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Abstract

1 Introduction

Language comprehension is a classic problem of reasoning under uncertainty. Language comes to us as a noisy,
unsegmented, ambiguous mass of auditory waveforms or visual stimuli. Humans must somehow combine this input
with other knowledge we have to come up with reasonable interpretations and actions. How might humans address
this problem of decision-making under uncertainty? The best normativemodel we have for solving problems of this
sort is probability theory, which offers a principled method with a coherent semantics for weighing and combining
evidence. Whether this normative model is the correct descriptive model for all of human behavior has recently been
the subject of much debate (Kahnema; Gigerenzer). While this debate is not resolved for all areas of human cognition
and reasoning, the last decade or so had produced emerging consensus throughout the cognitive sciences that in some
areas human cognition is likely to make use of probabilistic models. The seminal work of Anderson (1990) gave
Bayesian underpinnings to cognitive models of memory, categorization,and causation, and recent Bayesian models
of human cognition include work in human visual processing (Rao et al. 2001; Weiss & Fleet 2001), categorization
(Tenenbaum, 2000; Tenenbaum & Griffiths, 2001b, 2001a), and the human understanding of causation (Rehder, 1999;
Glymour & Cheng, 1998). Together, these ideas suggest that perhaps the process of human language comprehension
is also best modeled as a process of probabilistic, Bayesian reasoning.

This idea that human processing of language draws on probabilistic models is hardly novel. (Schuchardt, 1885), in
his arguments against the 19th century Neogrammarians, point out that key role of frequency in language production
and language change. Schuchardt noted that word frequency is a good predictorof which words are phonologically
weakened or ‘lenited’. Words which are more frequent tend to be shorter and phonologically simplified; (Zipf, 1929)
pointed out that this reduction of frequent forms also happened for frequent phones. (Jespersen, 1922) expanded
Schuchart’s idea from pure frequency to predictability or probability. Jespersen pointed out that the predictability of
the word in its context, in addition to its raw frequency, must playa factor in the phonological form of the word.

These early intuitions about frequency and probability were all related tolanguage production. Evidence for
the role of frequency and probability specifically in language comprehension processing dates quite a bit later, from
the mid 20th century. In the 1950’s, for example, Davis Howes showedthat word frequency plays a key role in
comprehension in both the visual and auditory domains (Howes & Solomon, 1951; Howes, 1957). Throughout the
second half of the 20th century, evidence amassed that high frequency wordsare accessed more quickly, they are
accessed more easily, and they are accessed with less input signal than low-frequency words. This is a very robust
effect, supported by tachistoscopic recognition Howes and Solomon (1951), naming (Forster & Chambers, 1973),
lexical decision (Rubenstein, Garfield, & Millikan, 1970; Whaley, 1978; Balota & Chumbley, 1984), recognition
accuracy and errors in noise (Howes, 1957; Savin, 1963), and gating (Grosjean, 1980).

The last two decades of behavioral research have extended these lexical resultsto other areas of psycholinguistics
such as sentence processing. We know that many kinds of probabilistic knowledge play a role in the comprehension
of sentences. One such factor is the probability of the different lexical categories of a word. For example the a priori
probability that the ambiguous wordfires is a noun, or alternatively a verb, plays a role in sentence comprehension,
as does the probability that the wordselectedis a preterite or a participle (Burgess & Hollbach, 1988; Trueswell,
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1996).This lexical category probability seems to be conditioned on context; thus for example the probability that the
ambiguous wordthat will be determiner or a complementizer changes depending on the sentence context (Juliano &
Tanenhaus, 1993). A very wide body of work has shown that a verb’s subcategorization probability, for example the
probability that a given verb is transitive or intransitive, plays a role in processing (Clifton, Jr., Frazier, & Connine,
1984; Ford, Bresnan, & Kaplan, 1982; Jennings, Randall, & TYler, 1997; MacDonald, 1994; Tanenhaus, Stowe, &
Carlson, 1985; Trueswell, Tanenhaus, & Kello, 1993). Work in the lastdecade has extended this to simple semantic
dependency probabilities such as the probability that a particular noun is the agent or patient of a particular verb
(Trueswell, Tanenhaus, & Garnsey, 1994; McRae, Spivey-Knowlton, & Tanenhaus, 1998). We also know that local
word-word relations such as the probability of a word given the previous or following words play a role in processing
(MacDonald, 1993; McDonald, Shillcock, & Brew, 2001).

In summary, we know that many kinds of knowledge must interact probabilistically in the process of building an
interpretation of a sentence. Unfortunately we still know very little about how this probabilistic process happens. We
don’t know how probabilistic aspects of linguistic knowledge are represented, we don’t know how these probabili-
ties are combined, we don’t know how interpretations are selected, and we don’t have a good understanding of the
relationship between probability and behavioral measures like reading time.

Of course there has been quite a bit of research on the architecture of the human sentence processor over the last
few decades, and this research has indeed touched on some of the probabilisticquestions. But to a great extent, the field
of sentence processing has asked other questions. Perhaps the largest area of focus in sentence processing has been
on the debate surrounding the Modularity hypothesis of J.A. Fodor (Fodor, 1983). In J.A. Fodor’s view, the human
cognitive system is divided into 3 types of components: tranducers (sensory organs), input systems (vision, language),
and central systems like executive and memory functions. Input systems are composed of modules which are domain-
specific, informationally encapsulated, and localized in the brain. One extension of the modularity hypothesis has
been to suggest that syntactic structural knowledge acts as a sort of sub-module. In this view, syntactic knowledge
would lie in a module which is “informationally encapsulated” from therest of linguistic knowledge. Furthermore,
syntactic knowledge is assumed to be processed first, and so the earliest analysis of a sentence would only rely on
syntactic knowledge. Real-world, lexical, and semantic constraints would come into play only later. Key to this line of
research has been careful studies of the detailed time course of the activation ofdifferent knowledge sources, focusing
on whether or not the use of syntactic knowledge precedes the use of semantic or lexical knowledge in the human
sentence processor. (Ferreira & Clifton, Jr., 1986; Clifton, Jr. & Ferreira, 1987; Frazier & Fodor, 1978; Frazier,
1987; Frazier & Rayner, 1987; Frazier & Clifton, Jr., 1996). Arguing against this version of modularity has been a
body of research focused on showing that a wide variety of constraints from the lexical, semantic, and extra-linguistic
context plays an immediate role in processing (McRaeet al., 1998; MacDonald, 1993; MacDonald, Pearlmutter, &
Seidenberg, 1994b; MacDonald, 1994; Spivey-Knowlton, Trueswell, &Tanenhaus, 1993; Spivey-Knowlton & Sedivy,
1995; Spivey & Tanenhaus, 1998; Tabossi, Spivey-Knowlton, McRae, &Tanenhaus, 1994; Trueswell & Tanenhaus,
1994; Trueswellet al., 1994; Tanenhaus, Spivey-Knowlton, & Hanna, 2000; Tabor, Juliano,& Tanenhaus, 1997).
Another key focus has been the role of memory, memory limitations, and locality in sentence processing. This area
has focused on showing that memory limitations play a key role in explaining the complexity of processing certain
sentences (Babyonyshev & Gibson, 1999; Gibson, 1998, 1990a, 1990b; Just & Carpenter, 1980; King & Just, 1991;
Miyake, Carpenter, & Just, 1994).

Understanding the detailed time course of the use of different kinds of knowledge, and building a clear picture of
the role that memory limitations, interference, and ’ locality plays in processing are key aspects of the architecture of
the human sentence processing mechanism. A complete understanding of sentence processing will need to somehow
integrate these results into a single comprehensive model. But unfortunately most of these results don’t say enough
about the much more narrowly focused questions we posed above; how can we understand the role of probability in
representing linguistic knowledge, combining evidence, and selecting interpretations.

One class of sentence processing models does address some of these questions about the role of probability. This is
the framework generally calledconstraint-basedor sometimesconstraint-based lexicalist(MacDonald, Pearlmutter,
& Seidenberg, 1994a; McRaeet al., 1998; Spivey-Knowltonet al., 1993; Spivey-Knowlton & Sedivy, 1995; Seiden-
berg & MacDonald, 1999; Trueswell & Tanenhaus, 1994; Trueswellet al., 1994; Kim, Srinivas, & Trueswell, 2002).
Specific instantiations differ in various ways, but the shared intuition of the constraint-based models is that multiple
interpretations of an ambiguous sentence are considered in parallel and that choice among these competing interpreta-
tions is made by integrating a large number of constraints over a widevariety of types of knowledge. Much research on
the constraint-based models has focused on the time-course of constraint-access as part of the modularity debate dis-
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cussed above, and hence is less relevant to our goals here. But particular instantiations of the constraint-based model
have also led to specific claims about the representation, combination, selection, and behavioral (e.g., reading-time)
implications of probabilistic knowledge.

There have been a number of computational implementations of the constraint-based framework, mainly neural-
network models which take as input various frequency-based and contextualfeatures, and combine these features via
activation to settle on a particular interpretation (Burgess & Lund, 1994; Kim et al., 2002; Spivey-Knowlton, 1996;
Pearlmutter, Daugherty, MacDonald, & Seidenberg, 1994), but also including dynamical systems models (Taboret al.,
1997). The most completely implemented of these models, and the one thatmakes the clearest claims about proba-
bilistic integration and processing-time implications, is the competition-integration model of Spivey and colleagues
(Spivey-Knowlton, 1996; McRaeet al., 1998), which uses anormalized recurrencealgorithm for modeling constraint
integration.

It’s difficult to describe the model out of context, and therefore we will show the model as applied to a specific
case of disambiguation in sentence processing. An understanding of thisparticular behavioral experiment will also
prove useful as we compare the constraint satisfaction model with othersthat attempt to model this ambiguity. We
will examine the Spivey model as applied by McRaeet al. (1998) to the processing of sentences with the main-
clause/reduced-relative clause (MC/RR) ambiguity. In these sentences, an initial sequence of words such as (1) is
ambiguous. Continuations which illustrate the two possible parses, a subject noun phrase followed by a main verb,
and a subject noun phrase postmodified by a reduced relative clause, are shownin (2) and (3):

(1) The witness examined

(2) The witness examined by the lawyer turned out to be unreliable.

(3) The witness examined the evidence.

These MC/RR ambiguities are known to cause processing difficulty, and have been used to test a wide variety
of sentence processing models. In many cases, reduced relative clauses cause processing difficulty as measured by
reading time increases at the disambiguating phrase. Many factors are known to play a role in the difficulty of these
sentences. Trueswellet al. (1994) had shown that strong thematic constraints were able to ameliorate garden path
effects in RR/MC ambiguities; subjects experienced more difficulty at the phrase “by the lawyer” in (4) than in (5).1

The fact thatevidenceis a betterthemethanagentpresumably provides evidence for the reduced-relative interpretation.
As a result, the sentence processor may not settle on the main clause reading, reducing or eliminating the ‘surprise’
effect at the phraseby the lawyer.

(4) The witness examined by the lawyer turned out to be unreliable.

(5) The evidence examined by the lawyer turned out to be unreliable.

Various factors are known to play a role in processing such sentences, including the a priori probability that the
verb (examined) is a preterite (simple past) versus participle, the general preference formain clause structures over
reduced relative clause structures, the syntactic subcategorization bias ofthe the verb (examined), and the thematic fit
of the subject head noun with the verb. Thematic fit is a measure of how likely a particular noun phrase is to appear
as a particular thematic role for a verb. Thuscopis more likely to be the agent than the patient ofarrest, i.e., a GOOD

AGENT of arrest. Crook is more likely to be the patient, i.e., is a GOOD PATIENT of arrest.
McRaeet al. (1998) had three goals. First, they wanted to confirm that thematic fit played a role in the disam-

biguation of MC/RR ambiguities. To this end, they need to show that Good Agent sentences like (6), in which the
subject noun is biased toward an agent reading, produces a longer reading timeat the phrasethe detectivethan Good-
Patient sentences like (7), in which the subject noun is biased toward a patient reading. Second, they showed that the
competition model predicted these reading time differences.2

(6) The cop arrested by the detective was guilty of taking bribes.

1Although the original study by Ferreira and Clifton, Jr. (1986) had not found semantic effects, Trueswellet al. (1994) used a stronger manipu-
lation of thematic constraint .

2They also had a third goal which we do not focus on, as it was part of an anti-modularity argument to show that thematic knowledge was used
at the same time as syntactic knowledge.
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(7) The crook arrested by the detective was guilty of taking bribes.

McRaeet al. (1998) tested the competition model in both an off-line and on-line task. For the off-line task, they
created 40 items, 20 with Good Agent subjects and 20 with Good Patient subjects. Subjects were given four iteratively
longer sentence fragments for each item:

The crook arrested
The crook arrested by
The crook arrested by the
The crook arrested by the detective

Participants completed each fragment, and the proportion of main-clause and reduced relative completions was
recorded.

In the on-line self-paced reading task, two complete sentence versions of eachof the 40 items from the fragment
task were created, one with a reduced relative clause, and one with an unreduced relative clause. The sentences were
presented in a two-word moving window, as follows:

(8) The cop / arrested by / the detective / was guilty / of taking / bribes.

(9) The cop / who was / arrested by / the detective / was guilty / of taking / bribes.

Reading times were collected for three of these regions, the subject NP (the cop, the verb + preposition (arrested
by) and the main verb group (was guilty).

Reading times for the unambiguous sentence in (9) were subtracted from the reading times for the ambiguous
sentence in (8) to produce a delta reading time. Figure 1 shows this delta reading time for Good Agent and Good
Patient sentences before and after the disambiguating region. As Figure 1shows, the Good Agent sentences had a
longer reading time at the disambiguating phrasethe detectivethan the Good Patient did. This suggests that the Good
Patient subjects biased the interpretation toward the reduced relative clause,eliminating this longer reading time.
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Figure 1: Self-paced reading times (from Figure 6 of McRaeet al. (1998))

Both the completion and the reading time studies were then modeled by using the normalized recurrence compo-
nent of the competition model to integrate various probabilistic constraints. A schematic of the model and the features
is shown in Figure 2. There were six input features, four of which we will focus on:

syntactic bias toward main clauses:This feature represents the syntactic structural bias that favors main clauses and
disfavors reduced relatives. Its value was set from the (Tabossiet al., 1994) corpus counts of the percentage of
times that the sequence ‘NP verbed’ was continued by a main clause, P(MCj “NP verbed”) as opposed to a
reduced relative P(RRj “NP verbed”),

4



participle versus preterite bias: This feature represents the preference of the main verb for a participle versus simple
past reading. It was computed via the following equations:

VTV(reduced) = logPart= logBaselogPart= logBase+ logSP= logBase
(10)

VTV(main) = logSP= logBaselogPart= logBase+ logSP= logBase
(11)

by bias: The bias the wordby provides for a reduced relative interpretation. This was computed by counting in the
Brown and Wall Street Journal corpora that the wordby in each of the 40 verbs (in the “-ed” form) was followed
by an agent and was in a passive construction, hence P(reduced relativejby,verbed).

thematic fit of initial NP: The fit of the subject as an agent of the verb, a number between 0 and 6 computed from
role typicality ratings from a norming study.

The model uses a neural network to combine these constraints to supportalternative interpretations in parallel.
Each syntactic alternative (each ‘parse’) is represented by a single pre-builtlocalist node in a network; thus the network
models only the disambiguation process itself rather than the generationor construction of syntactic alternatives. The
alternatives compete until one passes an activation threshold.

Figure 2: A schematic of the competition model, from McRaeet al. (1998).

Each interpretation receives activation from the constraints which is then fedback to the constraint nodes within
each cycle of competition. The algorithm first normalizes each pair of constraints. LetCi;a be the activation of theith
constraint node connected to theath interpretation node.C 0i;a will be the normalized activation; the activation of each
constraint thus ranges from 0 to 1. C 0i;a = Ci;aPa Ci;a (12)

The activationIa from the constraints to interpretationa is a weighted sum of the activations of the constraints,
wherewi is the weight on constrainti (we will discuss below how the weights are set):Ia =Xi wi � C 0i;a (13)
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Finally, the interpretations send positive feedback to the constraints:Ci;a = C 0i;a + Ia � wi � C 0i;a (14)

As we saw above, each constrainti has a weightwi. Each weight was set by searching through the space of all
possible weight values for the set of values for all weights that made themodel best fit the sentence completion data.
These same weights were then used in the reading time data.

These three steps are iterated until one interpretation reaches criterion. The model predicts reading time in a similar
way to other competition models like the construction-integration model of (Kintsch, 1988): reading time is modeled
as a linear function of the number of cycles it takes an interpretation to reach criterion. Thus in general the closer two
interpretations are in their activation values, the longer it will take for one of them to achieve a high enough activation
to pass the threshold.

McRaeet al.(1998) showed that the competition model predicted both the preferences expressed by the completion
data, the reading times in by the self-paced reading task.

This competition-integration implementation of the constraint-based model fulfills a number of our criteria for
a model which captures probabilistic effects in sentence processing. The model integrates a number of constraints,
assigns each a probability value, combines the probabilistic constraints to predict a preference for ambiguous structures
based on this probability value, and makes predictions about reading time based on the settling time of the competition
between candidates.

While the constraint-based model is thus a good first step toward our goals, it still falls short in many ways. First,
it is only a model of one aspect of the disambiguation process: choosingbetween ambiguous interpretations. The
model thus doesn’t have anything to say about how interpretations are constructed. Related to this problem is an
unclarity with respect to the role of structural knowledge. The model includes a constraint preferring main-verbs
to reduced-relative readings, based on a frequency difference in corpora. Butno motivation is given for why this
particular structural constraint is included and not any other. Certainly many other syntactic structures have large
frequency differences, and are associated with different interpretations. Thus the model has no principled reason for
choosing this constraint. In addition to problems with these structural aspects, the competition model uses constraint
values that represent arbitrarily different probabilistic assumptions. Some are true probabilities, some are ratios of log
probabilities, others are counts. Some are probabilities conditionedon the verb, some on the verb and the subject,
some are not conditioned at all. The problem is not that there are different probabilities in the model, but rather that
the model gives us no principle way to know which probabilities are included, and how they should be conditioned.
Finally, the model makes use of various parameters (weights) that are used in combining the probabilistic constraints,
but the model includes no component which tells us how to set these parameters.

In summary, the main problems with the constraint-satisfaction modelhave to do with structure; how structured
interpretations are built probabilistically, how structural knowledge plays a role, what is the principled method for
setting these probabilities of structure, and what the structure is ofthe algorithm for combining constraints. As it
happens, there are alternative probabilistic models which focus on exactly these questions of structure. For example
Jurafsky (1996) and Crocker and Brants (2000) both propose sentence processing models based on the intuitions of
probabilistic grammars, which generally offer a principled foundationof probabilistic structure. Could these constitute
an alternative instantiation of the constraint-based intuition?

In Jurafsky’s model, a probabilistic parser keeps multiple interpretations of an ambiguous sentence, ranking each
interpretation by its probability. The probability of an interpretation is computed by multiplying two probabilities:
the stochastic context-free grammar (SCFG) ‘prefix’ probability of the currently-seen portion of the sentence, and the
‘valence’ (syntactic/semantic subcategorization) probability for each verb.

A stochastic context-free grammar, first proposed by Booth (1969), associates each rule in a context-free grammar
with the conditional probability that the left-hand side expands tothe right-hand side. For example, the following
equations show the probability of two types of noun phrases, represented formally as two of the expansions of the
nonterminal NP, computed from the Brown corpus:

[.42] NP! Det N
[.16] NP! Det Adj N

These rules tell us that the probability of expanded a noun phrase as a determiner followed by a noun is .42.
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Jurafsky’s model is on-line, using the left-corner probability algorithm of Jelinek and Lafferty (1991) and Stolcke
(1995) to compute the SCFG probability for any initial substring(or ‘prefix’) of a sentence.

Subcategorization probabilities in the model are also computed from theBrown corpus. For example the verbkeep
has a probability of .81 of having two complements (keep something in the fridge) and a probability of .19 of having one
complement (keep something). Jurafsky (1996) showed that this model could account for a number of psycholinguistic
results on parse preferences. For example, the corpus-based subcategorization and SCFG probabilities forkeepand
other verbs likediscusscorrectly modeled the preferences for these verbs in the off-line forced-choice experiment of
Fordet al. (1982).

While the model keeps multiple interpretations, it has only limited parallelism. Low probability parses are pruned
via beam search, an algorithm for searching for a solution in a problem spacethat only looks at the best few candidates
at a time. Because the model prunes interpretations (rather than keeping all possible interpretations around) means
that occasionally the parse that was pruned will turn out to have been the correct parse. The model predicts extra
reading time (the strong garden path effect) just in these cases, the correct parse had been pruned away and the rest of
the sentence was no longer interpretable without reanalysis. Thus the Jurafsky (1996) model explains the misanalysis
of garden path sentences like (15) and (16). In (15), the correct parse, in which raced is a reduced relative, is pruned.
Thus when the parser arrives atfell, it is unable to integrate it into the parse, causing large reading timeincreases. In
(16), the parse in whichhousesis a verb gets pruned, leaving only the nominal sense ofhouses. Later in the sentence,
it becomes clear that the nominal sense ofhousesis incompatible with the sentence, again causing increased reading
time.

(15) The horse raced past the barn fell.

(16) The complex houses married and single students and their families.

In these cases, the preference differences between the interpretations are modeledby combining the SCFG proba-
bility and subcategorization probability to compute a probability for each interpretation.

Crocker and Brants (2000) propose a similar probabilistic model of sentence processing that differs in using cas-
caded Markov models rather than SCFGs. Theirincremental cascaded Markov model(ICMM) is based on the broad
coverage statistical parsing techniques of Brants (1999). ICMM is a maximum-likelihood model, which combines
stochastic context-free grammars with hidden Markov models, generalizing the HMM/SCFG hybrids of Moore, Ap-
pelt, Dowding, Gawron, and Moran (1995). The original non-incremental version of the model constructs a parse tree
layer by layer, first at the preterminal (lexical category) nodes of the parsetree, then the next higher layer in the tree,
and so on. In the incremental version of the model, information is propagated up the different layers of the model
after reading each word. Each Markov model layer consists of a series of nodes corresponding to phrasal (syntactic)
categories like NP or ADVP, with transitions corresponding to trigram probabilities of these categories. The output
probabilities of each layer are structures whose probabilities are assignedby a stochastic context-free grammar. Fig-
ure 3 shows a part of the first Markov model layer for one sentence. Each Markov model layer acts as a probabilistic
filter, in that only the highest probability non-terminal sequences are passed up from each layer to the next higher
layer. The trigram transition probabilities and SCFG output probabilities are trained on a treebank.

The Crocker and Brants (2000) model accounts for various behavioral results on human parse preference, such as
the Juliano and Tanenhaus (1993) studies on the disambiguation ofthat.

Both Crocker and Brants (2000) and Jurafsky (1996) have the advantages of a clean, well-defined probabilistic
model which both explains how structures are built and how probabilities are assigned to them, both are incremental,
showing how probability is computed word-by-word, and both offera clear motivated probabilistic model of parse
preference. In addition, the Jurafsky (1996) parser uses a parallel processing architecture which can capture the
similarities between lexical and syntactic processing, and a probabilistic beam-search architecture which explains
difficult garden-path sentences.

Unfortunately, neither of these models is sufficient to extend or replace the competition model as an explanation of
human probabilistic processing. Unlike the Spivey model, neither the Jurafsky or Crocker and Brants models makes
sufficient reading time predictions. The Crocker and Brants (2000) modelis a model of preference, and as such does
not make specific reading time predictions at all. The Jurafsky (1996) makes only very broad-grained reading-time
predictions; it predicts extra reading time at difficult garden-path sentences, because the correct parse falls out of
the parser’s beam width. The Crocker and Brants (2000) model includes no verb valence model, and so it cannot
model valence results of any kind, syntactic nor thematic, leaving it unable to model the wide variety of behavioral
experiments showing the role of syntactic and semantic subcategorization, including the McRaeet al. (1998) study.

7



Figure 3: Part of the first layer Markov model for one sentence, from Crocker and Brants (2000). The lettert indicates
the subtrees generated by the SCFG. Thus for exampleP (tjNP ) is the conditional probability of the subtreeNN !
companygiven theNP .

Furthermore, despite their probabilistic nature, neither the constraint satisfaction, Jurafsky (1996) or Crocker and
Brants (2000) model a key class of behavioral studies on the probabilistic relation between individual words, often
known asword transition probabilitiesor word bigram probabilities. McDonaldet al.(2001) studied the effect of this
probability on reading time by looking at eye fixations in subjects who were reading verb-noun pairs embedded in
sentences. Subjects either read a sentence with a high transition probability verb-noun pair or a sentence with a low
transition probability verb-noun pair. Other aspects of the sentence pairs, such as length and corpus frequency of the
noun, neutral context, and sentence plausibility were all matched.:

high-probability: One way toavoid confusionis to make the changes during vacation.

low-probability: One way toavoid discoveryis to make the changes during vacation.

McDonaldet al. (2001) found that the duration of subjects’ initial fixation on the target noun was shorter for the
high-transition-probability verb-noun pairs. MacDonald (1993) reports on a similar earlier study using reading time.

The three probabilistic models also have a problem with modeling the behavioral results of Pickering, Traxler,
and Crocker (2000), particularly since Pickeringet al. (2000) argue that their results would cause problems for any
frequency-based models. Pickeringet al. (2000) looked at the disambiguation of the role of postverbal noun phrases
in NP/S ambiguities. In the NP/S ambiguity, the postverbal noun phrase such ashis goalsin (17). can either be the
direct object of the higher verb (an NP) (as in (18)) or be the subject of a sentential complement clause (an S), (as in
(19)):

(17) The athlete realized[NP his goals ] at the Olympics.

(18) The athlete realized[NP his goals ] at the Olympics.

(19) The athlete realized[S [NP his goals ] were out of reach].

Previous research, as discussed earlier, suggests that verbs have a bias toward either an NP or S complement, and
that this bias plays a role in processing. In the critical manipulation,Pickeringet al. (2000) looked at sentences in
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which the main verb was S-biased, like the verbrealize. This means that at the point of reading the verb, human readers
presumably expect the sentence to continue with a sentential complement. Pickeringet al. (2000) then showed that if
the postverbal noun phrase was an implausible direct object (likeher exercisesin (78) below) readers took longer to
read the following words ‘one day’ than they did after a plausible direct object (likeher potentialin (77) below):

(20) The young athlete realized her potential one day might make her a word-class sprinter.

(21) The young athlete realized her exercises one day might make her a word-class sprinter.

In other words,exerciseswas anomalous only for one interpretation (the NP reading), but caused extra reading
time. Pickeringet al.’s result thus shows that a word which is anomalous only to the less-preferred interpretation
causes a reading time increase.

The competition model has no way to account for this finding that decreasing the goodness of a less-preferred
interpretation causes a reading time increase. Recall that in the competition (?), reading time increases are caused by
competition between interpretations; the closer two interpretations are in preference, the longer it takes for a winner to
settle out, and thus the longer the reading time. Thus the constraint-satisfaction model predicts that making the worse
interpretation even worse should make the competition easier, hencespeeding upthe reading time, not slowing it down.
In the model of Jurafsky (1996), reading time increases are caused by having to rebuild previously-pruned parses. But
that cannot be the cause of the reading time increase on ‘one day’, since evenif the direct-object parse becomes
dispreferred enough to prune, it is the sentential complement parse that iscontinued in the rest of the sentence!

By contrast, Crocker and Brants (2000) note that their model can handle this result because they predict that it
is the direct object reading, not the sentential complement reading, which isprefereed. Since their model does not
compute valence probabilities of any kind, sentence preference is determined solely by the structure of the SCFG, and
direct objects in general have a higher SCFG probability than sentential complements. Thus their model predicts that
the probability of the direct object reading of (17) is actually higher than the probability of the sentential complement
reading. Thus the extra reading time for the implausible direct objectis explained by the fact that the direct object
reading was the preferred one. The ability that lets the Crocker and Brants (2000) model handle this example, however,
is its lack of valence probabilities. But this exact lack keeps their model from handling the extensive previous results
showing the effect of verb bias (Clifton, Jr.et al., 1984; Fordet al., 1982; Jenningset al., 1997; MacDonald, 1994;
Tanenhauset al., 1985; Trueswellet al., 1993). Thus in general, it is unlikely that this aspect of the Crocker andBrants
(2000) model can be defended.

In summary, none of the three models we’ve looked at are sufficient for this data. The competition model has no
way to build the two interpretations that it compares, no motivations for its weights, and no principled reason for using
the specific conditional probabilities that it relies on. The Jurafsky (1996) model has an impoverished view of reading
time and no clean way to combine information from multiple sources. Neither model can explain the Pickeringet al.
(2000) result. The Crocker and Brants (2000) model also offers no specific predictions about reading time, and is
unable to model any effects of verb subcategorization or thematic preference. Although it would be easy to modify
any of them, none of the models as described predict the word bigram probability result of McDonaldet al. (2001).

In summary, no current models meet the criteria expressed above for modeling the role of probability in repre-
senting linguistic knowledge, combining evidence, selecting interpretations, and predicting behavioral variables like
reading time.

Our goal in this paper is to attempt to build a model which meets these criteria. The fundamental insight of
our model is the use of Graphical Models (specifically Bayes nets) in modeling the probabilistic, evidential nature
of human sentence processing. Bayes nets are a type of model that can represent the causal relationship between
different probabilistic knowledge sources, how they can be combined, and what we know about the independence of
probabilities. In our Bayesian model of sentence processing, humans construct dynamic Bayes nets incrementally
(on-line), while a sentence is being processed. Each Bayes net combines probabilistic knowledge of lexical, syntactic,
and semantic knowledge on-line. Our proposal is thus that humans combine structure and evidence probabilistically,
computing and incrementally re-computing the probability of each interpretation of an utterance as it is processed.

Like the Jurafsky (1996) model, this model ison-lineand incremental; it assigns structure word by word as the
sentence is read, changing structure as new information comes into the parser. Like most sentence processing models,
our model is sensitive to various constraints, including syntactic structure, thematic biases, and lexical structure.
Also like the Jurafsky (1996) model, our Bayesian model is probabilistic, incrementally computing the probability of
each interpretation conditioned on the input words so far, and on lexical,grammatical and semantic constraints and
knowledge. The most-preferred interpretation at any time is thus the one with the highest probability.
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Our model differs from Jurafsky (1996) in two major ways. The first difference is that our model proposes a clean,
principled way to combine structural knowledge and probabilistic knowledge: the Bayes Net or graphical model.
Graphical models combine ideas from graph theory and probability theory to deal with two central issues facing large
systems,complexityanduncertainty. Fundamental to these models is a notion of component composition - a complex
system is built by composing simpler parts. Probability theory provides the glue that ensures that the combined
system that comprises of simpler parts is consistent as a whole and interfaces as a whole to data. Graph theory
provides a visual and intuitive interface as well as a formal data-structure that lends itself naturally to the design of
efficient inference algorithms. Graphical models (Jordan 2003) present a common framework for many of the classical
multivariate probabilistic systems - special cases of the general graphical model formalism include mixture models,
factor analysis, hidden Markov models, Kalman filters and Ising models. The graphical model framework provides a
way to view all of these systems as instances of a common underlying formalism.

The second difference is that our model makes fine-grained predictions about reading time. What kind of predic-
tions could a probabilistic model make about reading time? One relationbetween probability and reading we have
known for a long time. High frequency words are processed more quicklythan low frequency words. As we mentioned
earlier, this is a very robust result, whether from naming (Forster & Chambers, 1973), lexical decision (Rubenstein
et al., 1970; Whaley, 1978; Balota & Chumbley, 1984) or other metrics. Wealso know that predictability affects
reading time. For example McDonaldet al. (2001) modeled reading time results by showing that higher bigram pre-
dictability correlated with lower reading time. Indeed, the extra reading time associated with unexpected, anomalous,
or unpredictable words has long been used as a methodological tool (for example with embedded anomalies). How can
we cash out this relationship between frequency, predictability, probability, and reading time? In each of these cases,
low probability (unpredictable) items are read more slowly while highprobability items are read more quickly. Any
probabilistic model predicts the probability of upcoming words. Thus any probabilistic model could model reading
time by predicting that reading time is inversely proportional to theprobability of upcoming words:

reading time(word) / 1P (wordjcontext) (22)

Hale (2001) first noticed this fact about probabilistic parsers, and was the first to propose that this intuition could be
probabilistically formalized in a probabilistic parser. His proposalis that the cognitive effort to integrate the next word
into a parse is related to how surprising or unexpected that word is, andthat this surprise be measured by the amount of
information in the word. The information in a word can be measured information-theoretically as the negative log of
its probability. Hale thus suggested that reading time was proportional to the negative log of the conditional probability
of a word given the context.

Equation 22 gives us a key clue to making operational predictions about reading time from any probabilistic model.
Like any incremental probabilistic model, our Bayesian model incrementallypredicts the probability of all upcoming
words. Our model integrates many sources of evidence (lexical, syntactic,semantic) into this probability computation.
Thus theEXPECTATION component of our model predicts that the time to process an input (for example to read a
word) is inversely proportional to the conditional probability ofthe word given the lexical, syntactic, and semantic
evidence.

The second new way that the Bayesian model predicts increased reading time can alsobe viewed as a kind of
expectation-based effect. Recall that our model is a parallel one, keeping multiple ranked interpretations. Our second
prediction is that a demotion of this top interpretation causes extra reading time. For example, since probability is
computed incrementally, an incoming word may make a previously dispreferred interpretation more likely, causing
what had been the most-preferred interpretation to become second best. We predict that these demotions cause an
increase in reading time. We refer to this prediction of our model as theATTENTION principle, since it is based on
our assumption that the comprehender places attentional focus on the best-ranked interpretation. Demotion of the
interpretation in attentional focus causes increased reading time.

In summary, the goals of this paper are threefold. First, we introducethe idea of a Bayesian model for sentence
processing. Our model suggests how the Bayes net could be used to representprobabilistic aspects of human knowl-
edge of language, and how these probabilities are combined in computing the probability of an interpretation. Second,
we propose a specific architecture for parsing, a probabilistic limited-parallel mechanism which makes specific predic-
tions about the relationship between probability and reading time. Finally, we show that this model is able to account
for behavioral results.

In the next section, Section 2, we lay out the model in detail, show exactly how the probabilities are assigned to
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different parses of a word or sentence, how the Bayes Net is incrementally rebuilt as the sentence is processed word
by word, and what the predictions are about behavior.

Sections 3, 4, and 5 then show the model’s ability to handle behavioral data. Section 3 gives some motivating
examples which show how probabilities of linguistic structure can beused to predict human preference in syntactic
ambiguities. In section 4 and 5 we turn to the two reading time studies discussed above, McRaeet al. (1998) and
Pickeringet al.(2000). It is important that our model be able to explain these behavior results for a number of reasons.
First, the two studies cover the two most frequently-studied kindsof disambiguation: main clause/reduced relative and
direct object/sentential complement. Second, no previous probabilisticmodel is able to account for the results of both
these studies.

2 The Bayesian Model

The fundamental insight of our Bayesian model is to build multiple interpretations for the input, in parallel, compute
the probability of each interpretation, and choose the interpretation with the maximum probability. Furthermore, this
probability plays a role in reading time; words or structure which areunexpected (low probability) take longer to read.

In order to explicitly define our model and the probabilistic computations that it requires, we begin by introducing
the basics of the use of Bayes rule for computing posterior probabilities.

We begin by considering an abstract form of the problem of choosing thehighest probability interpretation. Imag-
ine that we are given an input sentences, and a set of potential interpretationsi1, i2,...,in. Our task is therefore to
compute the interpretationi� that has the highest probability given the input sentences. This can be expressed by the
following formula: i� = argmaxi P (ijs) (23)

The functionargmaxreturns the parameter which maximizes the value of its argument function. Thus equation
(23) says that the best interpretationi� is that particular interpretationij which has the property that its probabilityP (ij js) is higher than the equivalent probabilityP (ixjs of any other interpretationix.

Equation (23) tells us that we could pick the maximum probability interpretation if we just knew how to computeP (ijs) for each interpretationi and sentences. One way to estimate a probability of an event is called the Maximum
Likelihood Estimate: we simply count how many times the event occurs, and normalize by the count of all relevant
events. So this suggests that we should computeP (ijs) by asking ‘out of every time that sentences occurred in the
past, how many times did it have interpretationi?’. While this is in fact mathematically correct, it cannot be the
method that humans (or for that matter machines) use to compute the probability of interpretations. The reason, of
course, is that language is creative and hence any given sentence is unlikely to have been ever uttered in the past, let
alone enough times to estimate the probability of each of its multiple possible interpretations.

Since the human sentence processor cannot be computing interpretation probabilities by counting every time they
occur in toto, we need a way to break down this probability computation down so that we are counting smaller pieces of
an interpretation, each of which might have occurred often enough in the experience of a language user to be counted.

We propose that the human solution to this problem is based on two key ideas. The first key idea iscompositional-
ity: humans break down probabilities by making use of the compositional properties of language; a sentence is made
up of words and syntactic structures. Generative linguistic theory provides us with good formal models of this kind
of grammatical compositionality. Phrase-structure rule systems, or context-free grammar rules systems, such as X-bar
phrase structure, provide a specific way to compose the structure of an entire sentence out of smaller pieces. These
rules, as we will see in the next section, can be augmented with probabilities.

So we could compute probabilities for interpretations if we had a way tocombine these probabilities for smaller
structures into a single probability for an interpretation. The second key idea is thus a method for combining these
probabilities together: the use of theBayes rule. Bayesian reasoning is important because these modern models of
linguistic structure are ’generative’. To simplify somewhat, a generative model is one that computes a string from some
structure (for example a parse tree), rather than the other way around. For example, a phrase-structure grammar begins
with a start-symbol S, and then using rules likeS ! NPV P , expands this symbol, and then recursively expands the
daughter symbolsNP andV P to generate sentences. Because linguistic rules are generative, they are most naturally
used to compute the probability that a particular interpretation ’generates’ a particular sentence. In other words, it turns
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out to be easier to computeP (sji) thanP (ijs). Luckily the Bayes Rule expresses a fixed mathematical relationship
betweenP (sji) andP (ijs), for anyi ands, as follows:P (ijs) = P (sji)P (i)P (s) (24)

Bayes rule says thatP (ijs), the probability of an interpretationi given a sentences, can itself be computed from
three other factors. The first factor,P (sji), is called thelikelihood. This is the probability of seeing the sentence if
we were given that the interpretation wasi; in other words, how likely the sentences would be to occur if we knew
the interpretationi was correct. The second factor,P (i), is called theprior. This is the a priori probability of the
interpretation before we had seen any new evidence. The denominatorP (s) is the probability of the sentence itself.

We can now use plug Bayes rule into (23)i� = argmaxi P (sji)P (i)P (s) (25)

We can simplify this equation a little. Consider the denominator termP (s). This represents the probability of
the sentence (sequence of words)s occurring. But equation(25) is asking ‘For a given sentences, what is the most
probable interpretation?’. In other words, the string of wordss is the same for each of the interpretationsi. This
means that we can just eliminate it from the equation, since multiplyingeach probability by a constant cannot change
the ranking of probabilities that the argmax function is interpreting. Thus our final equation has only two components
in the probability computation, thelikelihoodP (sji) and theprior P (ijs):i� = argmaxi likelihoodz }| {P (sji) priorz}|{P (i) (26)

We will see the use of this combinations of likelihoods and priors in future sections as we introduce the various
probabilistic estimators in our model (including the SCFG, valence probabilities, andN -gram probabilities).

The next section introduces the Bayes Net, the computational mechanism thatwe used for implementing the on-
line probability computation that is central to our model, and the idea of conditional independence that underlies the
Bayes Net. We then return to flesh out our various probability estimators.

2.1 Graphical Models as Probability Estimators

Our previous examples have dealt with complete sentences, and comparing probabilities for complete candidate parses.
Indeed, statistical parsers were originally developed for text-processing purposes for which the entire sentence could
be parsed at once. But human language processing is incremental, and so in our model parsing is done incrementally
from left to right as each word is added to the input.

The advantage of a Bayesian approach to language processing is that it gives a model of what probability to assign
to a particular source of evidence, and how these individual pieces of evidence combined in coming up with an overall
interpretation that best fits the input. However, the sources of evidence update in anincremental fashion, as input
comes in, and the posterior probabilities of different interpretationschange. So we need a method to compute the
incremental impact of new input.

We use Graphical Models (specifically Bayesian networks) foron-line updatesof individual estimators; for exam-
ple if we are estimating the probabilities of multiple possible interpretations of an ambiguous utterance, the network
will allow us to compute the posterior probability of each interpretation as each piece of evidence arrives. In addition,
the use of graphical models as a probabilistic estimator allows us to incorporate any kind of evidence; syntactic, se-
mantic, discourse. This will allow us to capture the syntactic probabilities captured by graphical models like HMMs
and SCFGs, while augmenting them with other probabilities, all in an on-line manner. Inference in graphical models
relies on and directly exploits the structural aspects of the probability source. Technically, the inference procedures
work by decomposing the overalljoint probability distributionsinto a product ofconditional probability distributions.
This decomposition is based on exploiting the property ofconditional independence.
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2.1.1 Conditional Independence in Graphical Models

Independence is a powerful property because it allows us to reason about components in isolation. IfA andB
are probabilistic events, then eventA is independent of eventB iff P (A) = P (AjB) or equivalentlyP (A;B) =P (A) � P (B). Note that is definition is symmetric. Thus isA andB are independent events, learning about the
outcome ofB does not impact the outcome probabilities of eventA.

Unfortunately, most complex systems do not exhibit independence of components. For instance, a patient’s symp-
toms are often not independent since they are manifestations of some specific disease. However it is often the case that
specific conditioning variables (the interface variables) render independentthe components of complex system. This
generalization of the idea of independence is calledconditional independence. Two components of a system exhibit
conditional independence when the observation of a third aspect (set of variables) renders them independent. Thus the
two components are independent given (conditioned on) the value of the third component. For example, knowing the
disease (the conditioning variable) renders the symptoms independent.

It turns out that conditional independence does occur often in complex systems and leads to significant savings in
representation and computation. Technically, ifA, B, andC be events;A andB are conditionally independent givenC iff P (AjC) = P (AjB;C) or equivalently,P (BjA;C) = P (BjC). Thus ifA andB are conditionally independent,
once we know the value ofC, B (A) is independent (gives no additional information) aboutA (B).

Conditional independence assumptions are often made in many commonsensesituations. Common examples
include the assumption that symptoms are conditionally independent given a disease, and that the future and past are
conditionally independent given the present (this is the famous Markovassumption inherent in markov models). A
generalization of this notion of conditional independence is made in context free grammars. Here, we assume that
the derivation of a non-terminal at a certain position in a parse tree (the outside probability) is independent of the
derivation of the terminals dominated by the non-terminal in that position (the inside probability) given the identity
and position of the non-terminal in question. This allows us to decouple the overall computation into top down and
bottom up components which can be computed independently and combined for aspecific node (position and value)
in the parse tree. We will have more to say about this in the next section. In general, conditional independence is the
key to reducing the representational and computational complexity in graphical models.
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Figure 4: A simple Bayes Net for a diagnosing diseases. The two possible diseases, indigestion and heart attack can
both cause chest pain, but only a heart attack can cause radiating arm pain. This isevident from the links in the
network. Also knowing the disease is heart attack renders the symptoms conditionally independent.

Our model is based on a Directed Acyclic Graph (DAG) version of graphical models called a Bayes net. Figure 4
shows a simple illustrative Bayes net that models the relationship between a set of diseases and the symptoms they
cause. The various nodes of interest (diseases, symptoms) are vertices in the graph. In general, a Bayes net consists
of vertices which correspond to the variables of interest (such as possiblenon-terminals in a parse). When a node
depends directly on another node, there is an edge between the appropriate vertices in the graph. Hence, in Figure 4,
the vertex corresponding to the symptom (chest pain) has arrows coming from the diseases it’s valuedepends on(in
this case bothheart attackand indigestion). If there is no direct dependence between two variables there is no edge
between the appropriate vertices in the graph (there is no edge betweenindigestionandradiating pain to the arm).

The basic expressions in Bayes nets are statements aboutconditional probabilities. For example,P (AjB) quanti-
fies the belief in the propositionA given that the propositionB is known with absolute certainty. Graphical models
use the principle of conditional independence as a basic representational primitive. Edges between nodes represent
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direct influences between the variables.
The strengths of these influences are quantified by conditional probabilities; thus for each variable nodeA which

can take valuesa1 : : : an, with parentsB1; : : : Bn, there is an attached conditional probability tablep(A = a1jB1 =bx; : : : ; Bn = bz), p(A = a2jB1 = bx; : : : ; Bn = bz), and so on. The conditional probability table (CPT) expresses
the probabilities with which the variableA can take on its different values, given the values of the parent variables.
In Figure 4, the CPTs for the individual disease nodes (HEART ATTACK and INDIGESTION) are not conditioned on
any other variable (the disease nodes have no parents in the network in Figure 4). This unconditioned table represents
the prior probability (absent any evidence) of the diseases. Thus Apriori, according to the network parameters, a
heart attack is much less likely than indigestion (.001 to .1). The CPT values for the various symptoms are shown
in the tables that quantify the influence on the specific symptom of the various joint assignments of values to the
parent variables. In Figure 4, we see that for the variableCHEST PAIN, we have two parents (HEART ATTACK and
INDIGESTION). The CPT for this variable has entries quantifying the likelihood of the symptom for all combinations
of values of the parent. For instance, in the case that there is neither a heart attack nor indigestion, chest pain is
relatively unlikely (.05), but when there is a heart attack and no indigestion, it is quite likely (.85), etc.

The distribution over all the variables (the joint distribution)can be compactly represented in Bayes nets. Figure 4,
if we use the chain rule of probability, the joint probability of all the nodes is (by convention we will use lower case to
indicate variables (so the variablei has two values, true and false):P (i; h; r; c) = P (i) � P (hji) � P (cjh; i) � P (rjh; i; c) (27)

By using conditional independence relationships, we can rewrite this asP (i; h; r; c) = P (i) � P (h) � P (cjh; i) � P (rjh) (28)

where we were allowed to simplify the second term becauseh is independent ofi and the last term becauser is
independent ofi andc given its parenth.

We can see that the conditional independence relationships allow us to represent the joint more compactly. Here
the savings are minimal, but in general, if we had n binary nodes, the full joint would requireO(2n) space to represent,
but the factored form would requireO(n2k) space to represent, where k is the maximum fan-in of a node. And fewer
parameters makes learning easier.

Bayes Nets can answer queries about any set of variables conditioned on any other set. The structure of the network
reflects conditional independence relations between variables, which allow a decomposition of the joint distribution
into a product of conditional distributions. The Bayes net thus allows us to break down the computation of the joint
probability of all the evidence into many simpler computations. For example, in the example in Figure heart if there
is no conditioning evidence, then indigestion is much more likely thana heart attack just based on the priors. Now
suppose a patient comes in with chest pain. There are two possible causes for this: either he has had a heart attack,
or he has indigestion. Which is more likely? We can use Bayes’ rule to compute the posterior probability of each
explanation (where f=false and t=true).The the chance of a heart attack conditioned on the symptom isP (h = tjc = t) = P (h = t; c = t)P (c = t) = Pi;r P (h = t; i; r; c = t)P (c = t) = :001:111 = :01 (29)P (i = tjc = t) = P (i = t; c = t)P (c = t) = Pi;r P (i = t; i; r; c = t)P (c = t) = :06503:111 = :59 (30)

The denominator for both calculations,
PiPrPh P (C = t) = :111 is the likelihood of the evidence.

In the case of a patient exhibiting chest pain (c = t), the network predicts an increased chance (compared to the
Aprori value) of both heart attack and of indigestion, but not in the sameproportions. Absent any confirming evidence
of arm pain, the posterior probability of a heart attack(P (h = tjc = t) is still one in a hundred (sixty times less
likely than indigestion). Now, if new evidence comes in suggesting radiating pain to the arm (r = t), the picture
changes and the posterior probability of a heart attack becomes much larger (:17) compared to the other diagnosis of
indigestion. So as evidence comes in the posterior probability of different variables changes to reflect the effect of
this new evidence. In general, the probability inference mechanism makes useof the the conditional independence
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assumptions to simplify computing the distribution over the query nodes conditioned other nodes. These algorithms
are calledbelief propagation algorithms (Pearl1988, Jensen 1995, Jordan 1999) and the exact computations are
outside the scope of this paper. The reader is referred to the references abovefor a detailed treatment. We now turn
to how the notion of how conditional independence informs the construction of our Bayes net model of sentence
processing.

2.1.2 Exploiting Conditional Independence in Sentence Processing

Bi(N)Gram Semantics

top down

bottom up

Syntax Discourse

Phrase_Const(I)

Words

top down

bottom up

Discourse

Word_Const(I)

Bi(N)Gram Constr(I)

Phonology Prosody

Figure 5: A Bayes net showing the structure of specific constructions attwo different levels, the phrase level and the
word level. In each level there are top down (syntactic, semantic, discourse,lexical, etc.) and bottom up sources (word,
phonology, visual input, etc.). The network embodies the assumption that given a specific construction, the top-down
and and bottom-up sources become conditionally independent. Uncertainty and structure go hand in hand all the way
from the speech signal to discourse level constructions.

The crucial insight of our Bayes net model is to view specific interpretations aslatent variablesthat render top-
down (e+) and bottom-up evidence (e�) conditionally independent (d-separate them (Pearl, 1988)). We hypothesize
that such a decomposition based on conditional independence exists at multiple levels all the way from the speech
signal (or visual text perception) all the way upto phrasal and even discourse level constructions. Figure 5 shows two
levels of the Bayes net structure which embodies this assumption. The figure on the left shows that a phrasal construc-
tion captures the correspondence between sets of words (bottom up) and a setof word associations (n-grams), syntax,
discourse constraints and semantics (top down). The figure on the right shows that at a lower level of detail, a word
construction may itself capture the correspondence between sets of phonological and prosodic features and higher
level features including the phrasal construction that the word is part of. In interpretation, the top down constructional
constrains provide expectations (of the next word or the next phonology) and the bottom-up constraints provide ob-
servational evidence of the recognized word (or phonology or prosody). Both top down and bottom up evidence are
combined to arrive at an estimate of the overall support for a specific construction (phrasal or word level). We assume
that there are similarly structured networks below the phonology level (where the bottom-up evidence may be features
extracted from the speech signal) and above the phrase level (where the phrase level construction may provide bottom
up evidence and discourse (and topic) level relations and information structure provide top-down evidence).

While our Bayes net based conceptual model supports integration of information across all these levels, the spe-
cific model implementation described in this paper is based on the phrasal construction level (the left side of Figure 5).
In work described in this paper, we assume that lexical access (the right side of Figure 5) has already taken place.
Syntactic, lexical, argument structure, and other contextual informationacts asprior or causalsupport for an inter-
pretation (like Main Clause or Reduced Relative), while bottom-up wordstrings other perceptual information acts as
likelihood, evidential, or diagnosticsupport. Thus, it is a specific interpretation that captures explicit dependencies
between syntactic, lexical and semantic sources. Technically, knowing the interpretation renders the various top down
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sources (syntactic, semantic, discourse)conditionally independentof the bottom-up sources (words). Of course, as
we will see in the next section, these sources (say syntax or semantic) are themselves structured and recursively de-
composable (for instance the Context Free Grammar assumption for syntax) and the Bayes net formulation for the
particular source directly reflects the various conditional independence assumptions made and takes advantage of the
structure for inference. Our model is thus to have graphical models as individual probabilistic estimators for the vari-
ous sources of support for a given construction. We then use a canonical technique for conjunctive source combination
calledNOISY-AND to come up with the overall estimate of the posterior probability fora specific construction.

To apply our model to on-line disambiguation, we assume that there area set of interpretations ((i1; : : : in) 2 I)
that are consistent with the input data. At different stages of the input, we compute the posterior probabilities of the
different interpretations given the top down and bottom-up evidence seen so far. As the input comes in, the posterior
probabilities for then interpretations are recomputed at different stages. Selection decisions thusdepend on how
an interpretation fits/explains the input (it’s posterior value given the input). The interpretation that has the highest
posterior at a given stage in the input is thus the best fit to the input at that stage. As the input comes in the fit of
different interpretations shifts up or down by different amounts. Wehypothesize that the reader is sensitive to certain
types of unexpected shifts which results in enhanced reading times. Our Bayesian approach allows us to quantify and
test this hypothesis for different types of reading time data. The nextsection outlines our model for computing the
various probabilistic components that provide evidence for an interpretation and our Bayesian network implementation
of the components.

We now describe how we compute the support for an interpretation fromvarious sources (syntactic, lexical, the-
matic) at different stages in the input and then combine the individual source supports into an overall posterior proba-
bility of that interpretation at these input stages.

2.2 Individual Probability Estimators

We turn now to the details of computing the various probabilistic components of the Bayesian model: our goal is to
arrive at an overall estimateP (ijs), the posterior probability of an interpretation given a sentence (fragment). How
should these probabilities be estimated? The computational linguistics literature abounds with methods for estimating
these kinds of probabilities. One way to choose a method is to pick thesimplest estimation algorithm that meets
the constraints of psycholinguistic adequacy. We propose an algorithm consisting of only three relatively simple
probabilistic components:

1. aprobabilistic wordN -gram model.

2. aprobabilistic syntacticmodel

3. aprobabilistic verbal valencemodel,

The next three sections will define each of these three components.

2.2.1 WordN -gram probabilities

The first component of our model captures the intuition that there is a probabilistic relation between adjacent words.
Words are often very good probabilistic predictors of following words. We model this intuition with what is called
bigram probability, first-order Markov relation, or sometimestransition probability: the conditional probabilityP (wijwi�1) of a wordwi given a previous wordwi�1.

It is important to understand how transition probability differs from word frequency. A word can be rare, but be
very predictable from the previous word. For example the wordhavocis very rare (low frequency), but has a very high
transition probability from the wordwreak; thusP (havocjwreak) is high.

Bigram probabilities can be easily computed from any corpus. The conditional probability of a particular target
wordwi given a previous wordwi�1 can be estimated from the counts of the number of times the two words occur
togetherCount(wi�1wi), divided byCount(wi�1), the number of total times that the first word occurs:P (wijwi�1) = C(wi�1wi)C(wi�1) (31)
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Figure 6: Bayes Nets for n-grams

2.2.2 WordN -gram probabilities in a Bayes Net

Probabilistic relations between adjacent words are modeled quite easily with a Bayes net (see Figure 6) that models a
bigram probability: the conditional probabilityP (wijwi�1) of a wordwi given a previous wordwi�1. Note that we
can quite easily extend the graphical model to capture more complicated (trigram, n-gram) models.

2.2.3 A Probabilistic Syntactic model

There are a number of probabilistic models of syntactic structure (refs.). Of these, perhaps the earliest and simplest is
the stochastic context free grammar. A stochastic context free grammar (SCFG) is a probabilistic version of the context
free grammar (CFG) or phrase structure grammar. The non-stochastic CFG is widely used throughout linguistics and
psycholinguistics as one of the mathematical skeleta which underlies generative linguistics models like principles and
parameters, HPSG, and LFG (Sag-ref; Kaplan-ref).Phrase structure grammars reify assumptions about

word grouping and ordering that date as far back as the psychologist Wilhelm Wundt (1900), and were formalized
by Chomsky (1956). We have chosen to use SCFGs to implement the structural portion of our model, because of their
relative simplicity and wide-spread use. Our model could easily be adapted toother probabilistic models of syntactic
structure. We have also chosen a very simple and theory-neutral version of SCFGs.

In each context-free production, an ordered list of words and phrasal symbols, appears the right of the arrow (!)
while to the left of the arrow is a single symbol expressing some cluster or generalization about these symbols. A CFG
can assign a structure to an entire sentence, represented as a tree, by combining multiple rules. Figure 7 shows the tree
representation of a derivation of the sentence ‘The horse slept’. This derivation consists of 6 CFG rules:

S! NP VP
NP! DT NN
VP! VBD
DT! The
NN! horse
VBD! slept

S [.47]

NP [.42] VP [.079]

Det [.60] Noun [.00071] VBD [.00039]

The horse slept

Figure 7: A parse tree for “The horse slept”, with SCFG probabilitiesfor the six rules.

A stochastic context-free grammar (SCFG) has the same phrase structurerules as a CFG. What an SCFG adds is
that each context free rule is associated with a weight. This weight is the conditional probability of the right hand side
of a rule given the left hand side, i.e. the probability of a particular expansion of a left-hand side. For example if the
expansions of a verb phrase nodeVPconsist of SCFG rules of the following form:[:079] VP! VBD[:18] VP! VBD NP[:051] VP! VBD NP PP
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then .079 is the probability thatVP will expand toV NP, while .051 is the probability thatVP will expand toV NP
PP. These probabilities are all conditional onVP, which means that the probabilities of all the expansions of a given
nonterminal sum to one. These probabilities can be computed from atreebank(a parsed corpus) by counting the
number of times each kind of rule expansion occurs.

The probability for an entire parse treeT and the surface sentence it producesS is found by multiplying together
the probabilities for the CFG rules used to expand each node in the tree. Thus the probability of the entire structure
shown in Figure 7, that is to say the probability of the parse tree together with the string of words, is derived as follows:P (T; S) = P (NP;VP;Det;Noun;VBNjS; the; horse)= P (S ! NPVP;NP! DetNoun;VP! VBD;Det! the;N ! horse)VBD ! slept= P (S ! NPVP)� P (NP! DetNoun)� P (VP ! VBD)� P (Det! the)� P (N ! horse)� P (VBD ! slept)= :47 � :42 � :079 � :60 � :00071 � :00039 = :0000000025 (32)

In other words, the probability of the sentence and the tree is the product of the probabilities of each of the six
rules. More generally, for each noden in the parse treeTree, let rule expansion(n)represent the rule which expands
that node. Then: P (Tree; S) = Yn2Tree

p(rule expansion(n)jn)
FIX: REPLACE WITH THE EVIDENCE EXAMINED. Figure 8 shows the SCFG parse tree for the sentence

The horse raced past the barn fell, which will play a role in our later descriptions of our sentence processing algorithm.

S [.47]

NP[.070] VP [.079]

NP [.42] VP [.14]

PP [.93]

NP [.42]

Det [.60] Noun [.00071] VBN [.000022] P [.0011] Det [.60] Noun [.00061] VBD [.0015]

The horse raced past the barn fell

Figure 8: A parse tree for “The horse raced past the barn fell”, with SCFG probabilities for the rules. These probabil-
ities were drawn from the Penn Treebank annotation of the Brown corpus,except for the ruleVBN! raced, which
didn’t occur in the Brown corpus, and was estimated using the web.

2.2.4 Processing SCFG probabilities with the Bayes net

We begin with a description of how the Bayes net computes the SCFG portion of our probabilistic model in an
incremental fashion. In this paper, we will consider only Bayes nets for previously generated partial parse tree
structures. We assume the presence of a chart or some mechanism to dynamically generate the partial parse trees
for the input, given a grammar. Given a parse structure, we generate the appropriate Bayes net and compute the
posterior probabilities for the competing interpretations. It turns out that we can set up a relatively straightforward
correspondence between the computation of SCFG probabilities by a probabilistic parsing algorithm (as described in
the previous section) and the ‘belief propagation’ algorithm of Bayes nets.3

The correspondence is as follows:
3More technically, for those who are interested, the Inside/Outside algorithm applied to a fixed parse tree structure is obtained exactly by casting

parsing as a special instance of belief propagation (Narayanan 2004).
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� The parse tree is interpreted as a Bayes net.� Non-terminal nodes in the parse tree correspond to nodes in the Bayes net,the range of the variables being the
non-terminal alphabet.� The grammar rules define the conditional probabilities linking parent and child nodes.� TheS nonterminal at the root, as well as the terminals at the leaves represent conditioning evidence to the
network.� Conditioning on this evidence produces exactly the conditional probabilities for each nonterminal node in the
parse tree and the joint probability distribution of the parse.4

Consider the partial parse state after the input “The horse raced”. Figure9 shows the partial SCFG parses for the
main clause,MC and reduced relative,RR interpretations for this input (recall the definition of the main clauseand
reduced relative interpretations of ‘The horse raced past the barn. . . ’ in Section 2.2.3.)

S

NP VP

D N VBD

The       horse            raced 

S

ND

NP

NP

VBN

VP

The       horse    raced 

Figure 9: MC and RR SCFG parse states (parses in chart) for the input ‘The horse raced. . . ’.

VPNP

NP

S

VP

S

D ...

...

...

VBD

VBN

racedraced The        horseThe     horse

MV

NP

RR 

ND

N

Figure 10: Pieces of Bayes networks corresponding to two SCFG parses forthe prefix ‘The horse raced . . . ’. The
. . . label on specific nodes in the Bayes net indicates sums over all continuations of the partial parse state.

4One complication is that the the conditional distribution in a parse treeP (Y;ZjX) is not the product distributionP (Y jX)P (ZjX)
(it is the conjunctive distribution). However, it is possible to generalize the belief propagation equations to admit conjunctive distributionsP (Y;ZjX) andP (X;V jU). The diagnostic (inside) support becomes�(x) = Py;z �(y)�(z)P (y; zjx) and the causal support becomes�(x) = �Pu;v �(u)�(v)P (x; vju) (details can be found in Appendix A).
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Figure 10 shows the equivalent Bayes net for the parse tree in Figure 9.The probability of the MC parse can
be computed by belief propagation on the Bayes net in Figure 10. Note theconditional independence statements
reflect the context free assertion made by SCFG grammars. At this point inthe input, the network expresses the active
structures after seeing the wordthe horse raced5.

At this stage of the input, the network is thus computing the following probabilities:
TheMC andRR parse likelihoods, given the input and the conditional independence assertions embodied in the

Bayes net isP (T; S)tMC = P (NP;VP;Det;Noun;VBD;P(: : :)jS; the; horse; raced)= P (S ! NPVP;NP! DetNoun;VP! VBD
P(: : :);Det! the;N ! horseVBD ! raced)= P (S ! NPVP)� P (NP! DetNoun)� P (VP! VBD

P(: : :))� P (Det! the)� P (N ! horse)�P (VBD ! raced)
(33)P (T; S)tRR = P (NP;P(: : :);NP;VP;Det;Noun;VBN;P(: : :)jS; the; horse; raced)= P (S ! NP

P(: : :);NP! NPVP;NP! DetNoun;VP! VBN
P(: : :);Det! the;N ! horseVBN ! raced)= P (S ! NP

P(: : :))� P (NP! NPVP)� P (NP! DetNoun)� P (VP! VBN
P(: : :))� P (Det! the)�P (N ! horse) � P (VBN ! raced)

(34)

Figure 11 shows the equivalent Bayes net for the parse tree obtained at a future stage(t + k) after the inputthe
horse raced past the barn.

NP

ND

VP

S

The     horse

RR PARSE TREEMV PARSE TREE

PPVBD

NPP

D

the barnpast

...

racedThe        horse

N

VPNP

NP

S

PP

the barnpast

VBN

raced

NPP NPP

Figure 11: Pieces of Bayes networks corresponding to two SCFG parses forthe prefix ‘The horse raced past the
barn. . . ’. The . . . label on specific nodes in the Bayes net indicates sums overall continuations of the partial parse
state.

TheMC andRR parse likelihoods, given the input and the conditional independence assertions embodied in the
Bayes net isP (T; S)t+kMC = P (NP;VP;Det;Noun;VBD. . . jS; the; horse; raced; past; the; barn)

5Note that the use of the: : : labeled nodes are technically the result of summing over allpossible completions of the SCFG structure starting
with the specific prefix non terminal. This part of the model issimilar to the Jurafsky (1996) model and uses well known algorithms to compute the
prefix probability (Jelinek and Lafferty 1991; Stolcke 1995) for agiven SCFG grammar.
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= P (S ! NPVP;NP! DetNoun;VP! VBDPP;Det! the;N ! horse;VBD ! raced;
PP! PNP;P! past;NP! DetN;Det! the;N ! barn)= P (S ! NPVP)� P (NP! DetNoun)� P (VP! VBD

P(: : :))� P (Det! the)� P (N ! horse)�P (VBD ! raced)� P (PP! PNP)� P (P! past)� P (NP! DetN);�P (Det! the);�P (N ! barn) (35)P (T; S)t+kRR = P (NP;VP;Det;Noun;VBN;P(: : :)jS; the; horse; raced; past; the; barn)= P (S ! NP. . .;NP! NPVP;NP! DetNoun;VP ! VBNPP;Det! the;N ! horseVBN ! raced;
PP! PNP;P! past;NP! DetN;Det! the;N ! barn)= P (S ! NP

P(: : :))� P (NP! NPVP)� P (NP! DetNoun)� P (VP! VBNPP)� P (Det! the)�P (N ! horse)� P (VBN ! raced)� P (PP! PNP)� P (P! past)� P (NP! DetN);�P (Det! the);�P (N ! barn) (36)

Of course at the next stage in the input, the sentence ending marker after the word “fell.” leaves only one interpre-
tation, namely the RR interpretation.

2.2.5 Lexical Valence Probabilities

The syntactic part of our model, SCFG, was used to capture structural factsabout grammatical knowledge. The third
part, a model ofprobabilistic verbal valence, is designed to capturevalenceknowledge, the biases and expectations
that a predicate (such as a verb) has for its arguments.

In most proposals for the lexical representation of verbal semantics, theverb has expectations for particularthe-
matic roles. Some verbs expect roles like agent and theme, other expect propositions,and so on, Our model expresses
the probability that potential arguments play particular thematic roles in the verb. This thematic role probability ex-
presses the probabilistic dependency relation that a verb has in assigning a particular thematic role to a particular
argument. This probability is conditioned on the head words of the argument and on their syntactic position.

For example, the verbelectedmay have a preference to assign an agent role to the subject noun phrasethey, but
a patient role to the object noun phrasethem. Or the verbopenmay prefer to assign the thematic roleagentto the
subject ‘The window-cleaner’ but the thematic rolethemeto the subject ‘The window’.

Since verbs may have more than one argument, this verb-argument expectation can be expressed as the expectation
of a verb for a set of arguments and their thematic roles. For example equation 37 expresses the probability of the verb
takeassigning the Agent semantic role to its subject NPtheygiven all the other arguments in the sentence.P (subject=Agentjverb=take; subject=they; object=books; toPPcomp=to the library) (37)

While these probabilities can in principle be computed from corpora, current corpora do not seem to be big enough
to contain such specific counts. For example, the 100 million word British National Corpus contains no instances of
the verb “fired” with a subject NP whose head noun is “employer” or an object NPwhose head noun is “employee”.

This suggests that people may also not be storing this exact probability. They may instead be approximating it
in various ways. One way to approximate this probability is to assumethat they are stored over semantic clusters of
words rather than individual words. Thus eventually methods such as clustering or other uses of semantic features can
be used to generalize corpus counts. Another way to approximate this probability is to assume that the probabilities
of the individual arguments are independent. We would then be computing expectations separately for each argu-
ment. For example for the thematic role of the subject of the verbelect, we would compute the following conditional
probabilities: P (Agentjverb=elect; subject=”they”)P (Themejverb=elect; subject=”they”)

This thematic fit probability would be computed separately for every potential argument, not just the subject.
Thus the preposition phraseby the copin the sentenceThe crook was arrested by the cop, plays the agent role for
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arrest. Thus the probability expressed by Equation 38 will presumably be higher than the probability expressed by
Equation 39: P (Agentjverb=arrest; byPP=”the cop”) (38)P (Themejverb=arrest; byPP=”the cop”) (39)

Even these less complex independent probabilities for each argument requirecounts that are too rare to find in a
corpus. Eventually these can be computed via clustered models or by computing probabilities over semantic features
rather than words. In the current study we relied on norming studies for each of the behavioral experiments we are
modeling. In one experiment, we will model data from McRaeet al. (1998), using their norming study counts. In
their study, the typicality of the noun as a filler of the agent versus theme role was determined by having 36 subjects
complete a rating task, answering questions like the following:

(40) How common is it for a crook toarrest someone?

(41) How common is it for a crook to bearrested bysomeone?

Their subjects judged role filler typicality on a 1-7 Likert; 1 corresponded to a very uncommon event, and 7 to a
very common event. We converted these numbers to probabilities by norming them (dividing the value by 7 to get a
probability value between 0 and 1).

Our second set of experiments model data from Pickeringet al.(2000), using probability parameters taken directly
from the Pickering study itself. They asked subjects to complete sentencefragments like “The young athlete realized”
or “The young athlete realized her”, and counted the number of times that the completions were syntactic direct
objects or semanticTHEMES (“The young athlete realized her goals”) versus the number of times that the completions
were syntactic sentential complements or semanticPROPOSITIONS(“The young athlete realized her exercises weren’t
working”). The result was a set of probabilities of theTHEME or PROPOSITIONargument. given the verb, the initial
NP, and the word “her”. Because in these casesTHEMES correspond to DOs, andPROPOSITIONScorrespond to SCs,
Pickeringet al. (2000) referred to these as SC versus DO probabilities, as follows:(P (SC)jV = realized)(P (DO)jV = realized)(P (SC)jV P = realized; [NPher : : :]; InitialNP = The; young; athlete)(P (DO)jV P = realized; [NPher : : :]; InitialNP = The; young; athlete)

Our model thus includes syntactic subcategorization probabilities as well as the thematic subcategorization prob-
abilities we have been discussing. We believe it is likely that it willbe possible to modify the model to rely solely on
thematic probabilities; that is, thematic probabilities may obviate the need for syntactic subcategorization probabilities.
However we save this research to be addressed in future work.

In general we believe our estimates of valence probabilities are quite rough. As was true with our SCFG probabil-
ities, our goal is not to test this particular model of valence representation, but to show how an approximate instance
of this knowledge type can be incorporated into our Bayesian model.

2.2.6 Processing valence probabilities with the Bayes net

Figure 12 outlines the basic structure of the Bayes net for processingthe valence probabilities. In our model, we
compute the support for an interpretation given a verb and all its subcategorization information (syntactic arguments
(Syncat) and their fit to verb specific thematic/frame roles (Role)). In addition, our model makes the following condi-
tional independence assumptions.

1. The identity of the verb determines its argument structure bias. This is shown in Figure 12 as the node labeledFrame depends only on the identity of the verb.

2. The thematic fit of an input phrase (for the different roles (theme, agent)) depends only on the identity of the verb
and the potential argument fillers in the input (labeled as Arg1, Arg2, . .. Argn). The conditional independence
assumption made here states that dependencies between a verb and it’s syntactic arguments is captured by the
various semantic roles. This leads to the structure in the second row ofthe Bayes net in Figure 12.

22



V

V
S

Arg1

S

Arg2

S

Arg3

Fit

I

P(Fit | Arg2, V)P(Fit | Arg1, V) P(Fit | Arg3, V)P(Frm|V)Frame

P(I | Frame, Fit(V, Arg1), Fit(V, Arg2), ...)

FitFit

Figure 12: Bayes Nets for valence Probabilities. Given a verb (predicate), the probability of frame (thematic) roles
fitting specific argument fillers is computed along with the subcategorization bias (frame) for the verb (predicate).

3. Specific interpretations constrain the various thematic fits for a given verb frame. For instance, the reduced
relative interpretation (I) requires that the subject (Arg1) be the theme (Fit) for a transitive verb. Thus a specfic
interpretation (I=reduced relative) captures the dependencies between the verb frame (frame=transitive) and the
various thematic role bindings (such as Arg1:subj=theme). This is the conditional independence assumption
that leads to the third row in the Bayes net of Figure 12.

The second row in Equation 42 embodies the three conditional independenceassumptions stated above. made
in this computation.P (I val) = P (I jV; arg1; arg2; : : : argn; them fit(V;Ri; argj) : 8i 2 Roles(frame))= P (I jframe(V ); them fit(Rijargj ; V ) : 8i 2 Roles(frame); j 2 Syncat(frame)

(42)

The first two conditional independence assumptions result in the middle layer of Figure 12 and the final depen-
dence is captured by the bottom layer in Figure 12. We now turn to how this Bayes network is used to model the
lexical/thematic dependencies for the studies reported in this paper.

Figure 13 and Figure 14 show the Bayes net for the lexical and valence probability computations for the McRae
et al. (1998) data. Figure 13 (top row) shows the structure and probabilities encoded. In general we quantify the
semantic fit (Agent or Theme) based on the identity of the verb and the syntactic category argument (subject, object,
etc.) We also quantify the argument structure (transitive or intransitive) preference (bias) based on the identity of the
verb. HereArg1 is the Subject NP andArg2 is the by Prepositional PhrasebyPP . The networks at the bottom row
show the MC (left network) and RR (right network) for the input “Thewitness examined by the lawyer turned out to
be unreliable” at different stages of the input.

In all these cases, the node labeledV (the root node of the semantic Bayes net) represents a variable that ranges
over the set of verbs. For a particular verb (likearrest), this node would set to a particular value (V = arrest). The node
labeledFrame has values [transitive, intransitive]. The conditional probability values quantify the probability that
theFrame node has a specific value (trans, intrans)given the identity of the verb (such as arrest, examine race). So
if the domain of interest were restricted to the three verbs (arrest, examine and race) , the table entries for theFrame
node would be as follows in the second column of Table 1 below. The various thematic fit conditional probability
distributions are shown in the third column of the table.

As input comes in, more of the lexical/thematic network gets instantiated (moreargi nodes have values) and the
fit of the new potential argument nodes to frame/thematic roles can be computed. As in other models (Gildea and
Jurafsky 2001), we assume an enumerated set of possible thematic roles sometimes aggregating over these roles with
theOTHERvalue for the fit (as shown in Figure 14). As in the case of Bayes net modelof syntax (SCFG), input coming
in allows for the re-estimation of posterior probabilities for the different interpretations.

Table 1 and Table 2 show examples of parameters encoded in the lexical Bayes net inFigure 13. Table 1 pertains
specifically to the network in Figure 13. In our model, different interpretations impose constraints on the network.
We evaluate the constrained networks to compute the total posterior for a particular interpretation. The bottom left
and bottom right networks in Figure 13 specify the constraints for theMC andRR interpretations respectively. For
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Figure 13: The Lexical/Thematic Bayes net for valence for the Mcrae MC/RR example. The bottom left shows
the network computation for the MC interpretation and the bottom right the network for the RR interpretation. The
networks are shown for the input The witness examined . . . . The arg2 node is yet to be instantiated and so has no
values assigned. The two competing interpretations condition the lexical network (shown unconditioned on the top
figure) with different constraints. For instance MC interpretation requires that the Subject NP be the Agent. These
conditioned values are shown in boldface font. The overall posterior iscomputed based on the network parameters
and the conditioning values.P (I)t P (FramejV) P (FitjV;Subj)P (I =MC) P (transitivejverb=arrest) P (Fit=Agentjsubject=crook,verb=arrested)P (I = RR) P (intranstivejverb=arrest) P (Fit=Themejsubject=crook,verb=arrested)P (I =MC) P (transitivejverb=examine) P (Fit=Agentjsubject=witness,verb=examine)P (I = RR) P (intransitivejverb=examine) P (Fit=Themejsubject=witness,verb=examine)P (I =MC) P (transitivejverb=race) P (Fit=Agentjsubject=horse,verb=raced)P (I = RR) P (intransitivejverb=race) P (Fit= Themejsubject=horse,verb=raced)
Table 1: Constraints on parameters for the lexical valence probability computation for different interpretations (MC
and RR). The table above shows the lexical valence structures for the sentences The crook arrested . . . , The witness
examined . . . , and The horse raced . . .

instance,MC requires the subject NP to be anAgent, whileRR requires that theFrame variable be set to the valuetransitive and the subject NP to be aTheme. TheMC interpretation could either have a transitive or intransitive
frame, so there is no constraint imposed on the subcategorization frame for this interpretation.

How do these constraints play a role in the evaluation of the networksto compute the posterior support for the two
interpretations (MC andRR)? To illustrate this, we now go through a simplified evaluation ofthe two networks to
compute theMC andRR posteriors after the input “The witness examined” (see Figure 13, bottom row). For theMC
interpretation, the thematic posterior,MCtthm (t is the index into the specific stage where the posterior is computed
(after “NP V”)) is6P (V;Arg1 = Subj; F rame; F it(Arg1; V ) = AgentjV = examine; Subj = witness) =P (Fit = AgentjV = examine; Subj = witness) XFrame(FramejV = examine) =P (Fit = AgentjV = examine; Subj = witness) (43)

(44)

6For ease of exposition, we don’t consider the yet unseen arg,Arg2. It’s effect on the posterior at this stage is the same for thetwo interpretations.
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Figure 14: Bayes Nets for valence Probabilities for the McRae example at a later stage (compared to Figure 13 after
the “byPP” input has been processed. HereArg2 is the byPP for the input “by the lawyer” phrase. The bottom left
shows the network computation for the MC interpretation and the bottom right the network for the RR interpretation.
The networks are shown for the input The witness examined by the lawyer. . . . The by phrase and the second NP (the
lawyer) are additional input nodes that influence the thematic fit and the posteriors. For instance RR requires that the
second NP be the Agent.

TheMC interpretation does not constrain theframe, since it can apply to both transitive and intransitive verbs.
To take account for this fact, we sum over all it’s values. This summation (marginalizing over theframe variable) for
a given verb sums up to 1 and hence gets taken outof the final equation.

TheRR interpretation, however, requires the verb to be transitiveand the subject to be the theme. Hence, here we
have the two constraints (shown in boldface in Figure 13. With these, constraints, the reduced relative interpretation
thematic posterior,RRtthm isP (V;Arg1 = Subj; F rame = transitive; F it(Arg1; V ) = ThemejV = examine; Subj = Witness) =P (Fit = ThemejV = examine; Subj = witness)� P (Frame = transitivejV = examine)

(45)

Our second study modeled the sentential complimentSC versus direct objectDO behavioral data reported in
Pickeringet al. (2000) (recall “The athelete realized her . . . ” examples from the previous section and from the in-
troduction). Table 2 shows the parameters for the different interpretations (Sentential Complement (SC) and Direct
Object (DO)) after the input “the young athlete realized her potential”. Details of the network structure and model can
be found in Section 4.3.P (I) P (FramejV) P (FitjV;Subj)P (I = DO)t P (DO(frame)jverb=realize) P (Fit=Agentjsubject=athlete,verb=realized)P (I = SC)t P (SC(frame)jverb=realize) P (Fit=Themejsubject=athlete,verb=realized)P (I = DO)t+1 P (DO(frame)jverb=realize) P (Fit=Themejsubject=athlete,verb=realized,NP= her potential)P (I = SC)t+1 P (SC(frame)jverb=realize) P (Fit=Propositionjsubject=athlete,verb=realized,NP= her potential)
Table 2: Constraints on parameters for the lexical valence probability computation for different interpretations (DO and
SC). The table above shows the lexical valence structures for the sentencesThe young athlete realized her potential. . . at
two stages; one before and one after the NP “ her potential”.

25



2.2.7 Other estimators

Figure 5 shows our general architecture involving different evidentialsources (top-down and bottom-up) that con-
tribute different degrees of support for an interpretation. We described in detail three of the simplest estimators which
as we show in the following sections suffice to model important aspects of human sentence processing. Of course,
as we are able to investigate more subtle aspects of sentence and discourse processing, we fully expect (indeed as
Figure 5 suggests), other estimators including discourse and deeper semantic sources to become increasingly neces-
sary and important. We further believe that these sources exhibit significant structure and the techniques for building
structured estimators (as for the syntactic and lexical/thematic sources)and combining them (described in the next
section) provide a flexible and natural framework to investigate theircontributions to language interpretation. We (and
we hope others) will use our framework for adding new knowledge sources, making predictions about reading times
and other even finer-grained aspects and testing their validity experimentally.

2.3 Combining probability estimators

The last section outlined how we calculate the various probabilistic components (the syntactic, lexical valence, and
word N-gram) of our Bayesian model. Of course, all of these (and possiblyother) components have to be combined
to provide an estimate of the total posterior probability for a giveninterpretation.

In some cases, as with the SCFG, we have relatively complete models of theindependence assumptions between
probabilities. In other cases, for example between thematic and syntactic probabilities, we do not yet have a good idea
what the exact causal relationship is between probabilities.

Ideally, we would like the combination technique to be independent of the data domain, so we can avoid creating
one rule for the interaction of syntax with semantics and another for theinteraction of syntax with lexical valence and
yet another for the interaction of syntax with word N-grams etc.

Fortunately, there is a canonical and widely applicable model of probabilistic source combinations that works for
our purpose. The model is called aNOISY-AND model (Pearl, 1988) which is the method of choice when a member
of a set of several components (say the syntactic component) can cause a specificoutcome (in this case a specific
interpretation to be selected), and where the likelihood of the outcome is very high only when all the conditions prevail
simultaneously. TheNOISY-AND model (Pearl, 1988) is thus a causal independence assumption made in computing
the conjunctive impactof the multiple sources. Furthermore there is now good evidence from development studies
that this model seems to be an important inductive bias in causal learning inchildren (Cheng 1997).

TheNOISY-AND model makes the following two assumptions.

1. Accountability : An Event E is false if any of the causal factors is false.

2. Enabling Independence: If both conditions C1 and C2 can cause an Event E, then the mechanism that disables
the effect of C1 on E is independent of the mechanism that disables the effect ofC2 on E.

The NOISY-AND model is the probabilistic interpretation of the logical AND. In themodel, each parentXi, a
binary stochastic variable, is interpreted as the condition for the effectY (also a binary stochastic variable). So in the
case in Figure 15, the various parents are the different types of support for the competing interpretationsI1 andI2.7

TheNOISY-AND requires that the enabling effects to be independent. Let us assume that the effect of an individual
source,Si 2 S, is characterized by the enabling probabilitypsi = P (I = tjSi = t). Then, using theNOISY-AND

causal independence assumption, the interpretation is true to the extentthat the enabling sources (s) are active.P (I = T ) = YSi=t psi (46)P (I = F ) = 1� YSi=t psi
7There is also a generalized version ofNOISY-AND calledNOISY-MIN that allows for multiple (non-binary) interpretations to be simultaneously

considered.
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Figure 15: TheNOISY-AND Model to combine multiple conjunctive sources for an interpretationI .

So for a set ofm sourcess1 to sm(with a posterior probabilitiesP (S1 = t) : : : P (Sm = t), we have the following
equation.8 P (I = T ) = s=mYs=1 P (Si = t)� psi (47)

Notice that is we set uniform weights of1 for the influence of the individual sources(psi = 1;8si 2 S), the
equation above becomes a multiplication of the posterior probabilitiesof the individual sources.P (I = T ) = s=mYs=1 P (Si = t) (48)

For all the experiments described in this paper, we setpsi = 1.
In our model, we need to compute the posterior probability of each interpretationIi 2 (I1 : : : In). Since hu-

man parsing is incremental, we will need to re-compute this probability after each input stage, i.e. after each wordti 2 (t1 : : : tk). Thus the preferred interpretation at each stage is the interpretation whichmaximizes this posterior
probability. In other words, the preferred interpretation at timet, I�t, is:P �(It) = argmaxi2interpretations

P (Iti ) (49)

How are each of these posterior probabilities of parses computed? The posterior probability is aNOISY-AND of
all the different types of support for the interpretation (includinglexical, syntactic and valence support). Lets range
over them various types of support for an interpretation;s 2 (syntax; lexical; valence), m = 3. ThenP (Iti ), the
probability of an interpretationi, can be computed as follows:P (Iti ) = Qs=ms=1 ItisPj=nj=1 Qs=ms=1 Itjs (50)

In other words, for each type of evidential support for an interpretation we separately compute the probability of
the interpretation given that support, and then sum and normalize.

8Recall that in our sentence processing model the posterior probabilities of the various sources are the output probabilities of the estimators
described in the previous section.
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How are the probabilities given each of these types of evidence computed? We’ve discussed 3 types of evidence:
lexicalN -gram, syntactic, and valence. The posterior probability given each kind of evidence can be expressed as
follows: P (Itilex

) = P (Iti j(ngram-model)w1; w2; :::; wt) (51)P (Itisyn) = P (Iti j(syntactic-model)w1; w2; :::; wt) (52)P (Itival
) = P (Iti j(valence-model)w1; w2; :::; wt) (53)

(54)

To summarize, the best interpretation at timet, P �(It), can be computed as:P �(It) = argmaxi2interpretations

P (Itilex
)� P (Itisyn)� P (Itival

)Pj=nj=1 Qs=ms=1 Itjs (55)

Thus the preferred interpretation is the one which has the maximum posterior probability given all the evidence.

3 The Predictions of our Model

The previous section described how the model assigns probabilities todifferent parses of sentences. In this section
we describe how the probabilities, and the on-line updating of theseprobabilities as each new word is read, affect
behavioral performance.

The first kind of behavior that the model predicts is parse preference. As the previous section described, the
preferred interpretation is the one which has the maximum posterior probability given all the evidence. The previ-
ous section also described how this probability is computed. Thus the prediction of the model is that the preferred
interpretation at any point in the processing of a sentence is the interpretation with the highest posterior probability.

The remainder of this section focuses on a further behavioral prediction:processing time. We will describe two
predictions about how long it takes to read words or phrases in the context of particular ambiguities.

3.1 Reading time: the role of the Expectation principle

Our first reading time prediction has already been sketched in Equation 22 in the introduction, and is based on the
expectation principle. This principle states that the parser implicitlymaintains probabilistic expectations about up-
coming words and structure, and that the parser assumes that future wordswill be consistent with these probabilities.
Words which violate these expectations produce increased reading time.

Equation 22, repeated below as equation 56, gives the heart of the proposal.

reading time(word) / 1P (wordjcontext) (56)

In order to operationalize this proposal, we have to flesh out the termP (wordjcontext). The conditional probability
of a word given the previous context can be expressed as follows:P (wijw1; w2 � � �wi�1; parsetree(w1; w2 � � �wi�1); valence(w1; w2 � � �wi�1)) (57)

Following (Hale, 2001), we can use the definition of conditional probability to re-write this equation for conditional
probability as the ratio of two joint probabilities. This rewritemakes it clear that the conditional probability of a word
given the context is related to thechangein probability caused by the introduction of a new word. As in the previous
section, we useP (It) to mean the probability of interpretationI at timet:
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P (wijw1; w2 � � �wi�1;
parsetree(w1; w2 � � �wi�1);

valence(w1; w2 � � �wi�1)) = P (w1 : : : wi)P (w1 : : : wi�1)= P (It)P (It�1) (58)

Thus the conditional probability of a word can instead be expressed as a ratio of two probabilities: the probability
of interpretationI at timet divided by the probability of interpretationI at timet� 1. But this equation relies on the
simplifying assumption that each sentence only has one interpretation. Of course this isn’t true, and since our model
has a parallel architecture, more than one interpretation may be maintained at anytime. Recall from the previous
section that we therefore need to compute the posterior probability of eachinterpretationIi 2 (I1 : : : In) for each
input stageti 2 (t1 : : : tk), and then combine these via NOISY-AND:P (Iti ) = Qs=ms=1 ItisPj=nj=1 Qs=ms=1 Itjs (59)

wheres ranges over them various types of support for an interpretation;s 2 (syntax; semantics; lexical; thematic).
How does the ration of probabilities we have discussed lead to a claim about processing time? Let us define a

variable corresponding to the change in probability caused by the introduction of a new word, called�, and allow in
its definition the possibility of multiple interpretations:�(Iit ) = P (Iti )P (It�1i ) (60)

We can now give a flesh out the intuition of Equation 56 as follows:

ProcessingTimeExpectation� ��(Iit ) (61)

3.2 Reading Time: the role of the Attention Principle

The second reading time prediction comes from the Attention principle, which states that although the comprehension
mechanism may keep multiple parallel interpretations, that the attentional focus is on the most-probable interpretation.
Any time this highest-ranked interpretation drops from its high position, the surprise causes a longer reading time. One
way that a re-ranking can cause a processing delay is when a new word is read whichlowers the probability of the
first interpretation more than the second-ranked interpretation, causingthe two to become reordered, or ‘flipped’ in
preference. Since the first interpretation has attentional focus, attention must shift whenever some other interpretation
replaces this one, causing a processing delay.

The mathematical definition of reordering is quite simple. Recall thatP �(It), the most preferred interpretation at
time t, is defined as the interpretation which has the maximum posterior probability:P �(It) = argmaxi2interpretations

P (Iti ) (62)

A reordering is then defined as a change in preferred interpretation:P �(It) 6= P �(It�1) (63)

Any reordering of this kind causes a reading time increase. What is the magnitude of this increase? The expectation
principle predicts a reading time increase proportional to the change inprobability mass,�(Iit ). What additional
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increase in processing time should be accounted for by the reordering? Wecan’t know the amount of this increase in
advance, but we make the simplifying assumption that it is a linear function of the expectation-based reading time.
Letwflip be a weight which indicates the additional increase do to reordering. The following equation then gives our
prediction for the impact on processing time.

ProcessingTimeReordering �=8<: �wflip � �(Iit ); if P �(It) 6= P �(It�1)��(Iit); if P �(It) = P �(It�1)
While we are not able in this paper to exactly determine the proper value forwflip, we will show later that simply

settingwflip to 2 accurately accounts for behavioral results.

4 Motivating Examples: preference handled by a probabilistic model

Before we turn in the next two sections to test our probabilistic model against behavioral results from (McRaeet al.,
1998) and Pickeringet al.(2000), we use this section to show how the probabilistic model can be used to explain parse
preferences due to probabilistic structure. We choose two simple example; preference due to morphological category
probability, and preference due to syntactic category probability.

4.1 Morphological Category Probability

We know that the frequency of words and in particular of the different morphological or syntactic categories of a word
plays a role in parse preference. For example Burgess and Hollbach (1988) and Trueswell (1996) studied words such
assearchedandselected, which are ambiguous between a preterite (simple past) and a participle reading (sometimes
called the VBD/VBN ambiguity after the respective names for the preterite and participle part-of-speech tags in the
Penn Treebank tagset). Verbs likeselectedare more likely to be a participle, whilesearchedis more likely to be a
simple past, as shown in the following table:

Selected: 89% participle, 11% simple past
Searched: 22% participle, 78% simple past

Trueswell (1996) showed that these more fine-grained lexical category probabilities play a role in the disambigua-
tion of main verb/reduced relative ambiguities. He did this by embeddingthese verbs in sentences which have a local
ambiguity. Each sentence had an initial word sequence likeThe room searchedwhich is syntactically ambiguous
between a relative clause reading (compatible with the participle form) anda main-verb reading (compatible with the
simple past). Trueswell found that verbs with a frequency-based preference for the simple past form caused readers
to prefer the main clause interpretation (as measured by longer reading time for a sentence which required the other
interpretation such as (64)):

(64) The room searched by the police contained the missing weapon.

This suggests that the frequency with which the different morphological categories of a verb occur plays a role in
whether one syntactic parse is preferred or not.

How does the Bayesian model handle the results of Trueswell (1996), thatshowed an effect of lexical category
frequency on preference? The fact that, for example, the wordselectedis more likely to be a participle than a simple
past, whilesearchedhas the opposite preference, is handled in our model by the probabilistic syntactic grammar. In the
SCFG, this is represented by the fact thatP(VBNjselected)is higher thanP(VBDjselected). The SCFG tree structure
includes the likelihood P(selectedjVBN); we can use Bayes rule on the SCFG structure to compute the properposterior
(counts are again from the Brown corpus):P (V BN jselected) = P (selectedjV BN)P (V BN)P (selected) = :0022 � :029=:000071 = :90 (65)

30



P (V BDjselected) = P (selectedjV BD)P (V BD)P (selected) = :00015 � :047=:000071 = :10 (66)

(67)

The SCFG structure thus lets us compute that the posterior probability of selectedbeing a participle (VBN) is thus 9
times higher than its probability of being a preterite (VBD).

4.2 Syntactic Structure Probability

There is also evidence that the probability of larger (supralexical) syntactic structures plays a role in processing.
We saw earlier that McRaeet al. (1998) used the low probability of the reduced relative structure, as compared
with the main clause structure, as part of their model of reduced relative clause difficulty. In this section we briefly
explore another kind of ambiguity: sentences beginning with an embeddedsentential subject, which are known to
cause processing problems. For example, the wordthat is ambiguous between a determiner and a (more frequent)
complementizer. Consistent with work described above on lexical category frequencies, Juliano and Tanenhaus (1993)
found thatthat is interpreted most easily as a complementizer after verbs. But sentence-initially, when interpreting
the the wordthat as a complement would require an embedded sentential subject,that is instead interpreted as a
determiner.

In the following sentences from Juliano and Tanenhaus (1993), for example, readers incorrectly parse the wordthat
as a complementizer in 68, causing an increase in reading time at the worddiplomat. Similarly, readers incorrectly
parse the wordthatas a determiner in 68, causing an increase in reading time at the worddiplomats in (71). Sentences
that are compatible with readers preferences are underlined.

(68) The lawyer insistedthatexperienceddiplomat would be very helpful

(69) The lawyer insistedthatexperienceddiplomats would be very helpful

(70) Thatexperienceddiplomat would be very helpful to the lawyer.

(71) Thatexperienceddiplomats would be very helpful made the lawyer confident.

The SFCG model successfully predicts Juliano and Tanenhaus’s (1993) result that the wordthat tends to be in-
terpreted as a complementizer after a verb, but as a determiner at the beginning of a sentence. The dispreference for
an initial complementizer, for example, follows from the very low probability of rules like S!SBAR VP. This rule,
corresponding to a sentential subject of the main clause, has an extremely lowprobability (.00065). Partial SCFG
parses for the four sentences are shown in Figures 4.2– 19.

S

VP [.033]

S-BAR [1.00]

NP S

NP [.0016]

Det Noun VBD Comp [.52] VBN Noun

The lawyer insisted that experienced . . .

Figure 16:
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S

VP [.042]

S

NP NP [.0071]

Det Noun VBD Det [.045] VBN Noun

The lawyer insisted that experienced . . .

Figure 17:

S

NP [.0071] . . .

Det [.045] VBN NN

That experienced . . .

Figure 18:

In each of these two pairs of parses, we have shown the rule probabilities only where the rules are different across
parses. For example, and show the initial parse fragments for the two possible parses of the sentence fragmentThe
lawyer insisted that experienced. . .. At this point, the parse trees only differ in 7 rules. We have augmented the tree
with the probabilities for each of these rules. Our model’s preference forthe parse in whichthat is a COMP can be
computed by multiplying the probabilities of the various rules thatare unique to each parse.

P(parse in which that = COMP) = .033 * .52 * .0016 = .000027456
P(parse in which that = DT) = .042 * .0071 * .045 = .0000134190

Similarly, Figure 18 and Figure 19 show the initial parse fragmentsfor the two possible parses of the sentence
fragmentThat experienced. At this point, the parse trees only differ in 6 rules. (the second parse, in whichthat is a
COMP, is more complex, with 2 more rules than the first parse). Once again, we have augmented the tree with the
probabilities for each of these rules. In this case, our model assigns a higher probability to the parse in whichthat
is a DT (Determiner). This probability can be computed by multiplyingthe probabilities of the various rules that are
unique to each parse.

5 Study One: The Main Clause/Reduced Relative Ambiguity and McRae
et al. (1998)

The results in the previous section sketches the intuitions of how our probabilistic model is accounts for qualitative
results on disambiguation preference. In this section we test the model more carefully by seeing if can account for
the results of a comprehensive reading time experiment. As described earlier, we chose to model the data collected by
McRaeet al.(1998) for two reasons. First, it is crucial to show that our model can handle a wide variety of well-studied
cases of ambiguity, and the MC/RR is perhaps the most-studied case. Second,the (McRaeet al., 1998) study provides
a model for their results based on their own competition-based model. Since they provide the norms and counts that
their model is trained on, this allows us to compare more directly againsttheir model.
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S [.00065]

SBAR [1.0] . . .

Comp [.52] S

NP [.0016]

VBN NN

That experienced . . .

Figure 19:

5.1 The Model and the Input Probabilities

The model is based on the Bayes net described in Section 4. The parameters thus consist of the structure of the net
expressing probabilistic independence assumptions, and the probability tables associated with the net. The overall
structure of the combined lexical-thematic and syntactic networks for theMC vs. RR interpretations is shown in
Figure 20.

As shown in Figure 20, there are two Bayes nets computing the semantic and syntactic fit of the input sentence to
the different possible interpretations.

1. The column on the left in Figure 20 computes the support providedby the thematic role and semantic fit for the
two interpretations (the Main Clause (MC) (top row) and Reduced Relative (RR)(bottom row)). The structure
and parameters of this (sem) network are similar to the one shown in Figure 8.

2. The column on the right in Figure 20 computes the support provided by the syntactic parses of the input sentence
for the two interpretations (the Main Clause (MC) (top row) and Reduced Relative (RR) (bottom row)). The
structure and parameters of this (syn) network are similar to the one shown in Figure 7.

The combined evidence for a particular interpretation is obtained by taking the NOISY-AND that estimates the
conjunctive support of the different sources.

The various parameters of the network in Figure 20 are the conditional probabilities both for the syntactic and the
valence/subcategorization networks. The syntactic probabilities are computed based on an SCFG grammar and the
network structure and computations for the SCFG parse are explained inSection 2. The probabilities are described in
Table??. For the valence network, we used the probability of the initial NP being an Agent (Patient) given the verb
and initial NP P(Agent (Patient)jverb, initial NP). These numbers were obtained from the norming studies reported in
McRaeet al. (1998).

The first row in Table 3 expresses the probabilistic constraint that the word “cop”(for example) is an agent, given
that the verb is “arrested”. The second row constraint expresses the probability that it is a patient. For both these,
we used the norming study reported in McRaeet al. (1998), where subjects rated the plausibility of the word “cop”
as an agent and as a patient of the predicate arrest on a scale of1 to 7. We used the norming scale as a conditional
probability. So, if the agent was rated4 on the scale, we took the P(Agentjverb, initial NP) in that case to be4=7. In
general, when we had norming study data, we used this approximation to conditional probabilities.

The third and fourth constraints express the probability that the ”-ed” form of the verb is a participle versus a
simple past form (for example P(Participlej“arrest”)=.81). These were computed from the POS-tagged British National
Corpus. Verb transitivity probabilities were computed by hand-labeling subcategorization of 100 examples of each
verb in the TASA corpus. (for example P(transitivej“entertain”)=.86). Main clause prior probabilities were computed
by using an SCFG with rule probabilities trained on the Penn Treebank version of the Brown corpus. Section 3 and
Section 5 detail the SCFG probability calculation procedure.

Appendix C summarizes the Good Agent, Good Patient probabilities (from the norming study), the transitive
versus intransitive bias at the specific verb and the Simple Past (needed for the Main Verb interpretation) versus Past
Participle distinction calculated for the40 verbs in the McRae study.
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Figure 20: A Bayes net combining SCFG probabilities (syn)with subcategorization, thematic (thm), and other lexical
probabilities to represent support for the main verb (MC) and reduced relative (RR) interpretations of a sample input.

From the parameters, for each sentence in the McRae data, we compute the lexical,semantic and syntactic support
for the two interpretationsMC andRR. For each stage in the input

At the initial NP (ex. the witness),
At the verb (ex. examined),
At the preposition (ex. by),
At the second NP (ex. the lawyer),

our model computes the following entitiesP (MCtjsyn); P (MCtjsem); P (RRtjsyn); P (RRtjsem) (72)

Our model computed the SCFG based syntactic probability and the thematicand semantic fit probabilities for theMC andRR interpretations at different points in the input. These probabilities were then combined using theNOISY-
AND function described in the previous section. So, for each input stage, we computed the posterior value for theMC
andRR interpretation given the syntactic and the thematic/semantic support.

5.2 Model results

We tested our model on sentences with the40 different verbs in McRaeet al.(1998). For each verb, we ran our model
on sentences with Good Agents (GA) and Good Patients (GP) for the initial NP. Our model results are consistent
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Data Source
Valence Probabilities

Valence Probabilities for the Subject NP
P(Agentjverb, initial NP) McRaeet al. (1998)
P(Patientjverb, initial NP) McRaeet al. (1998)
P(transitivejverb) TASA corpus counts
P(intransitivejverb) TASA corpus counts

Valence Probabilities for the PP Agent
P(RRjinitial NP, verb-ed, by) McRaeet al. (1998) (.8, .2)
P(RRjinitial NP, verb-ed, by,the) McRaeet al. (1998) (.875. .125)
P(Agentjinitial NP, verb-ed, by, the, NP) McRaeet al. (1998) (4.6 average)

SCFG Probabilities
P(MCj SCFG prefix) SCFG counts from Penn Treebank and BNC
P(RRj SCFG prefix) SCFG counts from Treebank and BNC
P(Participlejverb) SCFG counts from Treebank and BNC
P(SimplePastjverb) SCFG counts from Treebank and BNC

Table 3: Source of probabilities for our model

with the on-line disambiguation studies with human subjects (humanperformance data from McRaeet al.(1998)) and
show that a Bayesian implementation of probabilistic evidence combination accounts for garden-path disambiguation
effects. We first walk through how the model assigns probabilities to two sentences. We then test the Bayesian model
against the behavioral results on sentence completion from McRaeet al.(1998). Finally, we test our model against the
behavioral results on reading time from McRaeet al. (1998).

5.2.1 Walking through the assignment of probabilities to two sentences

Table 5.2.1 refers to the assignment of probabilities by our model to the two sentences:

(73) Thewitness/ examined by / the lawyer / turned out / to be unreliable.

(74) Theevidence/ examined by / the lawyer / turned out / to be unreliable.

Examine Init NP verb-ed by the agent NPP ((MC)=P (RR)jGA) 2.91 1.729 .432 .062 .01P ((MC)=P (RR)jGP ) 0.47 0.201 .090 .039 .01

Table 4:P (M)=P (R) results of the model on example sentences “Thewitnessexamined by the lawyer turned out
to be unreliable (Good Agent (GA)), and “Theevidenceexamined by the lawyer turned out to be unreliable” (Good
Patient (GP)).

Shown in Table 5.2.1 is the ratio of the posteriors (P (MC=P (RR)) for the Main Clause (MC) and Reduced
Relative (RR) interpretations for the two sentences. The difference in the sentences is that in one case, the Subject NP,
witness, is animate (and hence a Good Agent (GA); while in the other case the subject NP,evidence, in inanimate and
hence a Good Patient (GP). The ratio of the posteriors is computed at various points in the input, such as at the initial
NP, the verb, after the preposition “by” and the determiner “the”, and at the agent N “lawyer”.� At the end of the initial NP, the MC interpretation is more2:9 times more likely as the RR interpretation for the

GA (the witness) and:47 times as likely for the GP (evidencecase.� At the main verb boundary (examined) the ratio of the posteriors changes to be (P (MC)=P (RR) = 1:73) for
the GA sentence and (P (MC)=P (RR) = :20) for the GP sentence.
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� At the next stage, which is the “by” phrase, our model continues the expected trajectory for the GP sentence and
theMC interpretation continues to decrease from being20% as likely as theRR interpretation to being10%
as likely. For theGA sentence, however, we see an expectation violation, in both a sharp decline for theMC
interpretation as well as a demotion of the best interpretation; aflip in preference for the two interpretations.� At the verb boundary theMC interpretation was the prefered one (1:73 : 1). After the “by” phrase is encoun-
tered, the prefered interpretation changes toRR and theMC interpretation is now only half as likely as theRR
interpretation. Thus based on the posterior probabilities, there is anviolation of expectation. The best inter-
pretation has become disprefered and the second-best interpretation is now the leading candidate interpretation.
Thus our model predicts reading time difficulty for the GA sentence at the“by” phrase and none for the GP
sentence.

5.2.2 Modeling the Sentence Completion Study of McRaeet al. (1998)

0
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MV/RR

NP verbed   by  the  NP

Model Good Agent Human Good Agent Model Good Patient Human Good Patient

Figure 21: Human sentence completion results (MC counts/RR counts) andmodel predictions (P(MC)/P(RR) for the
McRaeet al. (1998) sentence completion data.

Figure 21 shows the predictions of our model as well as the human sentencecompletion data from the McRaeet al.
(1998) experiment. The human and model predictions were computed at fourstages:

1. theverb(The crook arrested),

2. by (The crook arrested by),

3. the(The crook arrested by the)

4. the Agent NP (the crook arrested by the detective).

For the human data, the Y axis in Figure 21 shows the ratio of sentence completion count (MC counts/RR counts). For
the model, the Y axis in Figure 21 shows the ratio of probabilities P(MC)/P(RR).

The human data (the second and fourth bars at each word in Figure 21) showsa number of trends. First, thematic
fit clearly influenced this gated sentence completion task. Note that the Good Agent sentences have a higher MC/RR
ratio at the “NP verbed” stage than the Good Patient sentences . The model matchesthis difference. Next, at the
“by phrase”, the human data shows that the posterior probability of producing an RR interpretation increases sharply
(hence the MC/RR ratio drops). Thematic fit is at least one of the factors influencing this increase, since the Good
Agent MC/RR ratio is still higher than the Good Patient MC/RR ratio. Finally, both the model and the human data
reliably predict that after seeing the second NP, there is no chance of generatinganMC completion, since the MC/RR
ratio has gone to zero.
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5.2.3 Flips: A Qualitative correlate of reading time effects

Our model predicts a qualitative difference in reading times when there is areranking through demotion of the top
(highest posterior) interpretation to a lower rank. We refer to this situation as aflip. Figure 22 shows the change in the
posterior probability for theMC andRR interpretations for the Good Agent (GA) cases. The data is averaged over
the40 verb/GA sentences in the McRae data. The data shows the following effects

Average Good Agent (GA) MV and RR Posteriors at different input stages

0.68

0.09

0.32
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Figure 22: P(MC) and P(RR) for the ambiguous region showing a flip

1. At the initial NP phrase theMC interpretation is twice as likely as theRR interpretation. This reflects theSCFG structural probabilities prior to seeing the verb (not shown in figure).

2. At the verb boundary phrase theMC interpretation is still high (more than twice theRR interpretation). This
reflects the fact that although the verbs are likely to reflect a high transitive bias (favoring theRR interpretation),
the fact that the subject is a good agent continues to favor theMC interpretation. The combined effect is
reflected in the average posterior probability of theMC interpretation which is now only twice as probable as
theRR probability.

3. After the “by” phrase, things change a lot. Now we notice that theRR posterior is twice as high as theMC
posterior. This reflects theRR bias at the by phrase, where there is now a high probability that the initial NP
is assigned the theme (rather than the agent) role in the sentence and that the sentence is transitive. Both these
boost theRR posterior resulting in the situation shown in Figure 22.

4. Thus after the “by” phrase, there is aflip . The previously top ranked interpretation (MC) is now second ranked
and the previously second ranked interpretation (RR) is now the top ranked interpretation. Our model predicts
that such aflip correlates with an increased reading time effect.

Figure 23 shows the change in the posterior probability for theMC RR interpretations for the Good Patient (GP)
cases. The data is averaged over the40 verb/GP sentences in the McRae data. The results show the following effects.
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Figure 23: P(MC) and P(RR) for the ambiguous region for the GoodPatient (GP) case

1. At the initial NP phrase theMC interpretation is more than twice as likely as theRR interpretation. This
reflects theSCFG structural probabilities prior to seeing the verb.

2. At the verb boundary phrase theRR interpretation is on average slightly higher (P (MC) = :59). This reflects
the fact that both transitive bias of the verbs as well as the better thematicfit of the initial NP to the them
(favouring theRR interpretation).

3. After the “by” phrase, things change even more. Now we notice that theRR posterior is almost five times as high
as theMC posterior. This reflects theRR bias at 30 the by phrase, where there is now a much higher probability
that the initial NP is assigned the theme (consistent with the previous assignment) role in the sentence and that
the sentence is transitive. Both these boost theRR posterior resulting in the situation shown in Figure 23.

4. Thus after the “by” phrase, the previously top ranked interpretation(RR) continues to be the top ranked inter-
pretation receiving more syntactic and thematic/semantic support while the second ranked interpretation (MC)
continues to be second ranked. Hence in the good patient (GP) sentences, thereis no flip. Thus our model does
not predict increased reading time effects for GP sentences.

In summary, Figure 22 and Figure 23 show how the human reading time reduction effects (reduced compared to
control sentences) increase for Good Agents (GA) but decrease for Good Patients in the ambiguous region. This is
consistent with the reading time effect in the data in Figure 1. Our model predicts this larger effect from the fact that
the most probable interpretation for the Good Agent caseflips from the MC to the RR interpretation in this region.
No such flip occurs for the Good Patient (GP) case. In Figure 23, we see thatthe GP results already have theMCRR
ratio less than one (the RR interpretation is superior) while a flip occurs for the GA sentences (from the initial state
whereMCRR > 1 to the final state whereMCRR < 1. This finding is fairly robust (85% of GA examples) and directly
predicts reading time difficulties. In contrast, all (100%) of GP examples showno flip, and no reading time difficulty
is predicted for these examples.
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5.2.4 Quantifying the reading time effect

While aflip predicts increased reading time, can we quantify the magnitude of the effect? As we discussed earlier, we
know the absolute value of reading time is dependent on many factors, including word length, grapheme or phoneme
probability and transition probability, word imageability, punctuation, the specific location of the phrase on the text,
and a wide variety of individual differences in working memory, reading speed, and other factors. Our model of course
has no way to model these factors. Our model instead will attempt to capture only differences in relative reading time.

Equation (61), repeated here as Equation (75), shows our prediction forrelative reading time differences:

ProcessingTimeExpectation� ��(Iit ) (75)

More specifically, since any sentence has multiple interpretations, the total magnitude of the change in the proba-
bility mass from wordt� 1 to wordt is �(t) =Xi P (Iti )P (It�1i ) (76)

Thus our model predicts that the magnitude of the total change in conditional probabilities (summed over all
interpretations) should correlate with changes in reading time.

Figure 25 and Figure 26 show the reading time effects predicted by our model compared to the reading time effects
observed by McRaeet al. (1998). Both sets of values are re-normalized as described slightly later inthis section, and
so the graph shows only the correlation between our probabilistic predictions and reading time, by normalizing both
values and showing them on the same graph.

5.2.5 �(t) alone is insufficient: Flip has a specific effect

Predicting reading time difficulty with different methods
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Figure 24: Reading time difficulty predictions from delta(t) alone, flip alone and the combination of flip and delta(t)
(flip was weighted 2.0)
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Figure 25 and Figure 26 show that the correlation between our probabilistic predictions and reading time seems
reasonable; on average we do indeed predict the general locus of reading time increases.

But when we look at the correlation with individual sentences, we see a problem. We computed the�(t) values
for the ambiguous region in each of the 40 sentences in the input.100% (20/20) of the Good Patient (GP) items were
classified correctly; in each case the value of�(t) predicted no enhanced difficulty at reading the “by” phrase. But
only 12 of the 20 Good Agent (GA) (60% of GA) cases were classified correctly; (i.e., the value of�(t) only predicted
enhanced reading times at the “by” phrase60% of the time). Thus the overall classification accuracy using just the�(t) values is80% ( 20+1240 = :8). The first column of the bar chart in Figure 24 shows this result.

Thus the Expectation principle by itself is insufficient to explain the reading time results from (McRaeet al., 1998).
Could the Attention principle predict the results? Suppose we madea simple prediction that any sentence with a flip
caused a reading increase. Figure 24 shows the resulting reading time difficulty prediction when we just looked at
which of the40 sentences flipped at the “by” phrase. In this case, we found all 20 of the GP cases (100% of GP) did
not show a flip, while 17 out of 20 of the GA cases (85% of GA) flipped and thus predicted reading time difficulty.
Thus just looking at the cases of flip alone, we had an overall classification accuracy of92:5% ( 17+2040 = :925). The
second column of the bar chart in Figure 24 shows this result.

Neither of these models accounts for all of the data. We instead applied the model we introduced in the introduc-
tion, repeated here as (77).

ProcessingTimeReordering �=8<: �wflip � �(Iit ); if P �(It) 6= P �(It�1��(Iit); if P �(It) = P �(It�1
This equation combines the expectation and attention principles by makinga combined prediction for reading

time increases, using a single weightwreorder. Figure 24 shows the reading time difficulty predictions when we setwreorder to 2, which corresponds to weighing data points that exhibited a flip ascontributing double to the reading
time increase. This combined model of flip and�(t) explains all the data point, with an overall classification accuracy
of 100% ( 20+2040 = 1). The third column of the bar chart in Figure 24 shows this result.

We experimented with a few parameter settings for weighting the flip data.The best results were obtained for
values in range (1.2 3) (1:2 < wflip < 3). The results shown here use a value roughly in the middle of that range (2).
While our model of this data thus suggests that a flip causes additional reading time beyond the normal expectation
violation based on�(t), we will need more data to properly quantify this enhanced reading time effect. The next
section details our reading time results with the combination of�(t) and flip metric (wflip = 2).

5.2.6 Reading time results with the combined (�(t) + flip) metric

For our final set of reading time models, we attempted to model the difference between the reduced (“The cop exam-
ined”) versus unreduced (“The cop that was examined”) reading times at each of the stages in the input. Again, since
our model does not predict absolute values of reading time, we compared the magnitude of the change in conditional
probabilities with the percentage of the reading time effect at a particular input stage. To compute the scaled reading
time effect in the data, we measured the percentage of reading time effects at a given stage from the McRaeet al.
(1998) data (Figure 5 from McRaeet al. (1998)). For example, if the total reading time effect was 100 ms (over all
stages) and the the particular stage (say at the verb) was 20 ms. then the percentage contribution of that stage was
computed to be20100 = :2.

To compute the reading time effect as predicted by the model, we calculated the percentage of the total change in
conditional probabilities weighted by the flip weight (of 2) (summed over all interpretations at all stages) contributed
by a particular input stage. For instance, the total change was 10, and the change contributed by a particular stage was
2, then the model predicts an effect of magnitude210 = :2 for that stage.

Figure 25 shows the reading time effect for the Good Agent (GA) sentencespredicted by the model compared to
the McRae reading time data. The results are averaged over the 40 verb/GA sentence pairs in the McRae data. In each
case, the posterior probability was computed for the reduced (NP verb) at different stages of the input. The total effect
was summed over the ambiguous region of the input (Initial NP + verb,PP, Second NP). The scaled effects were then
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Figure 25: Reading time effect for GA sentences in the ambiguous region comparing the model predictions to data
from McRae

computed quantifying the magnitude of an individual stage. The readingtime effect from the data was computed as
described above and scaled to 1.

In Figure 25 we see a fairly close match between the scaled human performance data and the model predictions of
the reading time effects. In this case, the following facts emerge from Figure 25.

1. At the verb boundary (X-ed) we find on average a low reading time effect Thus the model is more likely to show
an reduced reading time (compared to the unreduced case) at the verb boundary for the good agent case. In the
model roughly:14 of the magnitude of the reading time effect was at this input stage. This is consistent with the
human performance data in McRaeet al. (1998). The scaled (to 1) value for the human data shows an effect of
around:2.

2. After the “by” phrase, we find on average anenhancedreading time effect. Thus the model is more likely to
show an enhanced reading time (compared to the unreduced case) after the “by” phraseboundary for the good
agent case. In the model roughly:43 of the magnitude of the reading time effect was at this input stage. This is
consistent with the human performance data in McRaeet al. (1998). The scaled (to 1) value for the human data
shows an effect of around:38.

3. Consistent with the previous observation, at the second NP phrase,we find on average anenhancedreading
time effect. Thus the model is more likely to show an enhanced reading time (compared to the unreduced case)
after the second NP phrase boundary for the good agent case. In the model roughly :43 of the magnitude of the
reading time effect was at this input stage. This is consistent with the human performance data in McRaeet al.
(1998). The scaled (to 1) value for the human data shows an effect of around:42.

Figure 26 shows the reading time effect for the Good Agent (GA) sentencespredicted by the model compared to
the McRae reading time data. The results are averaged over the 40 verb/GA sentence pairs in the McRae data. In
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Figure 26: Reading time effect for GP sentences in the ambiguous region comparing the model predictions to data
from McRae

each case, the posterior probability was computed for the reduced (NP verb) with the unreduced (NP that was Verb) at
different stages of the input. The total effect was summed over the ambiguous region of the input (Initial NP + verb,
PP, Second NP). The scaled effects were then computed quantifying the magnitude of an individual stage. The reading
time effect from the data was computed as described above and scaled to 1.

Again we see a fairly close match between the scaled human performance data and themodel predictions of the
reading time effects. In this case, the following facts emerge from Figure26.

1. At the verb boundary (X-ed) we find on average the reading time effect ishighest. Thus the model is more
likely to show anenhancedreading time (compared to the unreduced case) at the verb boundary for the good
patient case. In the model roughly:55 of the magnitude of the reading time effect was at this input stage. This
is consistent with the human performance data in McRaeet al. (1998). The scaled (to 1) value for the human
data shows an effect of around:67.

2. After the “by” phrase, we find on average a reduced reading time effect. Thusthe model is less likely to show
an enhanced reading time (compared to the unreduced case) after the “by” phrase boundary for the good patient
case. In the model roughly:35 of the magnitude of the reading time effect was at this input stage. This is
consistent with the human performance data in McRaeet al. (1998). The scaled (to 1) value for the human data
shows an effect of around:3.

3. After the second NP phrase, we find on average a much reduced reading time effect. Thus the model is much
less likely to show an enhanced reading time (compared to the unreduced case) after the second NP phrase
boundary for the good patient case. In the model roughly:1 of the magnitude of the reading time effect was at
this input stage. This is consistent with the human performance data inMcRaeet al. (1998). The scaled (to 1)
value for the human data shows an effect of around:03.
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5.3 Summary of Results for Study One

In summary, our model for the McRae data shows the following effects.

1. As in McRaeet al.(1998) the data shows that thematic fit clearly influenced the gated sentence completion task.
The probabilistic account further captured the fact that at theby phrase, the posterior probability of producing
an RR interpretation increased sharply, thematic fit and other factors influencedboth the sharpness and the
magnitude of the increase.

2. Our model predicts this larger reading time effect (see Figure 1) for the Good Agent(GA) sentences from the
fact that the most probable interpretation for the Good Agent caseflips from the MC to the RR interpretation in
this region. No such flip occurs for the Good Patient (GP) case. In Figure 23, we see that the GP results already
have the MC/RR ratio less than one (the RR interpretation is superior) while a flip occurs for the GA sentences
(from the initial state where MC/RR> 1 to the final state where MC/RR< 1). This finding is fairly robust
(85% of GA examples) and directly predicts reading time difficulties.

3. Our model shows that the magnitude of the reading time effect is correlated toboth a) the magnitude of change of
the conditional probabilities and b) the flip effect. The size of reading time effect at any stage is thus predictable
from modulating the the change in conditional probabilities (summedover all interpretations) whenever there is
a flip at that stage. Intuitively, this is consistent with the flip theory and offers a quantitative model for predicting
reading time effects.

6 Study Two: The DO/SC Ambiguity and Pickering et al. (2000)

The previous section showed that the Bayesian model, via the Expectationand Attention principles. was able to
account for the variation in reading-time across the processing of the main clause/reduced relative ambiguity shown
by (McRaeet al., 1998). As we saw in the introduction, however, no previous probabilistic model has been able to
model both the (McRaeet al., 1998) results and the (Pickeringet al., 2000) results on the direct object/sentential
complement (DO/SC) ambiguity. Besides the importance of testing our model on more than one class of ambiguity,
the (Pickeringet al., 2000) study is important also because their results have been interpreted as a direct argument
against frequency-based models of any sort. Accounting for these resultsis thus a crucial test of our model.

6.1 The data

Recall that Pickeringet al.(2000) studied DO/SC ambiguities in which the post-verbal noun was animplausible direct
object of the verb, likeexercisesbelow:

(77) The young athlete realized her potential one day might make her a word-class sprinter.

(78) The young athlete realized her exercises one day might make her a word-class sprinter.

Pickeringet al. (2000) showed that reading time was delayed on the phraseone dayafter the implausible direct
objecther exercisesbut not after the plausible direct objecther potential. In other words, reading time on the phrase
one daywas higher in 78 than after 77. Since the verbs (likerealize) were S-bias verbs, as shown in norming studies,
this implies that a further reduction in plausibility of the less-plausible interpretation caused a reading-time increase.

Their materials were based on 6 verbs (admitted, examined, decided, hinted, implied, and pretended) and 16
sentence-pair items such as the one above. In order to norm the verbs, (Pickering et al., 2000) had participants
complete sentences with them, both in isolation and with a subject noun phrase. In the second test only subject-verb
completions that produced twice as manySC asDO completions were used in the reading time study. The plausibility
norming study asked subjects to assign a number from0 to 7 for various postverbal noun phrases (such as potential or
exercises above). For plausible NPs (potentialin “The young athlete realized her potential.”), the lower bound was5
or higher (out of7). For implausible NPs (exercisesin “The young athlete realized her exercises”), the NP was used if
the plausibility rating was2 or lower (out of7).

43



6.2 The model

Our model predicts two ways that a probabilistic model can explain increasedreading time: a low probability as-
signment to the next word (equal to a large change in probability mass�(t)), or a ‘flip’, i.e. a demotion of the best
interpretation.

The parameters of the model were set from the norming data computed by Pickeringet al. (2000), consisting of:P (SCjverb) (79)P (DOjverb)P (SCjinitialNP; verb)P (DOjinitialNP; verb)
For example for the sentence prefix “The young athlete realized her”, we used the following probabilities from

Pickeringet al. (2000).9

Parameter Value(P (SC)jV = realized) .35(P (DO)jV = realized) 0.25(P (SC)jV P = realized; [NPher : : :]; InitialNP = The; young; athlete) .8(P (DO)jV P = realized; [NPher : : :]; InitialNP = The; young; athlete) 0.2

Table 5: The verb bias and the subcategorization probabilities for the sentence fragment “The young athlete realized
her..”

In order to test the model, we thus need to measure the probability assigned to the interpretation before and after
the implausible direct objectexercises. Since our model rebuilds the Bayes net after each word, each probability would
be generated by a slightly different net.

Figure 27 shows the structure of the Bayes net just after the direct object has been read. The top row shows
the syntactic and lexical/thematic networks for the SC interpretation,while the bottom row shows these networks
instantiated for the DO interpretation. The probability for each interpretation (DO or S) is computed given the sentence
so far. The NOISY-AND combination function is applied to combine thelexical/thematic and syntactic support to
arrive at the overall posterior probability of an interpretation at a particular stage of the input.

Recall that our model predicts that reading time is proportional to to change in the probability mass from wordt� 1 to wordt, or �(t) =Xi P (Iti )P (It�1i ) (80)

6.3 Results

In this section we presently jointly the predictions of our model and the reading-time results of the Pickeringet al.
(2000) study.

We begin with an illustrative example, walking through the probabilities our model assigns to the following two
sentences:

1. Plausible Object: The athlete realized her potential one day might make her a world class sprinter.

2. Implausible Object: The athlete realized her exercises one day might make her a world class sprinter.

Table 6 shows the�(t) computed by our model after each region of both input sentences.
For the implausible object condition, the posteriors behaved in thefollowing manner:

9Note the verb bias data don’t sum up to1, since there are other possible sentence completions for the verb.
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Figure 27: SC vs Object analysis: modeling the Pickeringet al. (2000) data.

Realized Matrix Verb Noun Post-noun Modal verb(�(t)jexercises) 1.4 3.2 1.6 1.5(�(t)jpotential) 1.0 1.5 1.4 3.3

Table 6:�(t) results of the model on example sentences “The athlete realized herexercisesone day might make her
a world class sprinter” (Implausible object), and “The athlete realized herpotentialone day might make her a world
class sprinter” (Plausible Object).� After reading the matrix verb (realized),P (Isc > P (Ido), so the model prefers theSC reading (these probabil-

ities are not shown in Table 6).�(t) (in Table 6 is 1.4, not particularly high.� After reading the pronounrealized her, P (Isc > P (Ido), so the model continues to prefer theSC reading.� After seeing the implausible (exercises) direct object, there is a high drop in the posterior for the object inter-
pretation (�(t) jumps from1:4 to 3:2). This is a large change in probability; the wordexercisesis unexpected
and the interpreter is surprised. Our model thus predicts a reading timeincrease at this point.� No large changes in probability mass happen in later words.

For the plausible object (potential) case, the posteriors behaved in the following manner� After seeing the matrix verb (realized), P (Isc > P (Ido), so the model prefers theSC reading. There is no
change in probability mass� At the prepositionrealized her), P (Isc > P (Ido), so the model continues to prefer theSC reading.� After seeing the plausible (potential) direct object, there is a small drop in the posterior for the object interpre-
tation.�(t) is 1.5, not particularly high, and our model not predict any reading timeincrease at this point.
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Reading time effects (plausible and implausible object readings).
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Figure 28: Overall Predictions for Pickering data. Shown are the model and scaled (to 1) human reading time effects
(please see text for the details) for both plausible object and implausible object sentences.� At the post-nounone dayregion,�(t) is 1.5, not particularly high, and our model not predict any reading time

increase at this point.� At the disambiguating modal verb (might), the modal has a low probability, i.e. there is a large change in
probability mass,�(t) increases from1:4 to 3:3. Our model registers an expectation violation and predicts an
increase in reading time at this stage.

The walk-through above shows the qualitative results of our model;some regions show a larger probability mass
change�(t). Do these areas correspond to regions of longer reading time? To answer this question, Figure 28 compares
the overall reading time effects predicted by our model to those observed byPickeringet al. (2000). The results are
averaged over the six verbs (admitted, decided, hinted, implied, pretended and realized) and sixteen sentences for the
two conditions (implausible and plausible object) in the Pickeringet al. (2000) experiment.

Because this figure is somewhat difficult to read, we break this figure down in Figure 29 and Figure 28. Figure 29
compares the reading time effects predicted by our model for plausible objectsentences (ex. The athlete realized her
potential..) to those observed by Pickeringet al. (2000). Figure 30 compares the reading time effects predicted by our
model for plausible object sentences (ex. The athlete realized her exercises..)to those observed by Pickeringet al.
(2000).

How were these figures generated? In Figure 28, the human data is obtained from Pickeringet al. (2000) (Table
3, pp. 456). Their reading time data was measured at four different input stages for the two conditions, plausible
object (potential) and implausible object (exercises). The reading time was measured at 1) the noun (potential) , 2) the
postnoun region (one day), 3) the disambiguating modal (might make) and 4) the postverb region (her a world class
sprinter).
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Reading time effects for plausible sentences
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Figure 29: Predictions for plausible object sentences in the Pickering data. Shown are the model and scaled (to 1)
human reading time effects (please see text for the details) for the plausible object sentences.

Our model does not make exact predictions about the absolute value of milliseconds of reading time from prob-
abilities. Such a mapping would be possible in principle, but wouldrequire solving a number of problems that we
simply don’t currently have the data for, including choosing a function to map probability to time (log? cube-root?) as
well as setting weight parameters. Instead, our goal is to show that the model makes the correct predictions about the
relativemagnitude of reading time increases.

In order to do this, we renormalize the human reading time data by computing the scaled (to 1) magnitude of the
reading time contributions for the two conditions at each of the four input stages. For instance, at the Noun stage,
Pickeringet al.(2000) report a total reading time of 367 milliseconds for the plausible object condition, and a reading
time of 430 milliseconds for the implausible object condition. So here the reading time effect for the plausible case
is 367367+430 = :46 and 430367+430 = :54 for the implausible case. Figure 28 shows the value of the reading time effect
computed in this way for all the four stages and for the two conditions in the Pickeringet al. (2000) data.

For the model, we computed the total change in the posteriors for the two conditions between the various input
stages. We fixed the initial baseline for the change computation at the pre-noun (The athlete realized her) stage. Thus
the first change in posterior compares the value of the change in posteriors for the two conditions between the pre-noun
and the noun stage. For the model, we computed the change in posteriors up to the disambiguating modal stage.10. As
in the case of the human data we measured the relative contribution of thetwo conditions (scaled to 1).

Figure 28 shows the basiccrossoverresult found by Pickeringet al. (2000). Participants exhibited greater read-
ing time difficulty starting at the noun boundary and continuing to the post-noun region for implausible sentences.
However at the disambiguating modal verb the reading time was larger for plausible compared to the implausible

10We did not compute the change in posteriors for the post-verbstage since it was not relevant to the Pickeringet al. (2000) results
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Figure 30: Predictions for implausible object sentences in the Pickering data. Shown are the model and scaled (to 1)
human reading time effects (please see text for the details) for the implausible object sentences.

readings.
Thus as shown in Figure 28 our model predicts greater surprise and hence greater reading time effects at the initial

object NP for the implausible object but at the post disambiguating region (aftermight for the plausible object. This
is consistent with the data in Pickeringet al. (2000). Our quantification of expectation violation (or surprise) based
on large changes in the sum of the posterior probabilities for the different competing interpretations is thus able to
account for thecrossover effectin the Pickering data using a structured probabilistic sentence processing model.

6.4 Discussion

In summary, our model predicts two effects for the data in Pickeringet al. (2000). First, the model predicts a greater
reading time at the direct object noun for the implausible object than theplausible object, since the conditional prob-
ability of the noun is quite low for the implausible reading. In contrast, for the plausible object case, there is no
significant change in the posteriors, since the noun is approximately equally likely under both interpretations, so the
sum of the posteriors does not change much between the pre-noun and the noun boundary. This is consistent with the
human data shown in Figure 30

Second, by contrast, the model predicts a greater reading time at the modal verb might for the plausible object
case. This is because reading the verb causes a significant change in sum of the posterior probabilities of the two
interpretations, since the verb is extremely unlikely for the direct object reading. In contrast, for the implausible
object case, there is no significant change in the posteriors, since the object reading is already low, and the sum of the
posteriors does not change much between the post-noun and the verb boundary. This prediction is consistent with the
human data shown in Figure 29.
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7 General Discussion

This paper introduced a probabilistic model for human sentence processing, which computes probabilities incremen-
tally, integrates probabilistic versions of linguistic knowledge online, and makes predictions about parse preference
and reading time. Our predictions, from the principles of Expectation andAttention, were that the probability of up-
coming words is one key predictor of reading time, and that demotion of the top-ranked interpretation is another. We
tested the model against behavioral experiments studying the disambiguation of the main clause/reduced relative and
the direct object/sentential complement ambiguity. No previous probabilistic model has been able to model both of
these classes of results. We showed that our model is able to explain the interpretation preferences as well the relative
increases and decreases in reading time from each experiment.

In understanding the implications of any computational model of human cognition, it is important to distinguish
potential insights into human language understanding from mere implementation details and other assumptions made
for purely practical reasons. We think our model does offer some high-level insights into human language processing.
First, we believe that human language processing is inherently probabilistic. Second, we believe that human language
processing makes use of a variety of rich sources of linguistic knowledge at many levels. Third, since human language
processing is on-line, any such model of this probabilistic process must also be able to model this dynamic process. We
believe our Bayesian model provides one vision of how these three constraints (probabilistic computation, incremental
update, combination of structured and probabilistic knowledge) can be viewed.

The relationship between probabilistic models and reading time expressed in the Expectation and Attention prin-
ciples can also be viewed as a high-level insight that may carry over into other classes of models.

Beyond the high-level claims of our model, other aspects of our work maypoint a direction for integration with
other current models. One of the problems with the competition model was its lack of a motivated way of modeling
language structure, the class of possible constraints, and the weightson evidence combination. The Bayesian model
provides a way of answering all these questions. Thus a hybrid model maybe able to capture aspects of both models,
perhaps making predictions about reading time effects due to either competition, expectation, or attention.

The structured probabilistic aspects of our model may also have a role in modeling language production. In a
class of models dating back to Schuchardt, linguistics have argued that human lexical production is sensitive to the
predictability of words. A series of experiments by the second author andcolleagues (Gregory, Raymond, Bell, Fosler-
Lussier, & Jurafsky, 1999; Jurafsky, Bell, Gregory, & Raymond, 2001; Jurafsky, Bell, & Girand, 2002) have shown
that this predictability can be measured probabilistically, and proposed that the reduction or shortening in the surface
form of words is proportional to the conditional probability of the word. But that work has so far not proposed a model
of how various probabilities combine to predict the posterior probability of a word. We think our Bayesian model
could help show how this is done.

8 Appendix A: Propagation in Bracketed SCFG trees

These are the derivations of the belief propagation rules for bracketed SCFG trees. Without loss of generality, we
assume that the SCFG grammar is in the Chmosky Normal Form (CNF). Thus any node in the Parse tree has at most
two children. Clearly in an SCFG productionx ! yz the specific non-terminalsy andz are not independent givenx
unlike in standard Bayes nets.

We can modify the propagation rules for Bayes nets which have a tree structure to reflect this dependence. We will
use the notation from (Pearl 1988) including the convention thate+X ande�X denote the causal and diagnostic evidence,
respectively, relative to a nodeX . We now compute the diagnostic (bottom-up) and causal (top-down) support some
nodesX , Y , andZ in the SCFG parse tree. By convention, we will use the lower casex to represent the instantiation
of the variableX , y to represent the instantiation of nodeY andz to represent the instantiation of nodeZ. In this casex, y, andz range over the non-terminals in the grammar.

Diagnostic support: �(x) = P (e�X jx) (81)= Xy;z P (e�X ; y; zjx) (82)= Xy;z P (e�X jy; z; x)P (y; zjx) (83)
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= Xy;z P (e�X jy; z)P (y; zjx) (84)

(becauseY; Z separatesX from e�X) (85)= Xy;z P (e�Y [ e�Z jy; z)P (y; zjx) (86)= Xy;z P (e�Y jy)P (e�Z jz)P (y; zjx) (87)

(becauseY; Z separatee�Y ; e�Z from each other) (88)= Xy;z �(y)�(z)P (y; zjx) (89)

Causal support: �(x) = P (xje+X) (90)= Xu;v P (x; u; vje+X) (91)= Xu;v P (xju; v; e+X)P (u; vje+X) (92)= Xu;v P (xju; v)P (u; vje+X) (93)

(becauseU; V separatesX from e+X ) (94)= 1P (e+X)Xu;v P (xju; v)P (u; v; e+X) (95)

The second term in the summation can be expanded as follows:P (u; v; e+X) = P (u; v; e+U [ e�V ) (96)= P (u; e+U )P (v; e�V ju; e+U ) (97)= P (u; e+U )P (v; e�V ju) (98)

(becauseU separatesV from e+U ) (99)= P (uje+U )P (e+U )P (e�V jv; u)P (vju) (100)= P (uje+U )P (e+U )P (e�V jv)P (vju) (101)

(becauseV separatesU from e�V ) (102)= �(u)P (e+U )�(v)P (vju) (103)

Substituting back into the equation for�,�(x) = P (e+U )P (e+X)Xu;v �(u)�(v)P (xju; v)P (vju)= P (e+U )P (e+X)Xu;v �(u)�(v)P (x; vju) (104)

The normalizing constant
P (e+U )P (e+X ) = 1P (e�V je+U ) can be computed implicitly by scaling the�(x) to sum to unity.

Finally, it can be seen how the outer probabilities arise naturally by using the propagation scheme for� without
normalization: f(y) =Xx;z f(x)�(z)P (y; zjx) (105)

Simple substitution in (104) shows that the fixed point for the functional equation (105) isf(x) = �(x)P (e+X ), the
generalized outer probability.
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9 Appendix B: Parameters for Experiment 1

Verb Intrans GoodAgt GoodPat PastPart SimplePast
A P A P

accuse 0.279452 .67.33 .33.67 .46 .53
arrest 0.530612 .81.19 .17.83 .81 .19
capture 0.317016 .75.25 .34.66 .63 .37

carry 0.329179 .81.19 .16.84 .77 .23
chase 0.380952 .72.28 .36.64 .49 .50

convict 0.533333 .67.33 .19.81 .84 .16
cure 0.440678 .64.36 .19.81 .80 .20

devour 0.396825 .61.39 .37.63 .49 .51
dismiss 0.275176 .76.24 .20.80 .61 .39

entertain 0.399160 .76.24 .20.80 .54 .45
evaluate 0.344086 .62.38 .37.63 .87 .13
examine 0.310172 .74.26 .32.68 .63 .37
execute 0.392857 .57.43 .40.60 .78 .22

fire 0.553366 .72.28 .23.77 .50 .50
frighten 0.156627 .78.22 .27.73 .60 .40

grade 0.714286 .73.27 .25.75 .84 .16
hire 0.381271 .70.30 .19.81 .57 .43

hypnotize 0.666667 .74.26 .20.80 .76 .34
instruct 0.320388 .76.24 .23.77 .58 .42

interrogate 0.565217 .80.20 .23.77 .75 .25
interview 0.463722 .72.28 .28.72 .65 .35

investigate 0.345679 .74.26 .36.64 .76 .24
invite 0.161580 .60.40 .23.77 .68 .32

kick 0.560680 .64.36 .23.77 .30 .70
lecture 0.800000 .72.28 .26.74 .34 .66

lift 0.467054 .71.29 .30.70 .42 .58
punish 0.282051 .68.32 .20.80 .85 .15

question 0.557452 .69.31 .23.77 .61 .39
recognize 0.582450 .61.39 .36.64 .71 .29

rescue 0.358209 .78.22 .21.79 .71 .29
search 0.701571 .82.18 .21.79 .38 .62

sentence 0.289157 .84.16 .19.81 .80 .20
serve 0.711992 .73.27 .18.82 .69 .31
shoot 0.608943 .71.29 .14.86 .63 .37

slaughter 0.406250 .81.19 .13.87 .70 .30
study 0.479351 .65.35 .41.59 .62 .38
teach 0.425798 .72.28 .20.80 .26 .74

terrorize 0.478261 .75.25 .18.82 .98 .02
torture 0.630435 .78.22 .19.81 .75 .25
worship 0.763975 .62.38 .18.82 .45 .55

10 Appendix C: Results for Experiment 1

Verb (at Initial NP) (at verb-ed) (at by) (at the) (at agent NP)
P(M)P(R)P(M)/P(R) L(M)L(R)P(M)/P(R) L(M)L(R)P(M)/P(R) L(M)L(R)P(M)/P(R) L(M)L(R)P(M)/P(R)

accuse
GA .667 .333 2.00 .355 .156 2.282 .071 .125 .568 .009 .109 .082 .002 .090 .022
GP .327 .673 0.49 .174 .314 0.553 .035 .251 .139 .004 .122 .033 .001 .100 .010
arrest
GA .807 .193 4.19 .170 .156 1.083 .034 .125 .272 .039 .005
GP .169 .831 0.20 .032 .671 0.048 .011 .002 .0002
capture
GA .750 .250 3.00 .278 .158 1.762 .440 .063 .011
GP .338 .662 0.51 .125 .416 0.301 .075 .011 .002
carry
GA .810 .190 4.25 .189 .146 1.295 .324 .046 .008
GP .162 .838 0.19 .038 .643 0.059 .014 .002 .0002
chase
GA .667 .333 2.00 .355 .156 2.282 .568 .082 .022
GP .327 .673 0.49 .174 .314 0.553 .139 .033 .010
convict
GA .846 .154 5.49 .138 .129 1.070 .268 .038 .007
GP .192 .808 0.24 .031 .737 0.043 .010 .002 .0002
cure
GA .642 .358 1.79 .127 .288 0.440 .110 .016 .003
GP .187 .813 0.23 .037 .653 0.056 .014 .002 .0003
devour
GA .614 .386 1.59 .311 .190 1.640 .410 .059 .010
GP .375 .625 0.60 .191 .308 0.620 .155 .022 .004
dismiss
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GA .760 .240 3.16 .299 .145 2.060 .515 .074 .013
GP .203 .797 0.26 .080 .483 0.165 .041 .006 .001
entertain
GA .761 .239 3.19 .350 .130 2.69 .673 .096 .017
GP .202 .798 0.25 .093 .433 0.214 .054 .008 .001
evaluate
GA .618 .382 1.62 .083 .330 0.252 .063 .009 .001
GP .367 .633 0.58 .050 .548 0.091 .023 .003 .0005
examine
GA .744 .256 2.91 .278 .161 1.729 .432 .062 .011
GP .318 .682 0.47 .119 .590 0.201 .050 .007 .001
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