z → +∞
A − √

TA = T − TA = YF = ŶO − 1 = 0 as z → −∞.
(22)

Differences in molecular weight between the two feed streams have been neglected in
writing the boundary condition for the strain rate on the air side, so that the value
AA = As

√
ρs/ρA simplifies to

√
TA when expressed in dimensionless form. Note that an

arbitrary zero displacement of the spray stream is assumed in writing the boundary con-
dition u + z = 0 as z → +∞. The location z = z0 of the stagnation plane, where u = 0,
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112 A. LIÑÁN ET AL.

is obtained as part of the integration. The above equations must be supplemented with the
equation of state written in the nondimensional form

ρT = [
1 − YF

(
1 − MN2/MF

)]−1
(23)

To complete the formulation we should give the finite rate of fuel consumption ωF. In this
article, we shall limit the description to the two extreme limiting cases of negligible and
infinitely fast reaction rate.

Governing Parameters

The dimensionless formulation given above serves to identify the parameters that
control the structure of spray diffusion flames. Some of the parameters are related to
the properties of the fuel, including its specific heat cl and molecular mass MF, which
appear through the ratios cp/cl and MN2/MF in (14) and (23), respectively, the latent
heat of vaporization Lv, which appears in dimensionless form in (8) and (14), the fuel
Lewis number LeF, present in (7) and (20), and the boiling temperature TB, which enters
in the Clasius–Clapeyron relation (8). The main thermochemical parameters involved in
the chemical reaction, i.e., the mass S of air needed to burn the unit mass of fuel vapor
and the dimensionless heat of reaction q = q′/

(
cpTs

)
, are also fuel dependent, although

the differences are only small between fuels that share the same molecular structure,
such as saturated hydrocarbons. For instance, for heptane and dodecane S 	(15.2, 15)

and q′ =(45, 44.5) kJ/g, giving a characteristic dimensionless temperature increase q
/

S =
q′/(ScpTs

) =(8.22, 8.24) when evaluated at the normal temperature Ts = 300 K with the
average specific heat cp = 1200 J

/
(kg K).

For each droplet class, the inertia of the droplets and the dilution of the spray are char-
acterized by the Stokes number St j and the liquid mass-loading ratio α j given in (9) and
(10), respectively. It is of interest that, since the characteristic times for droplet vaporiza-
tion and droplet heating are comparable to the droplet acceleration time (Sánchez et al.,
in press), the Stokes number St j characterizes not only the coupling of the droplet motion
with the gas flow in (11) and (12) but also their vaporization and heating, as can be seen
in (13) and (14). As previously anticipated, α j

/
St j measures in (17)–(20) the coupling of

the gas flow with the droplets. Since for all liquid fuels the mass of air S needed to burn
the unit mass of fuel is always a large quantity, fairly small values of α � 1 are sufficient
to generate a robust spray flame. For these dilute conditions, the direct effects of droplet
vaporization, heating, and acceleration on the gas motion are negligible, as can be inferred
from observation of the droplet source terms in (17)–(20), although significant interphase
coupling still exists associated with the strong exothermicity of the chemical reaction.

The boundary conditions (22) introduce only one additional parameter in the descrip-
tion, namely, the free-stream temperature ratio TA. An attractive characteristic of the
formulation given here is that the boundary conditions for the liquid phase, given in (16), are
independent of the injection conditions, whose effects are reflected mainly on α j through
the value of the apparent number density nj

m.

The Burke–Schumann Formulation of Counterflow Spray Flames

The above formulation can be used to compute reacting sprays and also purely vapor-
izing sprays, the latter given by ωF = 0 in (19)–(21). Reactive solutions depend on the
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SPRAY VAPORIZATION AND COMBUSTION 113

competition of the chemical reaction rate with the transport rates of heat of species and also
with the interphase exchange rates. The solution can be simplified in the Burke–Schumann
limit of infinitely fast reaction rate, when the chemical reaction is seen to occur in a flame
sheet located at z = zf , separating a region for z > zf where ŶO = 0 from a region for
z < zf where YF = 0, whereas at the flame both reactant concentrations are simultaneously
zero.

As indicated elsewhere (Arrieta-Sanagustín et al., 2013; Sánchez et al., in press),
to handle the Dirac-delta character of the reaction term associated with the limit of
infinitely fast reaction one may follow the general procedure suggested by Shvab (1948)
and Zeldovich (1949) for gaseous diffusion flames, appropriately extended to account for
the nonunity Lewis number of the fuel vapor (Liñán, 1991; Liñán and Williams, 1993;
Liñán et al., 2015). Thus, subtracting (21) from (20) times S leads to

d

dz

[
ρu
(

SYF − ŶO

)]
+ ρA

(
SYF − ŶO

)
= d

dz

[
Tσ d

dz

(
SYF

/
LeF − ŶO

)]

+ 2S

3 Pr

Nc∑
j=1

α j

St j n ja jTσ λ j (24)

which can be written in the alternative form

d

dz
(ρuZ) + ρAZ = S

/
LeF + 1

S + 1

d

dz

(
Tσ dZ̃

dz

)
+ 2

3 Pr

Nc∑
j=1

α j

St j n ja jTσ λ j (25)

involving a diffusion-weighted mixture-fraction variable,

Z̃ = SYF
/

LeF − ŶO + 1

S
/

LeF + 1
(26)

in addition to the classical mixture-fraction variable,

Z = SYF − ŶO + 1

S + 1
(27)

A similar manipulation of (19) and (21) yields

d

dz
(ρuH) + ρAH = d

dz

(
Tσ dH

dz

)
+ 2

3 Pr

Nc∑
j=1

α j

St j n ja jTσ λ j

(
H j

d − T − T j
d

eλ j − 1

)
(28)

for the excess enthalpy,

H = T − TA +
(

ŶO − 1
)

q
/

S (29)
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114 A. LIÑÁN ET AL.

In the sum over droplet classes, H j
d = T j

d − TA − q
/

S represents the excess-enthalpy value
for the vaporizing fuel vapor of each droplet class. In this case, since the Lewis number
of oxygen is assumed to be unity, the coupling functions emerging in the diffusion and
convective terms in (28) are identical, thereby simplifying the formulation. The boundary
conditions for (25) and (28) are given by

Z − Zst = Z̃ − Z̃st = 0 and H = Ts − TA − q
/

S as z → ∞ (30)

Z = Z̃ = 0 and H = 0 as z → −∞ (31)

where Zst = 1
/
(1 + S) and Z̃st = 1

/(
1 + S

/
LeF

)
.

In the description of the limit of infinitely fast reaction, the three conservation equa-
tions for the energy and the reactants (19)–(21) are replaced with the chemistry-free
equations (25) and (28), together with the condition,

YFŶO = 0 (32)

of noncoexistence of the reactants. The flame is located where both the vapor fuel YF and
the oxygen ŶO are simultaneously zero, corresponding to values of the mixture fraction
Z = Zst or Z̃ = Z̃st. For Z ≥ Zst, we find ŶO = 0 and

YF = Z − Zst

1 − Zst
= Z̃ − Z̃st

1 − Z̃st

and T = TA + H + q

S
(33)

whereas for Z ≤ Zst, YF = 0 and

ŶO = 1 − Z

Zst
= 1 − Z̃

Z̃st

and T = TA + H + q

S

Z

Zst
(34)

These relationships link the values of Z, Z̃, and H and provide the mass fractions of
reactants and the temperature in terms of the coupling functions across the mixing layer.
If needed, source-free conservation equations that determine the product concentrations can
be obtained from linear combinations accounting for nonunity Lewis numbers of CO2 and
H2O (Arrieta-Sanagustín et al., 2013).

Sample Numerical Results

The above formulation can be used to investigate different aspects of strained spray
diffusion flames for the two limiting regimes of zero and infinitely fast reaction rates.
In the sample integrations shown below, the values cp

/
cl = 0.543, MN2

/
MF = 0.165,

LeF = 2.62, Lv
/(

cpTs
) = 1.005, TB

/
Ts = 1.63, and q = 123.6 are employed, as corre-

sponds to dodecane with Ts = 300 K and with a constant mean value cp = 1200 J
/
(kg K)

assumed for the specific heat of the gas mixture. Also, since the air is often preheated in
fuel-spray applications, an elevated air-to-inert temperature ratio TA = 2 is considered.

We begin by investigating solutions corresponding to chemically frozen flow,
obtained by removing the chemical source terms in (19)–(21). Sample profiles obtained for
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Figure 2 Structure of a vaporizing monodisperse dodecane spray in a counterflow mixing layer for α = 0.2 and
St = 0.2.

a monodisperse dodecane spray with α = 0.2 and St = 0.2 are shown in Figure 2, where
the axial distance is measured with respect to the stagnation plane, which was found to lie
at z0 = −0.69. Due to their inertia, the droplets are seen to accumulate, as can be seen in
the profile of n. The droplet radius remains constant until the surrounding gas temperature
increases to values sufficiently close to the boiling temperature as the droplets approach
the stagnation plane. The large residence time associated with the limited axial velocities
found as the droplets approach z = z0 facilitates droplet vaporization, so that the radius
a is seen to decrease rapidly across a thin vaporization region adjacent to the stagnation
plane. Rapid droplet vaporization generates fuel vapor that accumulates near z = z0 and
then diffuses to both sides of the mixing layer, mixing with the oxygen of the air.

The limit of infinitely fast reaction is considered in Figure 3, with all parameters
being identical to those of Figure 2. The computation makes use of (25) and (28) as a
replacement for (19)–(21). The profiles of Z, Z̃, and H, scaled with their characteristic
values Z ∼ Z̃ ∼ α and H ∼ q/S, are given in the lower plot, and the associated profiles
of YF, ŶO, and T , calculated from (33) and (34), are shown in the upper plot, along with
the profiles of u, ud, a, and n. As can be seen, in the fast-reaction limit the gradients of
temperature and mass fractions have jumps at the flame sheet, while the gradients of Z̃ and
H are continuous. The gradient of the classical mixture fraction Z also jumps at the flame,
as corresponds to a localized chemical source.

The comparison of Figures 2 and 3 clearly shows how thermal expansion modifies
significantly the velocity field in the presence of combustion, as can be seen by observation
of the profile of axial velocity. As a result, the stagnation plane, located at z0 = −0.69 for
chemically frozen flow, is displaced to z0 = −2.75 for infinitely fast reaction. The droplet
behavior is also different when a spray diffusion flame is present, because the temperature
increase associated with the chemical heat release enhances droplet vaporization, with the
result that the droplets disappear far from the stagnation plane at a relatively thin vaporiza-
tion layer where the fuel vapor is seen to accumulate, giving a peak value of YF of order α.
The fuel vapor diffuses both upstream, against the incoming flow, and also downstream, to

D
ow

nl
oa

de
d 

by
 [

17
1.

66
.1

8.
18

1]
 a

t 1
8:

48
 1

2 
D

ec
em

be
r 

20
14

 



116 A. LIÑÁN ET AL.

z - z0

T,
u, ud

a, n

z - z0

u

2n

ud

Z̃/α

Z/α

HS/q

/α

a

T

YF, YO2
ˆ

YF

Zst

/αŶO2

Figure 3 Structure of a monodisperse dodecane spray flame in a counterflow mixing layer for α = 0.2 and
St = 0.2.

reach the diffusion flame and react with the oxygen of the air arriving there by diffusion,
with fluxes in stoichiometric proportions. The external sheath combustion regime shown in
Figure 3, with the spray vaporizing at a distance from the flame, is the configuration encoun-
tered in most spray counterflow diffusion flames; this was verified in numerical integrations
by varying the different controlling parameters. For larger values of α, the flame tends to
move into the air side of the mixing layer.

To enable the assessment of preferential diffusion effects, Figure 4 exhibits the
results obtained when the fuel-vapor Lewis number is set equal to unity in the integra-
tions. Changing the fuel-vapor diffusivity modifies its transport rate across the mixing layer
and also the solution for the local fuel-vapor profile in the vaporization region around the
droplets. The latter modification has an impact on the spray flow through the perturbed
droplet vaporization rate, as can be seen in (7), with λ being proportional to the reciprocal
of LeF. The two separate phenomena have counteracting effects on the amount of fuel vapor
present in the vaporization region. Thus, decreasing the Lewis number from LeF = 2.62
to LeF = 1 is expected to increase directly the production rate of fuel vapor as dictated by
(7), and therefore the associated local value of YF. However, a smaller Lewis number pro-
motes also the rate of fuel-vapor diffusion from the vaporization region, thereby decreasing
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Figure 4 Structure of a monodisperse dodecane spray flame in a counterflow mixing layer for α = 0.2 and St =
0.2. Besides the results obtained with the Lewis number of dodecane (i.e., LeF = 2.62), shown in solid curves,
the figure represents in dashed curves results obtained by setting the fuel Lewis number equal to unity. The black
curves represent the liquid-phase properties a, n, and ud in the region where droplets exist.

the resulting peak value of YF there. As can be seen, both effects are approximately in
balance for the case considered in Figure 4, with the result that the peak value of YF

is almost the same for both computations. The larger diffusivity of the fuel vapor for
LeF = 1 results in an increased transport rate from the vaporization region, leading to
a wider YF profile and to a diffusion flame that lies farther into the air stream.

The local balance between the rate of heat loss from, and the rate of fuel dif-
fusion into, the reaction sheet determines largely the peak temperature achieved at the
flame. A decrease in LeF results in a reduction of the rate of heat loss relative to that of
fuel diffusion, and therefore causes an increase of the flame temperature, a well-known
differential-diffusion effect observed for instance in hydrogen combustion (Sánchez and
Williams, 2014). This reasoning, based on the local molecular-transport balance at the
flame, explains the results shown in Figure 4, where the peak temperature found for
LeF = 1 is considerably larger than that corresponding to the heptane diffusivity.

Evaluation of Extinction Conditions

The reaction layer shown in Figures 3 and 4 (a sheet in the infinitely fast reaction
limit used here) is not affected directly by the presence of the droplets. Correspondingly, its
internal structure, determined by a balance between the chemical reaction and the diffusive
transport of heat and chemical species, would be identical to that found in gaseous com-
bustion. Computation of finite-rate effects, including critical extinction conditions, could
be therefore investigated a posteriori by considering the gaseous reacting layer located at
Z = Zst. If a chemistry model with a one-step Arrhenius reaction is adopted, then the
extinction regime involves, as shown by Liñán (1974), small deviations from the Burke–
Schumann solution. The analysis has been generalized to account for preferential diffusion
effects associated with nonunity values of the fuel Lewis number (see the detailed extinction
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118 A. LIÑÁN ET AL.

analysis given in the online supplemental appendix of Liñán et al., 2015). The structure
of the reacting layer is seen to depend on the flame-sheet temperature Tf of the Burke–
Schumann solution, on the flame-sheet value of the scalar dissipation rate χf , and on
the fraction of the chemical heat release at the flame that is conducted towards the oxi-
dizer side, γ̄ ; computed with use made of the gradient of excess enthalpy (dH/dz)f . Thus,
values of Tf , χf , and γ̄ obtained in the limit of infinitely fast reaction with the Burke–
Schumann formulation presented previously could be combined with the analysis of the
reaction-diffusion layer of gaseous flames to determine critical extinction conditions for
spray diffusion flames. Note that, in this nonequidiffusional case, the scalar dissipation
rate at the flame sheet must be evaluated in terms of the gradient of the modified mixture

fraction Z̃, as χ = DT
(
dZ̃/dz

)2
. This has a value that, contrary to the scalar dissipation

rate based on the standard mixture fraction Z, does not jump across the flame sheet when
LeF = LeO2 . It is also worth mentioning that, since for all fuels the chemical reaction rate
is strongly dependent on the temperature, the extinction conditions are very sensitive to
variations of the peak temperature. Therefore, influences of spray dilution, droplet inertia,
and fuel-vapor diffusivity on flame extinction could be easily assessed from the results of
the Burke–Schumann integrations by investigating how variations of St, α, and LeF affect
the resulting values of Tf .

AIR-SIDE VAPORIZATION AND COMBUSTION OF INERTIAL SPRAYS

The evolution of the droplets downstream from their injection location in high-
Reynolds-number opposed-jet configurations, investigated in the Appendix, indicates that,
when the Stokes number is sufficiently large (i.e., St > 1/4 for dilute sprays of nonvapor-
izing droplets), the droplets cross the stagnation plane to reach values of z of order zI into
the opposing air stream. The vaporization of the droplets and the reaction of the resulting
fuel vapor with the oxygen of the air occur mainly, after crossing the mixing layer, in the
air stream, without significant diffusion effects. The description will be simplified by con-
sidering that droplet injection occurs in the near-stagnation-point region, i.e., at distances
zI much larger than δm for the Reynolds number

(
zI
/
δm
)2

to be large, but small enough
compared with R for the gas-phase solution (1) to apply. The resulting formulation, which
employs the length and velocity scales zI and AszI associated with the injection distance,
is delineated below and used to generate some illustrative results for the limiting cases of
purely vaporizing sprays and infinitely fast chemistry.

Conservation Equations and Boundary Conditions

For the analysis, the conservation equations for the liquid and gas phases, given in
(11)–(15) and in (17)–(21), respectively, must be rewritten by introducing the rescaled
transverse coordinate z

/
zI along with the rescaled variables u

/
(AszI), uj

d

/
(AszI), and nj

/
nj

I ,
while the remaining nondimensional variables are those employed earlier in the mixing-
layer analysis, i.e., A

/
As, Aj

d

/
As, T

/
Ts, ρ

/
ρs, aj

/
aj

I , and T j
d

/
Ts. The resulting equations

for the liquid phase can be seen to be equal to (11)–(15), but the boundary conditions
(16) used in the mixing-layer analysis must be replaced now by

aj − 1 = uj
d + uj

I

/
(AszI) = Aj

d − Aj
I

/
As = T j

d − T j
I

/
Ts = nj − 1 = 0 at z

/
zI = 1

(35)
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SPRAY VAPORIZATION AND COMBUSTION 119

involving the nondimensional injection velocity components uj
I/(AszI) and Aj

I/As and the
nondimensional injection temperature T j

I /Ts.
Since the scales for the problem are based on the injection distance zI , in the nondi-

mensional equations for the gas flow the Reynolds number
(
zI
/
δm
)2

appears dividing the
molecular transport terms in (18)–(21) (and also in Eqs. (25) and (28) for the coupling
functions of the fast-reaction limit). In the limit zI � δm, therefore, the equations reduce to
the Euler equations. The integration for the spray side z > 0 must employ as boundary con-
ditions u = 0 at z = 0 and A − 1 = T − 1 = YF = ŶO = 0 as z → ∞; whereas for z < 0
we must use u = 0 at z = 0 and A − √

TA = T − TA = YF = ŶO − 1 = 0 as z → −∞. The
solution must allow for a discontinuity at the stagnation plane z = 0, with order-unity jumps
in temperature, strain rate, and composition that are smoothed across the thin mixing layer,
which is not described in the simplified diffusionless analysis given here.

The numerical computation with the multicontinua formulation requires the coupled
solution of the gas and liquid phases in an iterative scheme that may start by solving the
Euler form of the gas-phase equations (17)–(21) in the two separate domains z > 0 and
z < 0, with an adequate starting guess used for the droplet properties. The resulting profiles
of velocity, temperature, and reactant mass fractions are next used in computing for each
droplet class the distributions of a, Td, ud, Ad, and n by integrating (11)–(15) from z = zI .
The procedure is followed iteratively until convergence is achieved.

For dilute sprays with small values of the liquid mass-loading ratio α (now defined in
terms of the droplet number density at injection nI) of order α ∼ S−1, there exists one-way
coupling of the droplets with the gas flow in the spray stream z > 0, where we find in the
gas only small departures, of order α, from the unperturbed properties u + z

/
zI = A − 1 =

T − 1 = YF = ŶO = 0. For these dilute sprays, strong two-way coupling may appear on
the air side if combustion occurs there. If the spray-carrier temperature Ts and the droplet
injection temperature TI are sufficiently smaller than the boiling temperature TB for the

condition
(

TB − T j
d

)/
TB � [

Lv
/
(RFTB)

]−1
to hold everywhere on the spray side of the

counterflow, then droplet vaporization is entirely negligible on the spray stream. That is
the case considered in the sample computations in Figures 5 and 6 (to be discussed later),
which correspond to dodecane sprays injected at normal atmospheric temperature.

Treatment of Reversing Droplets

For St > 1/4, the droplets are seen to cross the stagnation plane and penetrate into
the air side, a characteristic of sprays in counterflows noted in early work (Chen et al.,
1992; Puri and Libby, 1989). In the presence of reverse droplet motion the solution for a
given droplet class is no longer uniquely defined in terms of the distance to the stagnation
plane, because we may find advancing droplets and returning droplets at the same location
z but with different values of a, Td, ud, and Ad. In the Eulerian description of the droplet
dynamics, which is convenient for the self-similar analysis of the spray counterflow, this
can be accounted for in the integrations, as proposed by Gutheil and Sirignano (1998), by
introducing different “sheets of solutions” or, equivalently, by considering the advancing
and returning droplets as belonging to different classes; so that an additional independent
droplet class is added to the description when the droplets reverse their motion (Sánchez
et al., in press).

The implementation of the integration procedure for the turning droplets must
account for the local description of the flow near the turning plane z = zt, where uj

d = 0.
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Figure 5 Structure of a vaporizing dodecane spray in a counterflow for α = 0.05 and St = 1.0 with
uI
/
(AszI) = −1 , AI

/
As = 1, TI

/
Ts = 1, and TA

/
Ts = 3. The profiles in the left-hand-side panel correspond to

diffusionless results for (zI/δm)2 � 1, whereas the right-hand-side plots are obtained with the complete equations
of the mixing-layer formulation for zI

/
δm = 85.

There, the integration of the advancing droplets provides nonzero finite values of aj = aj
t ,

Aj
d = Aj

dt
, and T j

d = T j
dt

. On the other hand, the local axial-velocity distribution

uj
d = ∓

⎛
⎜⎝ 2Tσ

t ut

St
(

aj
t

)2

⎞
⎟⎠

1/2

(z − zt)
1/2 (36)

obtained from (11) in terms of the local values, at z = zt, of the gas temperature Tt and
gas velocity ut (with the minus and plus signs corresponding to advancing and returning
droplets, respectively), can be used in (15) to show that the droplet number density diverges
at the turning plane in the form

nj = C (z − zt)
−1/2 (37)

where the constant C is determined numerically. To avoid the existence of multivalued
functions within a given droplet class, the droplets that have turned are assigned to a newly
created droplet class, whose radius, velocity, and temperature are determined by integrating
(11)–(14) for increasing z with initial conditions aj = aj

t , Aj
d = Aj

dt
, uj

d = 0, and T j
d = T j

dt
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ŶO2

T

−0.2 −0.1 0 0.1
0

5

10

−0.2 −0.1 0 0.1

−1

0

1

−0.2 −0.1 0 0.1
0

0.5

1

a

n

ud

u

T
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Figure 6 Structure of a dodecane spray flame in a counterflow for α = 0.05 and St = 2.0 with uI
/
(AszI) = −1 ,

AI
/

As = 1, TI
/

Ts = 1, and TA
/

Ts = 2. The profiles in the left-hand-side panel correspond to diffusionless
results for (zI/δm)2 � 1, whereas the right-hand-side plots are obtained with the complete equations of the
mixing-layer formulation for zI

/
δm = 85.

at z = zt, while the associated number of droplets is obtained from (15) with a boundary
value nj = C (z − zt)

−1/2 evaluated near z = zt.

Sample Numerical Results

The formulation delineated above was used to compute the diffusionless counterflow
structure corresponding to a dodecane monodisperse spray with α= 0.05, with results given
in the left-hand-side panels of Figures 5 and 6 for pure vaporization and infinitely fast
reaction, respectively (the right-hand-side panels are to be discussed later). In the integra-
tions, the thermochemical properties are those indicated earlier in the “Sample Numerical
Results” section and the droplets are assumed to be injected with the local velocity and
temperature of the gas flow.

The profiles given in Figure 5 indicate that droplet vaporization is confined to the
hot air side. Because of their significant inertia, the droplets cross the stagnation plane
with a finite velocity, turning around at zt/zI 	 −0.156. Droplet vaporization occurs at
intermediate distances −0.156 < z/zI < 0, resulting in a fuel mass fraction that peaks at
an intermediate location z/zI = −0.05. The accumulation of the droplets near the turning
plane is visible in the profiles of droplet number density n. As can be inferred from the
convection-vaporization balance in (20), the local singularity (37) results in a fuel-vapor
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122 A. LIÑÁN ET AL.

profile that increases rapidly from the turning point according to YF ∝ (z − zt)
1/2. Also of

interest is that the returning droplets, whose radius decrease significantly after spending
time on the hot side of the counterflow, disappear in this case before reaching the mixing
layer. For larger values of the Stokes number, the droplets may have sufficient inertia to
either cross the stagnation plane into the spray side of the counterflow, where they would
undergo a second turning, or may approach the stagnation plane with a vanishing velocity
and be trapped in the mixing layer, where they can continue to evolve.

Results corresponding to infinitely fast chemistry are shown in Figure 6. Because
of the higher temperature associated with the chemical heat release, vaporization is more
pronounced in this case, with the droplets disappearing soon after turning around at zt/zI 	
−0.183. Since the mixture fraction begins to increase from the value Z = 0 only after the
air stream meets the droplets at the turning point zt, the flame surface Z = Zst is always at a
location zf > zt, intermediate between the turning point and the stagnation plane, indicating
that, in the diffusionless limit, the droplets necessarily cross the flame. Because of the rapid
vaporization rate associated with the accumulation of the droplets at the turning point,
the mixture fraction increases there according to Z ∝(z − zt)

1/2. Since the value of Zst is
moderately small, the resulting diffusion flame appears very close to the turning point, i.e.,
at zf /zI = −0.181 in the computations of Figure 6. Clearly, the flame would stand farther
from the turning point in configurations with larger values of Zst. Part of the heat released
at the flame sheet by the chemical reaction is employed to vaporize the droplets, which
explains the sharp decrease of the temperature profile on the fuel side of the flame.

Besides results of diffusionless computations, the figures also include, in the right-
hand-side panels, results corresponding to a moderately large value of the Reynolds number
(zI/δm)2, computed by retaining in the gas-phase conservation equations the molecular
transport terms, which are proportional to (zI/δm)−2. The integrations use the boundary
conditions (22). The diffusionless limit is seen to reproduce adequately the large Reynolds
number results, with significant departures appearing mainly around the stagnation plane,
where the jumps in temperature and composition predicted by the diffusionless approx-
imation are smoothed out in the presence of diffusion. Molecular transport also has a
noticeable effect on the profiles of temperature and oxygen on the air side of the flame
sheet in Figure 6, resulting in less pronounced gradients, to be taken into account when
evaluating the flame-extinction conditions. Also, of interest is that, unlike the diffusionless
solution shown in the left-hand-side panel, the droplets do not cross the flame in the finite
Reynolds number computations of Figure 6, where the flame stands to the left of, although
very close to, the turning point. Outside the layers of rapid change mentioned above, the
differences between corresponding profiles in the side-by-side panels of Figures 5 and 6
are relatively small, with somewhat larger departures observed in the profiles of fuel-vapor
mass fraction shown in Figure 5, that being a result of the modified spray vaporization rate
found in the mixing layer.

The sample computations given here serve to illustrate the structure of the result-
ing flow in this regime of air-side vaporization and combustion. The formulation should
be exploited in future efforts to analyze the parametric dependence of the solution. The
rapid transition regions identified also deserve specific attention. An example is the region
identified in the diffusionless computations between the turning plane and the diffusion
flame, corresponding in the left-hand-side panel of Figure 6 to the small intermediate range
−0.183 < z/zI < −0.181, where we find a large amount of droplets vaporizing in the pres-
ence of oxygen. This region has been described here in the limit of infinitely fast reaction, so
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SPRAY VAPORIZATION AND COMBUSTION 123

that YF = 0 there. Finite-rate effects would be needed in general for a more detailed descrip-
tion. Near the flame, the existing large temperature is expected to favor the rapid burning
on the resulting fuel vapor in a distributed manner (or in flames enclosing the individual
droplets, if their radii are large enough). Near the turning point, however, the temperature
is close to that of the unperturbed air stream, and the fuel vapor would mix with the air,
creating a reactant mixture that could burn in a premixed flame, upstream from the diffu-
sion flame described here. Clearly, this and other aspects of the flow should be addressed
to provide a more complete understanding of counterflow spray diffusion flames.

CONCLUSIONS

We have given, in this article, a compact formulation for the computation of vapor-
ization and combustion of dilute inertial polydisperse sprays in high Reynolds number
opposed-jet configurations, with attention focused on the self-similar region found near
the stagnation plane. While the previous authors were concerned with formulations of the
counterflow spray problem accounting simultaneously for detailed transport, thermochem-
istry, and chemical-kinetic descriptions together with advanced comprehensive models for
the interphase exchange rates (see, for instance, Gutheil and Sirignano, 1998), we have
used instead a simplified description based on a one-step fast-reaction model. Our approach
allows us to identify the main scales and the key dimensionless parameters of the problem,
based on these scales, which are shown to exhibit in practical applications disparate val-
ues. We can thus identify distinguished regimes involving different physical phenomena.
This methodology facilitates the derivation of simplified mathematical formulations, which
readily enable parametric dependences to be investigated, and also the identification of dis-
tinguished behaviors, often obscured in numerical integrations accounting simultaneously
for multiple physical phenomena.

For the moderately large values of the Reynolds number typically found in experi-
mental counterflow-spray configurations, the mixing between the air and the spray streams
is confined to a thin mixing layer, of thickness δm, that separates the spray stream from
the opposing hotter air stream. As often occurs in experiments, the droplets are assumed
to be injected in the outer nearly inviscid region, at distances zI � δm. For small values of
the liquid mass-loading ratio, we find one-way coupling of the droplets with the gas in the
spray stream outside the mixing layer, so that the gas velocity can be determined indepen-
dently of the liquid phase, and then used to compute the droplet motion from the injection
plane towards the stagnation plane, an analysis presented in the Appendix. Because of their
diverging radial motion, only the droplets initially located near the axis eventually enter
the self-similar region of the mixing-layer around the stagnation point, so that the com-
putation of the droplet evolution can be restricted to the near-axis region. The analysis,
which provides the droplet velocity and droplet number density as the stagnation plane is
approached, leads to identification of two different regimes depending on the value of the
droplet Stokes number St, defined as the ratio of the droplet acceleration time to the strain
time of the nearly inviscid gas flow on the spray side of the stagnation point. For St < 1/4,
the droplet axial velocity in the spray stream vanishes at the stagnation plane; thus when
these droplets enter the mixing layer, they vaporize, producing fuel vapor that can react
there with the oxygen that diffuses from the air side. By way of contrast, for St > 1/4 the
droplets cross the stagnation plane with a velocity smaller than, although comparable to,
the injection velocity, penetrating large distances of order zI � δm into the air stream where
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124 A. LIÑÁN ET AL.

they can vaporize. Upon ignition this second regime gives rise to a diffusion flame standing
far on the air side of the counterflow outside the mixing layer.

The canonical problems identified, including their solution in the extreme limits of
negligible and infinitely fast chemical reaction, can be used to investigate influences of
spray dilution and droplet inertia on the flame structure. We expect that the formulation
presented here, including the effects of nonunity Lewis numbers of the fuel vapor on the
flame temperature and on the value of the scalar dissipation at the flame that determines
the flame extinction, will be useful to generate valuable knowledge for flamelet modeling
of turbulent spray reacting flows.
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APPENDIX: DROPLET DYNAMICS IN OPPOSED-JET CONFIGURATIONS

For the opposed-jet configuration considered here, represented schematically in
Figure 1, the computation of the inviscid flow in the outer streams involves the integra-
tion of the Euler equations for the gas phase coupled to the solution of the liquid phase,
with the outer jet boundaries and the interface separating the two jets appearing as free
surfaces to be obtained as part of the solution. The calculation is simplified for small val-
ues of the liquid mass-loading ratio α, such that we find one-way coupling of the droplets
in the spray stream. Under these conditions, the gas velocity can be computed indepen-
dently of the liquid phase, and then used to determine the droplet velocity vd =(ud, vd) and
associated droplet number density n of the droplets.

Computation of the Gas Flow

The nearly inviscid flow found outside the mixing layer between the counterflowing
streams and the jet-boundary shear layers with the outer stagnant gas depends on the val-
ues of the internozzle separation H

/
R and of the inert-to-air density and velocity ratios

ρs
/
ρA and Us

/
UA. The calculation can be carried out using the Navier–Stokes equations

for large values of Re. Outside the mixing-layer and the jet-boundary shear layers, the solu-
tion evolves for Re � 1 towards the inviscid unsteady solution. The integration provides, in
particular, the distribution of gas velocity along the axis ua(z) and the associated near-axis
radial velocity va, both components being related through the continuity equation according
to va = −(dua

/
dz
)

r
/

2. This gas-velocity distribution v =(ua, va) is to be used below in
computing the near-axis droplet evolution.

Results of integrations of the axisymmetric Navier–Stokes equations are shown in
Figure 7 for the symmetric configuration ρs

/
ρA = 1 and Us

/
UA = 1, for which ua(z) =

−ua(−z). The computations consider a configuration with internozzle separation H
/

R =
0.5. The instantaneous isocontours of inert mass fraction shown in the upper plot mark the
location of the jet-boundary shear layer, which becomes unstable as it evolves after the
nozzle rim.

These flow instabilities do not have a strong effect on the velocity distribution along
the axis u = ua(z), which remains almost steady, as can be seen in the sample profiles
shown in the intermediate plot for different values of the Reynolds number, Re. The value of
ua evolves from ua = Us, assumed for z moderately large compared with R, to approach the
linear decay rate ua = −Asz as z → 0, where As is the stagnation-point strain rate. As can be
seen, the growth of the boundary layer on the injector wall results in an initial acceleration
of the near-axis flow, which is less pronounced for larger values of Re. The corresponding
value of the strain rate As is seen to approach for Re � 1 a constant value, given by Ās =
As/ (Us/R) = 1.51 for the particular case considered in Figure 7.

As indicated in (1), the velocity near the stagnation point has the self-similar form
u = −Asz and v = Asr/2. This local description is tested in the intermediate and lower plots
of Figure 7, with the latter showing the instantaneous distributions of the radial velocity

D
ow

nl
oa

de
d 

by
 [

17
1.

66
.1

8.
18

1]
 a

t 1
8:

48
 1

2 
D

ec
em

be
r 

20
14

 



SPRAY VAPORIZATION AND COMBUSTION 127

Figure 7 Results of integrations of the axisymmetric Navier–Stokes equations for ρs/ρA = 1, Us/UA = 1,
H/R = 0.5, and different values of the Reynolds number Re = UsR/νs. The color contours in the upper plot
give a snapshot of the distribution of inert mass fraction for Re = 2000. The intermediate and lower plot show,
respectively, the variations of the transverse velocity u with z/R along the axis and the variation of the radial
velocity v with r in the stagnation plane for Re =(500, 1000, 2000, 4000). (Figure courtesy of Dr. Jaime Carpio.)

along the stagnation plane. As can be seen, although the flow instabilities cause the radial
velocity to be unsteady at large radial distances, the solution remains steady, nearly unper-
turbed, in the near-stagnation-point region. The integrations indicate that the linear variation
of the axial and radial velocity components with the distance to the stagnation point applies
in a fairly large region. For instance, for the case H/R = 0.5 considered in Figure 7, Eq. (1)
provides an accurate representation for the velocity field at distances to the stagnation point
as large as half of the nozzle radius.
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128 A. LIÑÁN ET AL.

Droplet Motion in the Spray Stream

To calculate the motion of the near-axis droplets, which ultimately determines the
droplet velocity and droplet population outside the mixing layer, the gas-velocity distri-
bution v = (ua, va) previously computed is to be used to evaluate the drag force, which is
assumed to be given by Stokes law f = 6πμsao(v − vd), where μs is the viscosity of the
spray carrier gas and ao is the initial droplet radius. The droplet axial velocity ud(z) is given
by the solution of the autonomous system

dud

dt
= ua − ud

ta
,

dz

dt
= ud (A1)

with the near-axis initial conditions ud = uI and z = zI .Here, ta = 2
9 a2

oρl/μs is the droplet
acceleration time corresponding to the Stokes drag force, with ρl denoting the density of
the liquid fuel. Introducing R and AsR as length and velocity scales for z and ud provides
the alternative problem

dūd

dτ
= ūa − ūd

St
,

dz̄

dτ
= ūd; ūd(0) − ūI = z̄ (0) − z̄I = 0 (A2)

for the axial velocity ūd = ud/ (AsR), where z̄ = z/R and τ = t/ta. The solution, involving
the local stagnation-point Stokes number,

St = 2

9
Asa

2
oρl/μs (A3)

depends on the variation of the axial gas velocity ūa(z̄) = ua/ (AsR) and on the injection
velocity and injection distance ūI = uI/ (AsR) and z̄I = zI/R. In the sample computations
shown below, the gas velocity is approximated by ūa = −Ā−1

s erf
[(√

π/2
)

Āsz̄
]
, with Ās =

1.51. a convenient analytical representation of the results of the Navier–Stokes integrations
shown in Figure 7 for Re � 1.

Figure 8 shows sample trajectories in the phase plane (z̄, −ūd). Along the curve
ūd = ūa, represented in blue color, the droplets experience a vanishing drag force and the
associated trajectories correspondingly exhibit a zero slope, as dictated by the first equation
in (A2). Qualitatively different behaviors appear depending on the form of the solution near
the origin, which is a critical point of (A2), with ūa = −z̄. The local solution there is of the
form z̄ = ūd/λ ∝ exp(λτ), as determined by the roots

λ± = ±√
1 − 4St − 1

2St
(A4)

of the characteristic polynomial λ2 + λ/St + 1/St. For St < 1/4 both roots are real and
negative, so that the origin of the phase plane is a stable node, while for St > 1/4 both
roots are complex and the origin is a stable spiral point. Both types of solutions are shown
in Figure 8 associated with the values St = 0.2 (stable node) and St = 1.0 (stable spiral).

The plot for St = 1.0 in Figure 8 is representative of the counterflow dynamics of
large droplets with St > 1/4, which are seen to reach the stagnation plane with a nonzero
crossing velocity ūd of order unity. The trajectories are seen to spiral around the origin, indi-
cating that nonvaporizing droplets with St > 1/4 may undergo multiple stagnation-plane
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Figure 8 The phase plane ud − z obtained with the approximated gas velocity profile ūa =
−Ā−1

s erf
[(√

π/2
)

Āsz̄
]

by integration of (A2) for St = 1.0 (upper plot) and for St = 0.2 (lower plot).

crossings, with velocities that depend on the injection conditions. Clearly, for nonsymmet-
ric counterflow configurations with ρs = ρA, the gas velocity ūa used in (A2) to compute ūd

should be modified each time the droplet crosses the stagnation plane. The plot includes the
separating trajectory that originates at z/R → ∞ with ūd = ūa, corresponding to droplets
injected far upstream with the local gas velocity. This trajectory shows a first intersec-
tion with the vertical axis z̄ = 0 at −ūd 	 0.3, which is the maximum velocity with which
droplets released with uI < ua cross the stagnation plane for the first time.
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The solution for St = 0.2 includes as red curves the distinguished separating trajecto-
ries that originate at the critical point with slopes λ±. For injection conditions (z̄I , −ūI) that
place the droplet initially below the upper separating trajectory, corresponding to droplets
with initial injection velocities that are comparable to or smaller than the local gas velocity
ūa, the resulting droplet trajectory evolves to approach the origin of the phase plane along
the critical trajectory associated with λ+, which acts as an attractor. These trajectories are
associated with droplets that do not cross the stagnation plane. Instead they enter the mixing
layer with a vanishing velocity

ūd = λ+z̄ = −1 − √
1 − 4St

2St
z̄ (A5)

This expression reduces to ūd = −z̄ for St � 1, corresponding to tracing droplets with
ud = ua. As seen in the plot, for small droplets with St < 1/4 to cross the stagnation plane,
their initial velocity at the injection point has to be much larger than the local gas velocity.
As expected, since the upper separating trajectory becomes steeper for smaller values of
the Stokes number (i.e., its initial slope becomes λ− = St−1 for St � 1), the minimum
injection velocity required to achieve droplet crossing becomes larger for smaller droplets.
For most cases of practical interest, therefore, the simple criterion St < 1/4 can be used to
identify droplets that approach the stagnation plane with the linearly decreasing velocity
(A5), independent of the injection conditions, whereas for St > 1/4 the droplets cross the
stagnation plane with a crossing velocity of order AsR, comparable to the injection velocity.

The droplet radial motion follows from integration of

dvd

dt
= va − vd

ta
,

dr

dt
= vd (A6)

with initial conditions vd = vI and r = rI . In the axisymmetric flow considered here,
the droplet radial velocity near the axis is linearly proportional to the radial distance,
and can be therefore represented in the form vd = Ad(z) r

/
2, with initial distribution

vI = AIr
/

2 at. Substituting this expression together with the near-axis velocity distri-
bution va = −(dua

/
dz
)

r
/

2 into (A6) and writing the problem in dimensionless form
leads to

ūd
dĀd

dz̄
= − 1

St

(
dūa

dz̄
+ Ād

)
− Ā2

d

2
; Ād = ĀI at z̄ = z̄I (A7)

after eliminating the time with use made of the second equation in (A2). Here, Ād = Ad
/

As

and ĀI = AI
/

As. The integration determines the distribution of Ād(z̄) for the approaching
droplets. For droplets crossing the stagnation plane, the integration gives a value of Ād(0)

of order unity that depends on the initial injection conditions, whereas for droplets with
St <1

/
4, whose axial velocity vanishes at the stagnation plane as dictated by (A5), it is

seen that

Ād =
√

2St + 1 − 1

St
(A8)
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as z̄ → 0, as is required for the right-hand side of (A7) to vanish as the stagnation plane is
approached (note that dūa

/
dz̄ = −1 at z̄ � 1). As expected, for St � 1, Eq. (A8) simplifies

to Ād = 1, corresponding to droplets closely following the gas with radial velocity vd = v.
The evolution of the droplet number density near the axis n (z) from its injection

value nI is determined by integrating the steady droplet conservation equation ∇ ·(nvd) = 0
written in the dimensionless form

d

dz̄
(n̄ ūd) + n̄ Ād = 0; n̄ = 1 at z̄ = z̄I (A9)

where n̄ = n
/

nI , with ūd(z̄) and Ād(z̄) obtained from (A2) and (A7), respectively. Because
of their slip motion, the droplets tend to accumulate so that the value of n̄ is always larger
than unity for z̄ < z̄I . For St >1

/
4, the integration yields a finite value n̄ (0) > 1 as z̄ → 0.

By way of contrast, for St <1
/

4, the vanishing axial velocity (A5) leads to a diverging
droplet number density

n̄ = Bz̄−C (A10)

as z̄ → 0, where the exponent

C = 1 − 2
[√

2St + 1 − 1
]

1 − √
1 − 4St

(A11)

can be easily determined by using in (A9) the asymptotic droplet velocity distributions
given in (A5) and (A8). The limiting values for this exponent are C 	 3

2 St for St � 1
and C = 3 − √

6 	 0.55 for St =1
/

4. The computation of the multiplying factor B in
(A10) requires integration of (A9), giving a value of order unity that depends on the injec-
tion boundary conditions. According to the expression (A10), the accumulation of droplets
near the stagnation plane leads to large droplet densities nm of order

nm/nI = B
(
R
/
δm
)C ∼ Re

C/2 � 1 (A12)

at distances z of the order of the mixing-layer thickness δm.
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