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Two-temperature extension of the HTR solver
for hypersonic turbulent flows

in thermochemical nonequilibrium

By C. Williams, M. Di Renzo† AND J. Urzay

1. Motivations and Objectives

The Hypersonics Task-Based Research (HTR) solver was originally developed for di-
rect numerical simulations of canonical chemically-reacting compressible turbulent flows
in vibrational equilibrium using high-order schemes for spatial discretization, together
with both explicit and semi-implicit methods for time integration (Di Renzo et al. 2020;
Di Renzo & Urzay 2021). This report describes an extension of HTR to compute hy-
personic flows at conditions where the characteristic residence time is comparable to the
vibrational and chemical relaxation times, thereby providing simulation capabilities for
hypersonic flows in thermochemical nonequilibrium.
One way of modeling thermochemical nonequilibrium is the consideration of two tem-

peratures in the formulation, along with an appropriate coupling between dissociation
chemistry and vibrational relaxation, as molecules at high vibrational energy levels are
more prone to dissociate (Hammerling et al. 1959; Treanor & Marrone 1962; Marrone &
Treanor 1963). In the two-temperature model considered in the present study, the first
temperature T characterizes the translational and rotational energy modes of the gas
molecules, while the second temperature Tve describes the extent of vibrational and elec-
tronic excitation. In the approach of Park (1990), which is followed here, the dissociation
rate constants in air are evaluated at the geometric mean temperature

√
TTve.

The remainder of this report is structured as follows. A summary of the two-temperature
formulation implemented in HTR is provided in Section 2. Relevant numerical aspects
are discussed in Section 3. Numerical results from test cases are analyzed in Section 4.
Lastly, conclusions are given in Section 5.

2. Formulation

The momentum and species conservation equations, along with the equation of state
and constitutive laws for the viscous stress tensor and the diffusion velocity, including
all the mathematical notation, are same as those in Di Renzo et al. (2020), and therefore
symbols will not be redefined here. In contrast, the conservation equation for the specific
stagnation internal energy e0 (including chemical energy) is revised here as

∂(ρe0)

∂t
+∇·(ρh0u) = ∇·

(
τu+ λtr∇T + λve∇Tve −

Ns∑

i=1

ρiVihi

)
. (2.1)

In this formulation, λtr is the thermal conductivity of the rotational and translational
modes, and λve is the thermal conductivity corresponding to the vibrational and elec-
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tronic excitation energy modes, both calculated via Eucken’s relation (Vincenti & Kruger
1965). The specific internal energy e accounts for the different energy modes as

e =

Ns∑

i=1

Yi

(
etr,i + ev,i + ee,i + h0

i,f

)
, (2.2)

with h0
i,f being the enthalpy of formation of species i at zero K. Correspondingly, hi is

the partial specific enthalpy of species i defined as

hi =

Ns∑

i=1

Yi

(
R0T/Mi + etr,i + ev,i + ee,i + h0

i,f

)
. (2.3)

In these expressions, ev,i, and ee,i are the specific internal energies of vibration and
and electronic excitation of species i, respectively. Similarly, etr,i represents the sum of
translational and rotational internal energies of of species i.

The rotational and translational modes are taken to be fully excited, with the molecular
species being treated as rigid rotors, namely

etr,i = (3/2)R0T/Mi + VR0T/Mi. (2.4)

In this notation, the prefactor V is equal to 0 and 1 for monoatomic and diatomic species,
respectively. The computation of the vibrational energy is based on the treatment of
molecules as quantum harmonic oscillators, with both the vibrational and electronic-
excitation energy modes characterized by Tve as

ev,i =
VΘv,iR

0/Mi

exp(Θv,i/Tve)− 1
, (2.5)

ee,i =
R0T 2

ve

Mi

∂

∂Tve



ln


∑

j

gi,j exp(−Θel,i,j/Tve)





 . (2.6)

In this formulation, Θv,i is the characteristic vibrational temperature of species i, while
Θel,i,j , and gi,j are, respectively, the characteristic temperature and degeneracy of the
electronic energy level j for species i.

In this two-temperature approach, the sum of the vibrational and electronic-excitation
specific internal energies

eve =

Ns∑

i=1

Yieve,i =

Ns∑

i=1

Yi(ev,i + ee,i) (2.7)

is described by the conservation equation (Gnoffo et al. 1989)

∂(ρeve)

∂t
+∇·(ρeveu) = ∇·

(
λve∇Tve −

Ns∑

i=1

ρiVieve,i

)
+

Ns∑

i=1

ρi
e∗v,i − ev,i

τi
+ ẇve. (2.8)

In Eq. (2.8), the second term on the right-hand side corresponds to exchange between
the vibrational and translational energy modes (Landau & Teller 1936), where e⋆v,i is the
equilibrium vibrational internal energy calculated using expression (2.5) evaluated at the
translational-rotational temperature T . Similarly, τi is a vibrational-relaxation time of
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species i given by (Park 1990)

τi = τPi +




Ns∑

j=1

Xj

τMW
ij




−1

. (2.9)

In this expression, τMW
ij is the vibrational-relaxation time proposed by Millikan & White

(1963), namely

τMW
ij =

1.01394× 10−3

P
exp

[
aij

(
T−1/3 − bij

)]
[s], (2.10)

which corresponds to molecule i colliding with species j, where P is in atm, T is in K,
and the empirical constants aij and bij are taken from Park (1993). Additionally, τPi
represents the high-temperature correction given by (Park 1990)

τPi =
[
nσv

√
(8R0T/πMi)

]−1

, (2.11)

where n is the number density, and σv is the effective cross section (Park 1993)

σv = 3× 10−21 (50, 000/T )
2

[m2]. (2.12)

As the enthalpies considered here are insufficient to yield significant ionization, the air
is modeled as a mixture of N2, O2, NO, N, and O. The first seven electronic energy levels
are used for each species, with the characteristic temperature and degeneracy data taken
from the NIST databases for atomic† and diatomic species‡.
The chemical reactions considered include three dissociation (forward) or recombina-

tion (backward) reactions for each of the molecular species, as well as two shuffle reactions
[see Eqs. (R1)-(R5) in Di Renzo et al. (2020) for details]. The forward rate constants of
each one of the three dissociation reactions are given by

kf (
√
TTve) = A (TTve)

m/2
exp

(
− Ea

R0
√
TTve

)
, (2.13)

with A, m, and Ea being the Arrhenius parameters listed in Park (1990). In contrast,
the recombination (backward) rate constants are evaluated at the translational-rotational
temperature as

kb(T ) = kf (T )/Keq(T ), (2.14)

where Keq is the chemical equilibrium constant calculated using the polynomial form

Keq = exp

(A1

Z
+A2 +A3logZ +A4Z +A5Z

2

)
, (2.15)

with Z = 104/T . The numerical values of the coefficients Ai are given in Park (1990) for
each of the reactions.
Two different models for the dissociation/vibrational-excitation coupling term ẇve in

Eq. (2.8) are considered here, namely the preferential-dissociation model (Sharma et al.
1992)

ẇve = 0.3

Ns∑

i=1

ẇiD̃i, (2.16)

† Accessed 2021: https://physics.nist.gov/PhysRefData/ASD/levels_form.html
‡ Accessed 2021: https://webbook.nist.gov/chemistry/
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and the non-preferential dissociation model (Candler & MacCormack 1991)

ẇve =

Ns∑

i=1

ẇiev,i. (2.17)

In this formulation, D̃i and ẇi are, respectively, the specific dissociation energy and
mass production rate per unit time and volume of species i, with D̃i = 0 for monoatomic
species. Equation (2.16) accounts for preferential dissociation from the highest vibrational
energy levels by taking the vibrational energy lost per dissociation as being a significant
portion of the molecule’s overall dissociation energy. In contrast, Eq. (2.17) models a non-
preferential dissociation process by assuming the vibrational energy lost per dissociation
is, on average, equivalent to the mean vibrational energy.

3. Numerical aspects of the extension

The first step in the high-order flux-reconstruction procedure implemented in HTR
entails projecting the vectors of conserved variables and fluxes into characteristic space
using the Roe-averaged left eigenvector matrices. Once in characteristic space, a local
Lax-Friedrichs flux splitting is employed to calculate the respective flux functions. The
positive and negative flux functions at the cell interfaces are reconstructed using a sixth-
order TENO scheme (Fu et al. 2016), and the flux at the cell interface is taken as the
average of these positive and negative flux functions. Thereafter, the fluxes are projected
back to physical space using the right eigenvectors of the Roe-averaged flux Jacobian
(Di Renzo et al. 2020).
The projections to and from characteristic space in the high-order reconstruction proce-

dure motivate the derivation of the Roe-averaged flux Jacobians and their eigendecompo-
sition provided below for hypersonic flows in thermochemical nonequilibrium. Relevant
early work on this topic is reported in Grossman & Cinnella (1990) and Shuen et al.
(1990). In particular, Grossman & Cinnella (1990) derived a Roe scheme accounting for
chemical and vibrational nonequilibrium, allowing each molecular species to be treated
as a harmonic oscillator at a distinct vibrational temperature. Subsequently, the flux-
difference splitting of Shuen et al. (1990) considered Roe averaging for flows in chemical
nonequilibrium and vibrational equilibrium, and introduced a useful pressure-correction
procedure to enforce consistency of the Roe-averaged pressure derivatives that participate
in the calculation of the Roe-averaged flux Jacobian.
By extending the Roe-averaging approach and pressure-correction procedure of Shuen

et al. (1990), the present study derives a Roe-averaged state that accounts for both
chemical and vibrational nonequilibrium, while also enforcing consistency of the Roe-
averaged pressure derivatives. The resulting formulation holds for any two-temperature
model, thermochemical properties, and vibrational-relaxation rates.

3.1. Roe averaging

For inviscid hypersonic flows in thermochemical nonequilibrium, the Euler equations can
be written in conservative form as

∂C

∂t
+

∂F(C)

∂x
+

∂G(C)

∂y
+

∂H(C)

∂z
= 0, (3.1)

where C is the vector of conserved variables

C = [ρ1, . . . ρN , ρu, ρv, ρw, ρe0, ρeve]
T, (3.2)

98



Two-temperature extension of HTR for thermochemical nonequilibrium

and

F(C) =




ρ1u
...

ρNu
ρuu+ P

ρuv
ρuw
ρuh0

ρueve




, G(C) =




ρ1v
...

ρNv
ρvu

ρvv + P
ρvw
ρvh0

ρveve




, H(C) =




ρ1w
...

ρNw
ρwu
ρwv

ρww + P
ρwh0

ρweve




(3.3)

are the Euler fluxes. In order to calculate the flux Jacobians, however, the derivatives of
pressure with respect to thermodynamic variables must be determined. By allowing for
thermochemical nonequilibrium, the thermodynamic state of the gas depends not only on
the set of partial densities and the internal energy, but also on the vibrational-electronic
energy. As such, the pressure is defined as P = P (ρi, e, eve) and its exact differential is

dP =

Ns∑

i=1

Pρidρi + Pede+ Pevedeve, (3.4)

where Pρi is the partial derivative of pressure with respect to the partial density of species
i, Pe is the partial derivative of pressure with respect to the internal energy, and Peve is
the partial derivative of pressure with respect to the vibrational-electronic energy. Under
the assumption of an ideal gas, these partial derivatives with respect to thermodynamic
variables can be expressed as

Pρi =

(
∂P

∂ρi

)

ρj ,j 6=i,e,eve

=
R0T

Mi
+

R0

ctrv M
(e− eve + eve,i − ei) , (3.5)

where M is the mean molecular mass and ctrv is the translational-rotational specific heat
of the mixture. Likewise, the remaining partial derivatives of pressure with respect to
the thermodynamic variables are

Pe =

(
∂P

∂e

)

ρi,eve

=
ρR0

ctrv M , Peve =

(
∂P

∂eve

)

ρi,e

= − ρR0

ctrv M . (3.6)

In order to construct the Roe-averaged flux Jacobians, the Roe-averaging operator

Φ(Y) =
√
ρRYR +

√
ρLYL√

ρR +
√
ρL

(3.7)

is defined for a flow variable Y, where the subscripts R and L denote quantities to the
right and left of a cell interface. Using Eq. (3.7), the Roe-averaged flow variables are
defined as

ρ̂ =
√
ρRρL, Ŷi = Φ(Yi), û = Φ(u), v̂ = Φ(v), ŵ = Φ(w),

ê0 = Φ(e0), êve = Φ(eve), ĥ0 = Φ(h0). (3.8)

Likewise, in order for the Roe-averaged flux Jacobian to satisfy its own definition,

∆F = (d̂F/dC)∆C, (3.9)
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where ∆() = ()R − ()L, the Roe-averaged velocity is defined in accordance with

Û2 = û2 + v̂2 + ŵ2. (3.10)

3.2. Roe-averaged flux Jacobian and eigenvector matrices

Based on the considerations above, the Roe-averaged flux Jacobian in the x-direction can
be expressed as

d̂F

dC
=




û(1 − Ŷ1) . . . −ûŶ1 Ŷ1 0 0 0 0

.

.

.
. . .

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

−ûŶNs . . . û(1 − ŶNs ) ŶNs 0 0 0 0

Ĝ1 − û2 . . . ĜNs − û2
(
2 − P̂e

ρ̂

)
û − P̂e

ρ̂ v̂ − P̂e
ρ̂ ŵ P̂e

ρ̂

P̂eve
ρ̂

−ûv̂ . . . −ûv̂ v̂ û 0 0 0
−ûŵ . . . −ûŵ ŵ 0 û 0 0

û
(
Ĝ1 − ĥ0

)
. . . û

(
ĜNs − ĥ0

)
ĥ0 − P̂e

ρ̂ û2 − P̂e
ρ̂ ûv̂ − P̂e

ρ̂ ûŵ
(
1 + P̂e

ρ̂

)
û

P̂eve
ρ̂ û

−ûêve . . . −ûêve êve 0 0 0 û




,

(3.11)

with

Ĝi =
P̂e

ρ̂

(
Û2

2
− ê

)
+ P̂ρi −

P̂eve

ρ̂
êve (3.12)

for i = 1, 2, . . .Ns. The eigenvalues of the flux Jacobian matrix are λi = [û, . . . , û, û +
â, û − â, û], with the eigenvalue û having a multiplicity of Ns + 3. The corresponding
matrix of right eigenvectors can then be expressed as

K̂F =




1/â2 . . . 0 0 0 Ŷ1/2â
2 Ŷ1/2â

2 0
...

. . .
...

...
...

...
...

...

0 . . . 1/â2 0 0 ŶN/2â2 ŶN/2â2 0
û/â2 . . . û/â2 0 0 (û+ â)/2â2 (û − â)/2â2 0
v̂/â2 . . . v̂/â2 1 0 v̂/2â2 v̂/2â2 0
ŵ/â2 . . . ŵ/â2 0 1 ŵ/2â2 ŵ/2â2 0

F̂i/â
2 . . . F̂Ns/â

2 v̂ ŵ (ĥ0 + âû)/2â2 (ĥ0 − âû)/2â2 1/â2

0 . . . 0 0 0 êve/2â
2 êve/2â

2 1/â2




, (3.13)

where the Roe-averaged speed of sound â satisfies

â2 =

Ns∑

i=1

P̂ρi Ŷi +
p̂e
ρ̂

(
ĥ0 − ê − Û2

2

)
, (3.14)

and F̂i is an auxiliary variable defined as

F̂i =

(
ê +

Û2

2
− ρ̂

P̂ρi

P̂e

+
P̂eve

P̂e

êve

)
(3.15)

for i = 1, 2, . . .Ns. Correspondingly, the matrix of left eigenvectors is
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K̂
−1
F =




â2 − Ŷ1Ĝ1 . . . −Ŷ1ĜNs
P̂e
ρ̂ Ŷ1û

P̂e
ρ̂ Ŷ1v̂

P̂e
ρ̂ Ŷ1ŵ − P̂e

ρ̂ Ŷ1 − P̂eve
ρ̂ Ŷ1

.

.

.
. . .

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

−ŶNs Ĝ1 . . . â2 − ŶNs ĜNs
P̂e
ρ̂ ŶN û P̂e

ρ̂ ŶN v̂ P̂e
ρ̂ ŶN ŵ − P̂e

ρ̂ ŶN − P̂eve
ρ̂ ŶN

−v̂ . . . −v̂ 0 1 0 0 0
−ŵ . . . −ŵ 0 0 1 0 0

Ĝ1 − ûâ . . . ĜNs − ûâ â − P̂e
ρ̂ û − P̂e

ρ̂ v̂ − P̂e
ρ̂ ŵ P̂e

ρ̂

P̂eve
ρ̂

Ĝ1 + ûâ . . . ĜNs + ûâ −â − P̂e
ρ̂ û − P̂e

ρ̂ v̂ − P̂e
ρ̂ ŵ P̂e

ρ̂

P̂eve
ρ̂

−Ĝ1êve . . . −ĜNs êve
P̂e
ρ̂ ûêve

P̂e
ρ̂ v̂êve

P̂e
ρ̂ ŵêve − P̂e

ρ̂ êve â2 − P̂eve
ρ̂ êve




.

(3.16)

An Appendix is included in this report with expressions for the Roe-averaged flux Jaco-
bians in the y- and z-directions, along with their matrices of right and left eigenvectors.

3.3. Pressure-correction procedure

The averaged partial derivatives of pressure appearing in the preceding matrices are
enforced to satisfy the relation

∆P = P̂eve∆eve + P̂e∆e+

Ns∑

i=1

P̂ρi∆ρi. (3.17)

Extending the pressure-correction procedure of Shuen et al. (1990), the Roe-averaged
partial derivatives of the pressure are given by

P̂e =
(
P e∆e+ ωeδP

)
/∆e, P̂eve =

(
P eve∆eve + ωeveδP

)
/∆eve,

P̂ρi =
(
P ρi∆ρi + ωρiδP

)
/∆ρi, (3.18)

for i = 1, 2, . . .Ns. In Eq. (3.18), δP in is defined as

δP = ∆P −
(
P eve∆eve + P e∆e+

Ns∑

i=1

P ρi∆ρi

)
. (3.19)

In these expressions, the partial derivatives P e, P eve , and P ρi are calculated by evaluating
Eqs. (3.5) and (3.6) in terms of the set of Roe-averaged variables defined in Eq. (3.8).
Likewise, the correction weights ωe, ωeve , and ωρi are given by

ωe =
(
P e∆e

)2/
[
(
P e∆e

)2
+
(
P eve∆eve

)2
+

Ns∑

i=1

(
P ρi∆ρi

)2
]
,

ωeve =
(
P eve∆eve

)2/[(
P e∆e

)2
+
(
P eve∆eve

)2
+

Ns∑
i=1

(
P ρi∆ρi

)2]
,

ωρi =
(
P e∆ρi

)2/
[
(
P e∆e

)2
+
(
P eve∆eve

)2
+

Ns∑

i=1

(
P ρi∆ρi

)2
]
, (3.20)

for i = 1, 2...Ns.

4. Test cases

This section focuses on simulation results of benchmark cases. The implementation of
the relaxation terms is tested for homogeneous baths of gas molecules, while the high-
order flux reconstruction procedure is tested for a model shock tube.
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Figure 1. Dissociation/vibrational-relaxation coupling in air (top panel) and pure-nitrogen
(bottom panel) homogeneous baths. The acronyms P and NP refer, respectively, to preferential
and non-preferential dissociation models described in Section 2.

4.1. Dissociation/vibrational-relaxation coupling in a homogeneous bath of gas molecules

Homogeneous baths of air and pure nitrogen undergoing vibrational relaxation coupled
with dissociation are considered in order to verify some aspects of the implementation of
the two-temperature formulation described in Section 2. For air, the initial conditions are
T = 15, 000 K, Tve = 300 K, P = 20.42 atm, YN2

= 0.767 and YO2
= 0.233. Meanwhile

for the pure nitrogen case, the initial conditions are: T = 20, 000 K, Tve = 300 K,
P = 27.25 atm, and YN2 = 1.
As shown in Figure 1, the time histories of T and Tve computed with HTR closely match

the reference data. The reference results are comprised of computations performed with
the SU2-NEMO solver (Maier et al. 2021), which makes use of the Mutation++ library for
thermochemical modeling (Scoggins et al. 2020), as well as computations performed with
the LeMANS solver (Scalabrin 2007; Gimelshein et al. 2021). The agreement between
HTR and SU2-NEMO is particularly evident for both preferential and non-preferential
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Figure 2. Instantaneous spatial distribution of temperatures in a model shock tube.

Figure 3. Instantaneous spatial distribution of density in a model shock tube.

dissociation models in the case of the air mixture. The small disparities between the
results predicted by each code are expected because of the different models employed for
computing thermochemical properties and source terms.

4.2. Dissociation/vibrational-relaxation coupling in a model shock tube

As confirmation of the shock-capturing capabilities of this flux-reconstruction procedure,
the instantaneous spatial distribution of temperatures obtained from a numerical sim-
ulation of a one-dimensional shock tube is provided in Figure 2. In this test case, the
shock tube is initially divided into two sections, with discontinuities in the primitive
variables present at the center of the domain, representing the presence of a diaphragm.
The temperature in the left section is initially 12, 000 K, while the temperature to the
right of the diaphragm is initially 1000 K; the mixture is uniformly initialized as pure
molecular nitrogen in both sections. Initially, the pressure is 2 MPa to the left of the
diaphragm, while the right section is initialized with a pressure of 100 kPa. The domain
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Figure 4. Instantaneous spatial distribution of molar fractions in a model shock tube.

Figure 5. Instantaneous spatial distribution of pressure in a model shock tube.

is 1.0 m in length in the x-direction, discretized using 1000 points. Equation (2.16) is
used to describe the dissociation/vibrational-relaxation coupling term.
The flow field in the shock tube can be characterized as follows. The high temperatures

and pressures in the driver section induce significant dissociation of the molecular nitro-
gen while the pressure jump in the center of the shock tube produces a rightward-traveling
shock, together with an associated expansion region and two contact discontinuities. Con-
taining the temperature profiles at t = 156 µs, Figure 2 demonstrates the presence of
the shock, expansion, contact discontinuities, and vibrational-relaxation region in the nu-
merical solution. The numerical solution realizes the expected behavior in the post-shock
region, with the translational-rotational temperature exhibiting a jump across the shock
wave while the vibrational-electronic temperature remains frozen across the shock prior to
relaxing behind the discontinuity. Likewise, Figure 3 demonstrates the increase in density
associated with the vibrational relaxation process between x = 0.74 m and x = 0.67 m,
bounded by the shock and contact discontinuity. Furthermore, Figure 4 shows that a sig-
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nificant fraction of the molecular species has dissociated in the high-temperature region,
whereas Figure 5 establishes the presence of the shock and expansion waves. Therefore,
the numerical solution is not only consistent with expectation, but also demonstrates the
ability of this high-order flux-reconstruction procedure to simulate shocks, expansions,
and contact discontinuities, along with the associated post-shock relaxation regions.

5. Conclusions

The HTR solver has been extended to study the interaction between turbulence and
nonequilibrium thermochemical processes in hypersonic flows. The formulation includes a
two-temperature approach with coupling between air dissociation and vibrational relax-
ation. The Roe flux-difference-splitting methodology and pressure-correction procedure of
Shuen et al. (1990) have been extended to account for thermochemical nonequilibrium in
a two-temperature framework, and the Roe-averaged flux Jacobians have been employed
in a novel high-order flux reconstruction. Relevant parts of the implementation have
been verified by comparing simulation results of dissociation coupled with vibrational
relaxation in air and pure nitrogen homogeneous baths. The augmented shock-capturing
capabilities have been assessed with numerical simulations of a model shock tube subject
to dissociation/vibrational-relaxation coupling in pure molecular nitrogen.
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Appendix. Expressions for the Roe-averaged flux Jacobians and eigenvector
matrices in the y- and z-directions
The Roe-averaged flux Jacobian in the y-direction is

d̂G

dC
=




v̂(1 − Ŷ1) . . . −v̂Ŷ1 0 Ŷ1 0 0 0

.

.

.
. . .

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

−v̂ŶN . . . v̂(1 − ŶN ) 0 ŶN 0 0 0
−v̂û . . . −v̂û v̂ û 0 0 0

Ĝ1 − v̂2 . . . ĜNs − v̂2 − P̂e
ρ̂ û (2 − P̂e

ρ̂ )v̂ − P̂e
ρ̂ ŵ P̂e

ρ̂

P̂eve
ρ̂

−v̂ŵ . . . −v̂ŵ 0 ŵ v̂ 0 0

v̂
(
Ĝ1 − ĥ0

)
. . . v̂

(
ĜNs − ĥ0

)
− P̂e

ρ̂ v̂û ĥ0 − P̂e
ρ v̂2 − P̂e

ρ̂ v̂ŵ
(
1 + P̂e

ρ̂

)
v̂

P̂eve
ρ̂ v̂

−v̂êve . . . −v̂êve 0 êve 0 0 v̂




,

whereas the matrices of right and left eigenvectors are

K̂G =




1/â2 . . . 0 0 0 Ŷ1/2â
2 Ŷ1/2â

2 0
...

. . .
...

...
...

...
...

...

0 . . . 1/â2 0 0 ŶN/2â2 ŶN/2â2 0
û/â2 . . . û/â2 0 1 û/2â2 û/2â2 0
v̂/â2 . . . v̂/â2 0 0 (v̂ + â)/2â2 (v̂ − â)/2â2 0
ŵ/â2 . . . ŵ/â2 1 0 ŵ/2â2 ŵ/2â2 0

F̂1/â
2 . . . F̂Ns/â

2 ŵ û (ĥ0 + âv̂)/2â2 (ĥ0 − âv̂)/2â2 1/â2

0 . . . 0 0 0 êve/2â
2 êve/2â

2 1/â2
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and

K̂
−1
G =




â2 − Ŷ1Ĝ1 . . . −Ŷ1ĜNs
P̂e
ρ̂ Ŷ1û

P̂e
ρ̂ Ŷ1v̂

P̂e
ρ̂ Ŷ1ŵ − P̂e

ρ̂ Ŷ1 − P̂eve
ρ̂ Ŷ1

.

.

.
. . .

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

−ŶN Ĝ1 . . . â2 − ŶN ĜNs
P̂e
ρ̂ ŶN û P̂e

ρ̂ ŶN v̂ P̂e
ρ̂ ŶN ŵ − P̂e

ρ̂ ŶN − P̂eve
ρ̂ ŶN

−ŵ . . . −ŵ 0 0 1 0 0
−û . . . −û 1 0 0 0 0

Ĝ1 − v̂â . . . ĜNs − v̂â − P̂e
ρ̂ û â − P̂e

ρ̂ v̂ − P̂e
ρ̂ ŵ P̂e

ρ̂

P̂eve
ρ̂

Ĝ1 + v̂â . . . ĜNs + v̂â − P̂e
ρ̂ û −â − P̂e

ρ̂ v̂ − P̂e
ρ̂ ŵ P̂e

ρ̂

P̂eve
ρ̂

−Ĝ1 êve . . . −ĜNs êve
P̂e
ρ̂ ûêve

P̂e
ρ̂ v̂êve

P̂e
ρ̂ ŵêve − P̂e

ρ̂ êve â2 − P̂eve
ρ̂ êve




,

respectively. Similarly, the Roe-averaged flux Jacobian in the z-direction is

d̂H

dC
=




ŵ(1 − Ŷ1) . . . −ŵŶ1 0 0 Ŷ1 0 0

.

.

.
. . .

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

−ŵŶN . . . ŵ(1 − ŶN ) 0 0 ŶN 0 0
−ŵû . . . −ŵû ŵ 0 û 0 0
−ŵv̂ . . . −ŵv̂ 0 ŵ v̂ 0 0

Ĝ1 − ŵ2 . . . ĜNs − ŵ2 − P̂e
ρ̂ û − P̂e

ρ̂ v̂ (2 − P̂e
ρ̂ )ŵ P̂e

ρ̂

P̂eve
ρ̂

ŵ
(
Ĝ1 − ĥ0

)
. . . ŵ

(
ĜNs − ĥ0

)
− P̂e

ρ̂ ŵû − P̂e
ρ̂ ŵv̂ ĥ0 − P̂e

ρ̂ ŵ2 (1 + P̂e
ρ̂ )ŵ

P̂eve
ρ̂ ŵ

−ŵêve . . . −ŵêve 0 0 êve 0 ŵ




,

whereas the matrices of right and left eigenvectors are

K̂H =




1/â2 . . . 0 0 0 Ŷ1/2â
2 Ŷ1/2â

2 0
...

. . .
...

...
...

...
...

...

0 . . . 1/â2 0 0 ŶN/2â2 ŶN/2â2 0
û/â2 . . . û/â2 1 0 û/2â2 û/2â2 0
v̂/â2 . . . v̂/â2 0 1 v̂/2â2 v̂/2â2 0
ŵ/â2 . . . ŵ/â2 0 0 (ŵ + â)/2â2 (ŵ − â)/2â2 0

F̂1/â
2 . . . F̂Ns/â

2 û v̂ (ĥ0 + ŵâ)/2â2 (ĥ0 − ŵâ)/2â2 1/â2

0 . . . 0 0 0 êve/2â
2 êve/2â

2 1/â2




and

K̂
−1
H =




â2 − Ŷ1Ĝ1 . . . −Ŷ1ĜNs
P̂e
ρ̂ Ŷ1û

P̂e
ρ̂ Ŷ1v̂

P̂e
ρ̂ Ŷ1ŵ − P̂e

ρ̂ Ŷ1 − P̂eve
ρ̂ Ŷ1

.

.

.
. . .

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

−ŶNs Ĝ1 . . . â2 − ŶNs ĜNs
P̂e
ρ̂ ŶNs û

P̂e
ρ̂ ŶNs v̂

P̂e
ρ̂ ŶN ŵ − P̂e

ρ̂ ŶNs − P̂eve
ρ̂ ŶN

−û . . . −û 1 0 0 0 0
−v̂ . . . −v̂ 0 1 0 0 0

Ĝ1 − ŵâ . . . ĜNs − ŵâ − P̂e
ρ̂ û − P̂e

ρ̂ v̂ â − P̂e
ρ̂ ŵ P̂e

ρ̂

P̂eve
ρ̂

Ĝ1 + ŵâ . . . ĜNs + ŵâ − P̂e
ρ̂ û − P̂e

ρ̂ v̂ −â − P̂e
ρ̂ ŵ P̂e

ρ̂

P̂êve
ρ̂

−Ĝ1êve . . . −ĜNs êve
P̂e
ρ̂ ûêve

P̂e
ρ̂ v̂êve

P̂e
ρ̂ ŵêve − P̂e

ρ̂ êve â2 − P̂êve
ρ̂ êve




,

respectively.

REFERENCES

Candler, G. V. & MacCormack, R. W. 1991 Computation of weakly ionized hy-
personic flows in thermochemical nonequilibrium. J. Thermophys. Heat Trans. 5,
266–273.

106



Two-temperature extension of HTR for thermochemical nonequilibrium

Di Renzo, M., Fu, L. & Urzay, J. 2020 HTR solver: An open-source exascale-oriented
task-based multi-GPU high-order code for hypersonic aerothermodynamics. Com-
put. Phys. Comm. 255, 107262.

Di Renzo, M. & Urzay, J. 2021 Direct numerical simulation of a hypersonic transi-
tional boundary layer at suborbital enthalpies. J. Fluid Mech. 912, A29.

Fu, L. & Hu, X. Y. & Adams, N. A. 2016 A family of high-order targeted ENO
schemes for compressible-fluid simulations. J. Comput. Phys. 305, 333-359.

Gimelshein, S., Wysong, I., Fangman, A., Andrienko, D., Kunova, O., Kus-
tova, E., Garbacz, C., Fossati, M. & Hanquist, K. 2021 Kinetic and con-
tinuum modeling of high temperature relaxation of O2 and N2 binary mixtures. J.
Thermophys. Heat Trans. (In Press).

Hammerling, P., Teare, J. D. & Kivel, B. 1959 Theory of radiation from luminous
shock waves in nitrogen. Phys. Fluids 2, 422–426.

Landau, L. V. & Teller, E. 1936 Zur theorie der schalldispersion. Phys. Z. Sow. 10,
34-43.

Gnoffo, P. A., Gupta, R. N. & Shinn, J. L. 1989 Conservation equations and
physical models for hypersonic air flows in thermal and chemical nonequilibrium.
NASA TP #2867.

Grossman, B., & Cinnella, P. 1990 Flux-split algorithms for flows with non-
equilibrium chemistry and vibrational relaxation. J. Comp. Phys. 88, 131–168.

Maier, W. T., Needels, J. T., Garbacz, C., Morgado, F., Alonso, J. J. &
Fossati, M. 2021 SU2-NEMO: An open-source framework for high-Mach nonequi-
librium multi-species flows. Aerosp. 8 193-222.

Marrone, P. V. & Treanor, C. E. 1963 Chemical relaxation with preferential dis-
sociation from excited vibrational levels. Phys. Fluids 6, 1215–1221.

Millikan, R. C. & White, D. R. 1963 Systematics of vibrational relaxation. J. Chem.
Phys. 39, 3209–3213.

Park, C. 1990 Nonequilibrium Hypersonic Aerothermodynamics . Wiley.

Park, C. 1993 Review of chemical-kinetic problems of future Nasa missions: 1 - Earth
entries. J. Thermophys. Heat Trans. 7, 385–398.

Scalabrin, L. C. 2007 Numerical Simulation of Weakly Ionized Hypersonic Flow Over
Reentry Capsules. PhD Thesis, University of Michigan.

Scoggins, J. B., Leroy, V., Bellas-Chatzigeorgis, G., Dias, B. & Magin, T. E.
2020 Mutation++: Multicomponent thermodynamic and transport properties for
ionized gases in C++. SoftwareX 12, 100575.

Sharma, S. P., Huo, W. M. & Park, C. 1992 Rate parameters for coupled vibration-
dissociation in a generalized ssh approximation. J. Thermophys. Heat Trans. 6, 9–21.

Shuen, J.-S., Liou, M.-S. & Leer, B. V. 1990 Inviscid flux-splitting algorithms for
real gases with non-equilibrium chemistry. J. Comp. Phys. 90, 371–395.

Treanor, C. E. & Marrone, P. V. 1962 Effect of dissociation on the rate of vibra-
tional relaxation. Phys. Fluids 5, 1022–1026.

Vincenti, W. G. & Kruger C. H. 1965 Introduction to Physical Gas Dynamics. Wiley.

107


