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Question 1 (25 pts)

Explain the concept of steady flamelet models in non-premixed turbulent combustion, and how are they
typically implemented in RANS of turbulent diffusion flames.



Student’s Name:

Question 2 (25 pts)
Select true (T) or false (F) for each of the statements in the list provided for each question, or fill in the

gaps when indicated by the symbol (........). A complementary and brief mathematical proof / sketch of your
answer on the back of the page would be welcome, but it is not needed in order to get full credit.

2.1 In the mixing of two reactants in a turbulent flow,

a) the scalar dissipation rate is always a sink in the equation for the mean (T/F)

b) the scalar dissipation rate is minimum in zones where only one of the reactants exists (T/F)

e) for order-unity Schmidt numbers, the molecular mixing of two reactants typically occurs in time scales
which are much shorter than the integral time scale (T/F)

f) For chemical reactions to occur in combustion, fuel and oxidizer must be mixed at the (......................)
level.

2.2 For single-step chemistry flames in the limit of large activation energies,

a) the strain rate at extinction of a laminar diffusion flame scales as
√

D/tF , where D is the fuel mass
diffusivity and tF is the flame-transit time or characteristic residence time within the preheat region
(T/F)

b) at diffusion-flame extinction in counterflow mixing layers, the diffusion time through the mixing layer
is of the same order as the flame transit time through the preheat region of a stoichiometric laminar
planar premixed flame (T/F)

c) the scalar dissipation rate at stoichiometry χst represents the (...........................) through the stoichio-
metric surface.

d) the characteristic reaction-zone thickness in diffusion flames is of order (....................), where (..............)
is the (.......................) number, (........................) is the (.......................) number, and (........................)
is the (.......................) thickness.

2.3 In turbulent non-premixed flames,

a) the mixture fraction is a conserved scalar because (.......................................................).

b) the flamelet-progress-variable-approach (FPVA), a mostly unique mapping of all tabulated chemical
states is provided in terms of mixture fraction and progress variable (T/F)

c) the Burke-Schumann approximation is accurate for calculating extinction of turbulent diffusion flames
(T/F)

d) the problem ρχ(Z)d2φ/dZ2 = ẇφ, for any scalar φ, and with χ the scalar dissipation rate and Z the
mixture fraction, represents a convection-diffusion problem (T/F)

e) the probability density function for the mixture fraction is typically modeled by using a (.........................)
function.
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Figure 1: Schematics of the problem

In the hydrodynamic or “Darrieus-Landau” instability of premixed flames, a stream tube with cross-
sectional area A−∞ and upstream flow velocity u−∞ = S0

L widens due to flow divergence ahead of the flame,
with S0

L the planar propagation velocity. This divergence effect is generated by the thermal expansion at the
front that induces a flow component normal to the flame contour. The streamlines become deflected as they
cross the front. At large distances from the front, the streamlines are parallel again, but the downstream
velocity is u∞ = (ρu/ρb)u−∞ > u−∞. At the cross section A1, where the density is still equal to unburnt den-
sity ρu, the flow velocity is u1 = (A−∞/A1)u−∞ < u−∞ because of mass conservation. Since the unperturbed
flame propagates with u−∞, the burning velocity is larger than u1 and the flame will propagate upstream,
thereby enhancing the initial perturbation.
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In the thin-flame limit, in which the flame is treated as a gasdynamic discontinuity, the parameter
ǫ = kδ0

L ≪ 1 is small, in that the characteristic wavelength of the transverse flame corrugations, λ = 2π/k,
with k the wavenumber, is much larger than the unperturbed flame thickness δ0

L. In the limit ǫ → 0, the
infinitesimally thin flame separates the burnt and unburnt regions, in which the density is constant (ρ = ρu

in the unburnt zone and ρ = ρb in the burnt zone) and in which molecular transport is negligible.

In this problem, the Darrieus-Landau instability is studied in the presence of curvature-correction effects
(a.k.a. diffusive-thermal effects) on the propagation velocity, which here is assumed to be given by the linear
relationship SL = S0

L(1−Lκ), where S0
L is the planar propagation velocity on the unburnt side, L is a Markstein

length and κ is the local curvature. In order to obtain a dispersion equation that relates the growth rate σ
of the instability with the wavenumber k, the thermal-expansion ratio α = (ρu − ρb)/ρu and the Markstein
length L, follow the next steps:

1.1 Write down the continuity and momentum conservation equations for the x− and y− components of the
flow velocity v = uex + vey, with ei unit vectors. Use dimensionless variables v⋆ = v/S0

L, ρ⋆ = ρ/ρu,
P ⋆ = P/ρu(S0

L)2, x⋆ = x/δ0
L and t⋆ = t/tF . In this formulation, δ0

L = S0
LtF is the flame thickness,

tF is the flame-transit time, P is the pressure and the remaining symbols are defined in the problem
statement.

1.2 What are the boundary conditions for the velocity at x → ±∞?

1.3 In the limit ǫ → 0, the equations written in part 1.1. are only valid on both sides of the flame because
of thermal expansion, which induces an infinite density gradient in the first approximation. Jump
conditions for the velocity and pressure can be derived in the following manner:

1.3.1 If xF is the flame position and n is the unit normal vector to the front towards the burnt side
(see Fig.1), write an equation that states the continuity of the burning rate ṁ = ρSL across the
flame in terms of the relative velocity (v − dxF /dt) · n on both sides of the flame. (Note: Recall
that if dxF /dt is the flame speed in the laboratory frame, then the kinematic balance requires that
SL = (v − dxF /dt) · n on the unburnt region.)

1.3.2 Additionally, write a momentum balance equation across the flame in terms of the relative velocity
(v − dxF /dt) · n and pressure on both sides of the flame.
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1.3.3 Use the the thermal-expansion coefficient α = (ρu−ρb)/ρu and the nondimensional variables defined
above in order to express the equations obtained in 1.3.1 and 1.3.2 in dimensionless form.

1.3.4 By employing the ansatz G = x − F (y, t) = G0 at the flame, with G0 a constant and F (y, t) the
displacement function, show that the scalar product n · dxF /dt can be written as

n ·
dxF

dt
=

Ft
√

1 + F 2
y

, (1)

where Ft = ∂F/∂t and Fy = ∂F/∂y.

1.3.5 Use equation (1) derived above to show that the jump conditions obtained in part 1.3.3 can be
expressed as

αFt = u(u)
− (1 − α)u(b)

− Fy

[

v(u)
− (1 − α)v(b)

]

, (2)

Ft

[

u(u)
− (1 − α)u(b)

]

= u(u)
(

u(u)
− Fyv

(u)
)

− (1 − α)u(b)
[

u(b)
− Fyv

(b)
]

+ P (u)
− P (b), (3)

Ft

[

v(u)
− (1 − α)v(b)

]

= v(u)
(

u(u)
− Fyv

(u)
)

− (1 − α)v(b)
[

u(b)
− Fyv

(b)
]

− (P (u)
− P (b))Fy , (4)

where the superindexes (u) and (b) denote variables evaluated on the unburnt and burnt sides,
respectively.

1.4 For ǫ ≪ 1, the velocity components, the pressure and the displacement function may be expanded in
power series of ǫ as

u = U0 + ǫU1 + O(ǫ2), v = ǫV1 + O(ǫ2), P = P0 + ǫP1 + O(ǫ2), and F = ǫF1 + O(ǫ2). (5)

Similarly, a coordinate transformation

x = ξ + F (η, τ), y = η, and t = τ (6)

becomes useful in order to set the flame and the jump conditions at ξ = 0.
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Use these expansions prove that, to leading order, the jump conditions derived in part 1.3.5 reduce to

U
(u)
0 = 1, U

(b)
0 = 1/(1 − α), and P

(u)
0 − P

(b)
0 = α/(1 − α). (7)

1.5 Use the asymptotic expansions (5) and the coordinate transformation (6) to show that the jump condi-
tions (2)-(4) reduce to

αF1τ = U
(u)
1 − (1 − α)U

(b)
1 , (8)

P
(u)
1 − P

(b)
1 = 2(U

(b)
1 − U

(u)
1 ), (9)

V
(u)
1 − V

(b)
1 =

αF1η

1 − α
, (10)

1.6 Use the asymptotic expansions (5) and the coordinate transformation (6) to obtain the second approx-
imation of the asymptotic expansion of the conservation equations written in part 1.1.

1.7 If all perturbations vanish far away from the flame, what are the boundary conditions for U1, V1 and
P1 at ξ → ±∞?

1.8 To analyze the stability of the solution of the problem obtained in part 1.6, assume a normal mode
decomposition for the velocity and pressure disturbances:





U1

V1

P1



 =





Û1

V̂1

P̂1



 exp(γξ) exp(στ − ikη) (11)

where Û1, V̂1 and P̂1 are constants, σ is a growth rate and k is the wavenumber of the transverse
perturbations. The parameter γ is obtained from imposing the boundary conditions stated in part 1.7.
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To obtain γ, substitute (11) into the conservation equations written in part 1.6. You may have to solve
the determinant of the coefficient matrix and use the boundary conditions stated in part 1.7 and the
leading-order jump conditions for U0 obtained in part 1.4.

1.9 Using the three values of γi (i = 1, 2, 3) obtained in part 1.8, calculate the corresponding eigenvectors
wi = (Û1,i, V̂1,i, P̂1,i) and the perturbations U1, V1 and P1 on both sides of the flame.

1.10 Since, as stated above, in this analysis the propagation velocity SL is a function of the curvature κ,
SL = S0

L(1 − Lκ), or equivalently,

(

v(u)
−

dxF

dt

)

· n = (1 − α)

(

v(b)
−

dxF

dt

)

· n = 1 − Maκ (12)

in dimensionless notation, answer the following questions:

1.10.1 What is the definition and physical meaning of the Markstein number Ma in this formulation?

1.10.2 Prove that the flame curvature κ = −∇ · n can be written as

κ =
Fηη

(1 + F 2
η )3/2

. (13)

1.10.3 Using the expansions (5), and the results (12) and (13), prove that the velocity perturbations are
related to F by the equations

U
(u)
1 = F1τ − MaF1ηη , and U b

1 = F1τ −
MaF1ηη

1 − α
(14)

on both sides of the flame.
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1.11 Finally, obtain the dispersion relation σ = σ(k, α,Ma) by i) substituting the perturbations obtained in
part 1.9 into the jump conditions (8)-(10), ii) defining F1 = F̂1 exp(στ − ikη), iii) using relations (14),
and iv) solving the resulting linear system.

1.12 Assuming that in part 1.11 you have obtained the result

σ =
k

2 − α

{
√

1 + k2Ma2
−

2kMa

1 − α
+

α(2 − α)

(1 − α)
− (1 + kMa)

}

, (15)

for the growth rate σ, sketch σ as a function of k for fixed α = 0.5 and for a) Ma = 0, b) Ma = 0.2 and
c) Ma = −0.2. According to simplified single-step chemistry analyses at large activation energies, what
is the critical Lewis number Lec for which Ma becomes negative? What is the impact of positive and
negative Ma on flame stability?


