Theory of turbulence augmentation across hypersonic shock waves

74th Annual Meeting of the APS Division of Fluid Dynamics

Alberto Cuadra ^{1, a)}, César Huete¹, Marcos Vera¹, & Javier Urzay²

a) acuadra@ing.uc3m.es

¹ Grupo de Mecánica de Fluidos, Universidad Carlos III de Madrid ² Center for Turbulence Research, Stanford University

Phoenix | November 21-23, 2021

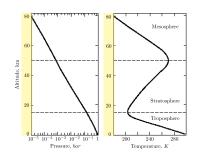
Huete: Spanish MCINN and BBVA Foundation (Leonardo Grant)
Urzay: US AFOSR and US DoE/NNSA

uc3m

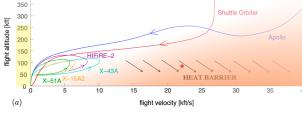
Universidad
Carlos III
de Madrid

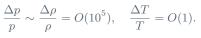
A. Cuadra (presenter) C. Huete, M. Vera. J. Urzav

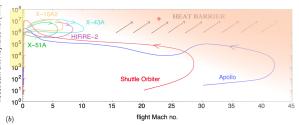
1 Motivation


Effects of dissociation and vibrational excitation on the mean post-shock quantities

LIA of turbulence interacting with hypersonic shocks


Conclusion




400

 $\frac{\Delta p}{p} \sim \frac{\Delta \rho}{\rho} = O(10^5), \quad \frac{\Delta T}{T} = O(1). \label{eq:deltapprox}$ In hypersonic flight near the ground, the Reynolds number becomes large because of the comparatively larger densities

$$\frac{\Delta Re}{Re} = O(10^5).$$

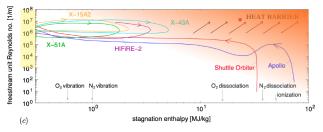
Urzay, J., & Di Renzo, M. (2021). Annual Research Briefs, Center for Turbulence Research, 7-32.

Motivation

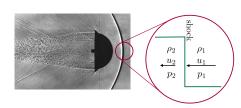
Theory of turbulence augmentation across hypersonic shock

A. Cuadra (presenter) C. Huete, M. Vera. J. Urzav

Effects of dissociation and vibrational excitation on the mean post-shock quantities


LIA of turbulence interacting with hypersonic shocks

Conclusion

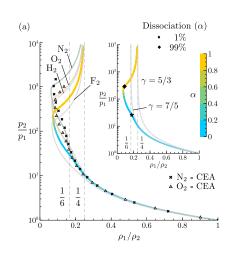

Urzay, J., & Di Renzo, M. (2021), Annual Research Briefs, Center for Turbulence Research, 7-32,

Hypersonic flight at low altitudes is characterized by:

- High free-stream Mach numbers $Ma \ge 5$
- High free-stream and post-shock unit Reynolds numbers $Re \sim 10^7 - 10^9 \text{ m}^{-1}$
- High stagnation enthalpies $h_0 \sim 5 30$ MJ/kg
- Small mean free paths $\lambda \sim 0.1 \ \mu \text{m}$

- large normal Mach numbers
- · turbulent boundary layers
- much higher than the vibrational specific energies of O2 and N2
- short vibrational relaxation distances

Effects of dissociation and vibrational excitation on the mean post-shock quantities



Integral conservation equations accross shock waves in dissociating gases

$$\begin{aligned} \rho_1 u_1 &= \rho_2 u_2, \\ p_1 + \rho_1 u_1^2 &= \mathbf{p_2} + \rho_2 u_2^2, \\ e_1 + p_1/\rho_1 + u_1^2/2 &= \mathbf{e_2} + \mathbf{p_2}/\rho_2 + u_2^2/2 + \mathbf{q_d}, \end{aligned}$$

Upstream flow is sufficiently cold to be approximated as

$$e_1 = (5/2)R_gT_1, \quad p_1 = \rho_1R_gT_1.$$

uc3m 💃

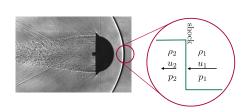
Theory of turbulence augmentation across hypersonic shock waves

A. Cuadra (presenter) C. Huete, M. Vera, J. Urzay

Motivation

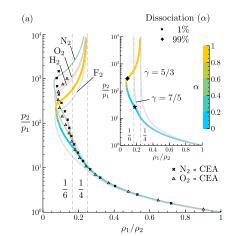
3 Effects of dissociation and vibrational excitation on the mean post-shock quantities

LIA of turbulence interacting with hypersonic shocks


Conclusion

Get the code

Effects of dissociation and vibrational excitation on the mean post-shock quantities


Integral conservation equations accross shock waves in dissociating gases

$$\begin{aligned} \rho_1 u_1 &= \rho_2 u_2, \\ p_1 + \rho_1 u_1^2 &= \mathbf{p_2} + \rho_2 u_2^2, \\ e_1 + p_1/\rho_1 + u_1^2/2 &= \mathbf{e_2} + \mathbf{p_2}/\rho_2 + u_2^2/2 + \mathbf{q_d}, \end{aligned}$$

$$p_2 = \rho_2 R_g T_2 (1 + \alpha), \quad q_d = \alpha R_g \Theta_d,$$

$$e_2 = R_{g, A_2} T_2 \left[3\alpha + (1 - \alpha) \left(\frac{5}{2} + \frac{\Theta_v / T_2}{e^{\Theta_v / T_2} - 1} \right) \right],$$

$$\frac{\alpha^2}{1 - \alpha} = Gm \Theta_r \left(\frac{\pi m k_B}{\hbar^2} \right)^{3/2} \frac{\sqrt{T_2}}{\alpha_2} e^{-\frac{\Theta_d}{T_2}} \left(1 - e^{-\frac{\Theta_v}{T_2}} \right),$$

where α is the degree of dissociation, defined as the mass fraction of A atoms in the reaction $A_2 \rightleftharpoons A+A,$ that must be solved with the aid of the chemical equilibrium condition.

uc3m 💃

Theory of turbulence augmentation across hypersonic shock waves

A. Cuadra (presenter) C. Huete, M. Vera, J. Urzay

Motivation

3 Effects of dissociation and vibrational excitation on the mean post-shock quantities

> LIA of turbulence interacting with hypersonic shocks

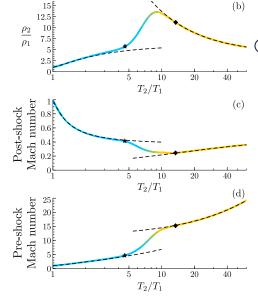
Conclusion

Get the code

Jump conditions

Theory of turbulence augmentation across hypersonic shock waves

> A. Cuadra (presenter) C. Huete, M. Vera. J. Urzav


uc3m 💃

Motivation

Effects of dissociation excitation on the mean post-shock quantities

> LIA of turbulence interacting with hypersonic shocks

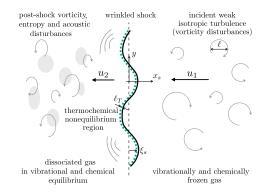
Conclusion

Endothermicity due to dissociation and vibrational excitation does the following:

- increases the mean post-shock density
- decreases the mean post-shock velocity
- decreases the mean post-shock Mach number
- decreases the mean post-shock temperature

LIA of turbulence interacting with hypersonic shocks

uc3m



Considering:

- turbulence is comprised of small fluctuations,
- Kovasznay decomposition into vortical, entropic and acoustic modes,

we can solve this problem analytically by using

- linearized Rankine-Hugoniot relations,
- linearized Euler equations in the post-shock gas.

Limits of validity

Assumptions standard LIA:

- (a) $rms(u_\ell) \ll a_1$ and a_2 ,
- (b) $\xi_s \ll \ell$,
- (c) $\ell/u_{\ell} \ll \ell^2/\nu$.

With thermochemical effects:

(d) $\ell_T \ll \ell$

For a given ℓ , this condition becomes increasingly more accurate as the altitude decreases.

Theory of turbulence augmentation across hypersonic shock waves

A. Cuadra (presenter)
C. Huete, M. Vera,
J. Urzay

Motivation

Effects of dissociation and vibrational excitation on the mean post-shock quantities

LIA of turbulence interacting with hypersonic shocks

Conclusion

Theory of turbulence augmentation across hypersonic shock waves

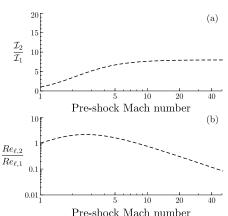
A. Cuadra (presenter) C. Huete, M. Vera. J. Urzav

Motivation

Effects of dissociation and vibrational excitation on the mean post-shock quantities

LIA of turbulence interacting with hypersonic shocks

Conclusion



Turbulence intensity and Turbulent Turbulent Kinetic Energy Reynolds number

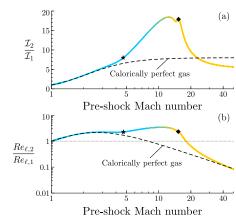
At hypervelocities $(Ma \gtrsim 10)$, the calorically perfect gas approximation predicts a saturation in the amplification of kinetic energy and turbulence intensity, along with a decrease in the turbulent Reynolds number accross the shock.

Theory of turbulence augmentation across hypersonic shock waves

A. Cuadra (presenter) C. Huete, M. Vera. J. Urzav

Motivation

Effects of dissociation and vibrational excitation on the mean post-shock quantities


LIA of turbulence interacting with hypersonic shocks

Conclusion

In contrast, the incorporation of dissociation and vibrational excitation predicts larger kinetic energy and turbulence intensity amplification rates, along with an increase in the turbulent Reynolds number accross the shock.

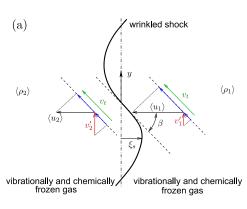
 $\rightarrow 1$ 2.5 0.2 KCalorically perfect gas 1.5 Dissociation (α) 99% Pre-shock Mach number

Theory of turbulence augmentation across hypersonic shock

A. Cuadra (presenter) C. Huete, M. Vera, J. Urzav

Motivation

Effects of dissociation and vibrational excitation on the mean post-shock quantities


8 LIA of turbulence interacting with hypersonic shocks

Conclusion

Calorically perfect gas Vibrationally Excited, Dissociating Gas

wrinkled shock (b) $\langle \rho_2 \rangle \uparrow \uparrow$ $\langle \rho_1 \rangle$ $\langle u_1 \rangle$ dissociated gas vibrationally and chemically in vibrational and chemical frozen gas

Conservation of tangential momentum dictates that the transverse velocity fluctuations should increase across the shock – these are larger at hypersonic velocities because of the associated larger post-shock densities induced by endothermic thermochemical effects.

eauilibrium

Key takeaways

- Significant departures from calorically perfect gas behaviour can be observed in the solution even at modest degrees of dissociation of 1%.
- A turning point in the Hugoniot curve is observed at approximately Mach 13 and 70% degree of dissociation.
- The amplification of TKE doubles that observed in calorically perfect gases, with most of the content of TKE downstream in form of vortical modes.
- The turbulent Reynolds number is amplified across the shock at hypersonic Mach numbers in the presence of dissociation and vibrational excitation, as opposed to the attenuation observed in the calorically perfect case.

 Thermochemical effects arising at hypersonic velocities appear to enhance turbulent fluctuations in the post-shock gas.

Huete, C., Cuadra, A., Vera, M., Urzay, J. (2021). Thermochemical effects on hypersonic shock waves interacting with weak turbulence. Physics of Fluids, 33(8), 086111

