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Abstract

1 Introduction

Language comprehension is a classic problem of reasoning under uncertaanmgyuage comes to us as a noisy,
unsegmented, ambiguous mass of auditory waveforms or visual stifwhans must somehow combine this input
with other knowledge we have to come up with reasonable interpresadioe actions. How might humans address
this problem of decision-making under uncertainty? The best nornmatgel we have for solving problems of this
sort is probability theory, which offers a principled method with &ae@nt semantics for weighing and combining
evidence. Whether this normative model is the correct descriptive madall fof human behavior has recently been
the subject of much debate (Kahnema; Gigerenzer). While this debate isoloeefor all areas of human cognition
and reasoning, the last decade or so had produced emerging consensusotlirtheytognitive sciences that in some
areas human cognition is likely to make use of probabilistic modele SEminal work of Anderson (1990) gave
Bayesian underpinnings to cognitive models of memory, categorizatihcausation, and recent Bayesian models
of human cognition include work in human visual processing (Rao et &l1;20/eiss & Fleet 2001), categorization
(Tenenbaum, 2000; Tenenbaum & Griffiths, 2001b, 2001a), and the humianstianding of causation (Rehder, 1999;
Glymour & Cheng, 1998). Together, these ideas suggest that perhapstespof human language comprehension
is also best modeled as a process of probabilistic, Bayesian reasoning.

This idea that human processing of language draws on probabilistielsis hardly novel. (Schuchardt, 1885), in
his arguments against the 19th century Neogrammarians, point out thatl&ef frequency in language production
and language change. Schuchardt noted that word frequency is a good prefteich words are phonologically
weakened or ‘lenited’. Words which are more frequent tend to be shorterremmblogically simplified; (Zipf, 1929)
pointed out that this reduction of frequent forms also happened for dreqphones. (Jespersen, 1922) expanded
Schuchart’s idea from pure frequency to predictability or probabiligspersen pointed out that the predictability of
the word in its context, in addition to its raw frequency, must @dgctor in the phonological form of the word.

These early intuitions about frequency and probability were all relatddntguage production. Evidence for
the role of frequency and probability specifically in language comprebemsbcessing dates quite a bit later, from
the mid 20th century. In the 1950's, for example, Davis Howes shaWwatlword frequency plays a key role in
comprehension in both the visual and auditory domains (Howes & Salpt®b1; Howes, 1957). Throughout the
second half of the 20th century, evidence amassed that high frequency averdscessed more quickly, they are
accessed more easily, and they are accessed with less input signal than Ieamdéseqpards. This is a very robust
effect, supported by tachistoscopic recognition Howes and Solomori)18&ming (Forster & Chambers, 1973),
lexical decision (Rubenstein, Garfield, & Millikan, 1970; Whaley, 19B&lota & Chumbley, 1984), recognition
accuracy and errors in noise (Howes, 1957; Savin, 1963), and gatingjéan, 1980).

The last two decades of behavioral research have extended these lexicatoesthies areas of psycholinguistics
such as sentence processing. We know that many kinds of probabilistidddge play a role in the comprehension
of sentences. One such factor is the probability of the different lexicagoats of a word. For example the a priori
probability that the ambiguous wofdesis a noun, or alternatively a verb, plays a role in sentence comprehension,
as does the probability that the wosdlecteds a preterite or a participle (Burgess & Hollbach, 1988; Trueswell,



1996).This lexical category probability seems to be conditioned oteggrthus for example the probability that the
ambiguous wordhat will be determiner or a complementizer changes depending on the sentence ¢huliero &
Tanenhaus, 1993). A very wide body of work has shown that a verb’s gmr#&tation probability, for example the
probability that a given verb is transitive or intransitive, play®ke iin processing (Clifton, Jr., Frazier, & Connine,
1984; Ford, Bresnhan, & Kaplan, 1982; Jennings, Randall, & TYler, 188¢Donald, 1994; Tanenhaus, Stowe, &
Carlson, 1985; Trueswell, Tanenhaus, & Kello, 1993). Work in thedastaide has extended this to simple semantic
dependency probabilities such as the probability that a particular reotireiagent or patient of a particular verb
(Trueswell, Tanenhaus, & Garnsey, 1994; McRae, Spivey-Knowlton, &flaaus, 1998). We also know that local
word-word relations such as the probability of a word given theiptessor following words play a role in processing
(MacDonald, 1993; McDonald, Shillcock, & Brew, 2001).

In summary, we know that many kinds of knowledge must interact prés@édzally in the process of building an
interpretation of a sentence. Unfortunately we still know very littlewthhow this probabilistic process happens. We
don’t know how probabilistic aspects of linguistic knowledge apresented, we don’t know how these probabili-
ties are combined, we don’t know how interpretations are selected, andnitehdwe a good understanding of the
relationship between probability and behavioral measures like readiag tim

Of course there has been quite a bit of research on the architecture of tha kantence processor over the last
few decades, and this research has indeed touched on some of the probqbéistiiens. But to a great extent, the field
of sentence processing has asked other questions. Perhaps the largest@res iof §entence processing has been
on the debate surrounding the Modularity hypothesis of J.A. F@eador, 1983). In J.A. Fodor’s view, the human
cognitive system is divided into 3 types of components: tranducersgsgargans), input systems (vision, language),
and central systems like executive and memory functions. Input systemermaposed of modules which are domain-
specific, informationally encapsulated, and localized in the brain. One @teolsthe modularity hypothesis has
been to suggest that syntactic structural knowledge acts as a sort ofoglubem|In this view, syntactic knowledge
would lie in a module which is “informationally encapsulated” from tiest of linguistic knowledge. Furthermore,
syntactic knowledge is assumed to be processed first, and so the earligstsaniah sentence would only rely on
syntactic knowledge. Real-world, lexical, and semantic constraintdmuhe into play only later. Key to this line of
research has been careful studies of the detailed time course of the activatifiereht knowledge sources, focusing
on whether or not the use of syntactic knowledge precedes the use of Eeardekical knowledge in the human
sentence processor. (Ferreira & Clifton, Jr., 1986; Clifton, Jr. e8ré&ira, 1987; Frazier & Fodor, 1978; Frazier,
1987; Frazier & Rayner, 1987; Frazier & Clifton, Jr., 1996). Arguingiagt this version of modularity has been a
body of research focused on showing that a wide variety of constraimtstfre lexical, semantic, and extra-linguistic
context plays an immediate role in processing (McBgal., 1998; MacDonald, 1993; MacDonald, Pearimutter, &
Seidenberg, 1994b; MacDonald, 1994; Spivey-Knowlton, Trueswela@enhaus, 1993; Spivey-Knowlton & Sedivy,
1995; Spivey & Tanenhaus, 1998; Tabossi, Spivey-Knowlton, McRa&enhaus, 1994; Trueswell & Tanenhaus,
1994; Trueswelkt al, 1994; Tanenhaus, Spivey-Knowlton, & Hanna, 2000; Tabor, Juli&ntanenhaus, 1997).
Another key focus has been the role of memory, memory limitations, @ealify in sentence processing. This area
has focused on showing that memory limitations play a key role ina@xiplg the complexity of processing certain
sentences (Babyonyshev & Gibson, 1999; Gibson, 1998, 1990a, ;19%®& Carpenter, 1980; King & Just, 1991,
Miyake, Carpenter, & Just, 1994).

Understanding the detailed time course of the use of different kihkisawledge, and building a clear picture of
the role that memory limitations, interference, and ' locality plays mcpssing are key aspects of the architecture of
the human sentence processing mechanism. A complete understanding afsenteessing will need to somehow
integrate these results into a single comprehensive model. Buttunédely most of these results don’t say enough
about the much more narrowly focused questions we posed above; how cartarstand the role of probability in
representing linguistic knowledge, combining evidence, and selecti@gpetations.

One class of sentence processing models does address some of thesespiastittie role of probability. This is
the framework generally callezbnstraint-base@r sometimegonstraint-based lexicaligMacDonald, Pearimutter,

& Seidenberg, 1994a; McRa al,, 1998; Spivey-Knowltoret al, 1993; Spivey-Knowlton & Sedivy, 1995; Seiden-
berg & MacDonald, 1999; Trueswell & Tanenhaus, 1994; Truesetal., 1994; Kim, Srinivas, & Trueswell, 2002).
Specific instantiations differ in various ways, but the shared iitif the constraint-based models is that multiple
interpretations of an ambiguous sentence are considered in parallel and thatathong these competing interpreta-
tions is made by integrating a large number of constraints over awaitkety of types of knowledge. Much research on
the constraint-based models has focused on the time-course of corsteést as part of the modularity debate dis-



cussed above, and hence is less relevant to our goals here. But particularatistenof the constraint-based model
have also led to specific claims about the representation, combinationjselectd behavioral (e.g., reading-time)
implications of probabilistic knowledge.

There have been a number of computational implementations of the cab$@aed framework, mainly neural-
network models which take as input various frequency-based and contidtiakes, and combine these features via
activation to settle on a particular interpretation (Burgess & Lund4188m et al., 2002; Spivey-Knowlton, 1996;
Pearlmutter, Daugherty, MacDonald, & Seidenberg, 1994), but also imgjulyinamical systems models (Taleval.,
1997). The most completely implemented of these models, and the onedkas the clearest claims about proba-
bilistic integration and processing-time implications, is the petition-integration model of Spivey and colleagues
(Spivey-Knowlton, 1996; McRaet al., 1998), which uses mormalized recurrencalgorithm for modeling constraint
integration.

It's difficult to describe the model out of context, and therefore wik stiow the model as applied to a specific
case of disambiguation in sentence processing. An understanding phttisular behavioral experiment will also
prove useful as we compare the constraint satisfaction model with dtferattempt to model this ambiguity. We
will examine the Spivey model as applied by McReteal. (1998) to the processing of sentences with the main-
clause/reduced-relative clause (MC/RR) ambiguity. In these sentencestiainsetguence of words such as (1) is
ambiguous. Continuations which illustrate the two possiblegsara subject noun phrase followed by a main verb,
and a subject noun phrase postmodified by a reduced relative clause, arars{@wand (3):

(1) The witness examined
(2) The witness examined by the lawyer turned out to be unreliable.

(3) The witness examined the evidence.

These MC/RR ambiguities are known to cause processing difficulty, arellbeen used to test a wide variety
of sentence processing models. In many cases, reduced relative clauses causegmifiesdty as measured by
reading time increases at the disambiguating phrase. Many factors are lnplay & role in the difficulty of these
sentences. Trueswadt al. (1994) had shown that strong thematic constraints were able to amelgaeten path
effects in RR/MC ambiguities; subjects experienced more difficulty at tihase “by the lawyer” in (4) than in (5.

The fact thaevidences a bettethemahanagentpresumably provides evidence for the reduced-relative interpretation.
As a result, the sentence processor may not settle on the main clause readiregng or eliminating the ‘surprise’
effect at the phrasiey the lawyer

(4) The witness examined by the lawyer turned out to be unreliable.

(5) The evidence examined by the lawyer turned out to be unreliable.

Various factors are known to play a role in processing such sentencegliimgcthe a priori probability that the
verb examinellis a preterite (simple past) versus participle, the general preferenceaiarclause structures over
reduced relative clause structures, the syntactic subcategorization thastioé verbéxamined, and the thematic fit
of the subject head noun with the verb. Thematic fit is a measure of hely kparticular noun phrase is to appear
as a particular thematic role for a verb. Traggpis more likely to be the agent than the patienaokst i.e., a GdoD
AGENT of arrest Crookis more likely to be the patient, i.e., is a0GD PATIENT of arrest

McRaeet al. (1998) had three goals. First, they wanted to confirm that thematicafyedl a role in the disam-
biguation of MC/RR ambiguities. To this end, they need to show thatdGgent sentences like (6), in which the
subject noun is biased toward an agent reading, produces a longer readiag fra@hras¢he detectivéhan Good-
Patient sentences like (7), in which the subject noun is biased towarceatpaiading. Second, they showed that the
competition model predicted these reading time differeAces.

(6) The cop arrested by the detective was guilty of taking bribes.

1Although the original study by Ferreira and Clifton, Jr. 869 had not found semantic effects, Truesve¢lal. (1994) used a stronger manipu-
lation of thematic constraint .

2They also had a third goal which we do not focus on, as it waisgian anti-modularity argument to show that thematic kremge was used
at the same time as syntactic knowledge.



(7) The crook arrested by the detective was guilty of taking bribes.

McRaeet al. (1998) tested the competition model in both an off-line and on-ks&.t For the off-line task, they
created 40 items, 20 with Good Agent subjects and 20 with Good Patieetssibfpubjects were given four iteratively
longer sentence fragments for each item:

The crook arrested

The crook arrested by

The crook arrested by the

The crook arrested by the detective

Participants completed each fragment, and the proportion of main-clausedunzkd relative completions was
recorded.

In the on-line self-paced reading task, two complete sentence versions asfahetd0 items from the fragment
task were created, one with a reduced relative clause, and one with an unreducegialelase. The sentences were
presented in a two-word moving window, as follows:

(8) The cop/arrested by / the detective / was guilty / of taking / bribes.
(9) The cop/who was / arrested by / the detective / was guilty / of takinidpés.

Reading times were collected for three of these regions, the subje¢hBlBdp the verb + prepositiorefrested
by) and the main verb groupvas guilty).

Reading times for the unambiguous sentence in (9) were subtracted feoraatiing times for the ambiguous
sentence in (8) to produce a delta reading time. Figure 1 shows thésrdaling time for Good Agent and Good
Patient sentences before and after the disambiguating region. As Fighiaws, the Good Agent sentences had a
longer reading time at the disambiguating phrdsedetectivéhan the Good Patient did. This suggests that the Good
Patient subjects biased the interpretation toward the reduced relative dlwméeating this longer reading time.
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Figure 1: Self-paced reading times (from Figure 6 of McRgal. (1998))

Both the completion and the reading time studies were then modeledriy thsi normalized recurrence compo-
nent of the competition model to integrate various probabilistictramts. A schematic of the model and the features
is shown in Figure 2. There were six input features, four of which wi€ocus on:

syntactic bias toward main clauses:This feature represents the syntactic structural bias that favors magesland
disfavors reduced relatives. Its value was set from the (Talebvssi 1994) corpus counts of the percentage of
times that the sequence ‘NP verbed’ was continued by a main clause,| PN?Grerbed”) as opposed to a
reduced relative P(RRNP verbed”),



participle versus preterite bias: This feature represents the preference of the main verb for a participles\sinsple
past reading. It was computed via the following equations:

log Par{/ log Base

log Part/ log Base+ log SP/ log Base
log SP/ log Base

log Pary/ log Base+ log SP/ log Base

(10)

VTV (reduced =

VTV (main) = (11)

by bias: The bias the wordby provides for a reduced relative interpretation. This was computed byiaguntthe
Brown and Wall Street Journal corpora that the wiyih each of the 40 verbs (in the “-ed” form) was followed
by an agent and was in a passive construction, hence P(reduced rejatisbed).

thematic fit of initial NP: The fit of the subject as an agent of the verb, a number between 0 and 6 computed fr
role typicality ratings from a norming study.

The model uses a neural network to combine these constraints to safipanative interpretations in parallel.
Each syntactic alternative (each ‘parse’) is represented by a single prisgalilst node in a network; thus the network
models only the disambiguation process itself rather than the geneoatbomstruction of syntactic alternatives. The
alternatives compete until one passes an activation threshold.

Main Clause Bias

Thematic Fit Verb Tense/
of Initial NP Voice
P(RR) P(MC)
Patient Past
Rating Participle
Agent Past
Rating Reduced Tense
Relative

AR AR
Agent RR
Rating Main support
Clause
Other /

possible
roles N
N RR
REERvorereitoer support
Thematic Fit by-bi
of Agent Noun ayhias

Main Verb Bias

OOEE

Note:
[] = enters at arrested by
\ = enters at the detective
ﬂ = enters at was guilty

Figure 2: A schematic of the competition model, from McR#al. (1998).

Each interpretation receives activation from the constraints which is thdpefgdto the constraint nodes within
each cycle of competition. The algorithm first normalizes each pair of contsiraietC; , be the activation of théth
constraint node connected to thid interpretation node’; , will be the normalized activation; the activation of each
constraint thus ranges from 0 to 1.

Ci,a
Za Ci,a
The activationl, from the constraints to interpretatianis a weighted sum of the activations of the constraints,
wherew; is the weight on constrairt(we will discuss below how the weights are set):

L= wi xCl, (13)

Cia = (12)
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Finally, the interpretations send positive feedback to the constraints
Cia=Cio+ I xw; xCj, (14)

As we saw above, each constrairitas a weightv;. Each weight was set by searching through the space of all
possible weight values for the set of values for all weights that madetitie| best fit the sentence completion data.
These same weights were then used in the reading time data.

These three steps are iterated until one interpretation reaches criteremmote! predicts reading time in a similar
way to other competition models like the construction-integratiodehof (Kintsch, 1988): reading time is modeled
as a linear function of the number of cycles it takes an interpretation to reié@ticer. Thus in general the closer two
interpretations are in their activation values, the longer it will takeofte of them to achieve a high enough activation
to pass the threshold.

McRaeet al.(1998) showed that the competition model predicted both the preferemuesssd by the completion
data, the reading times in by the self-paced reading task.

This competition-integration implementation of the constrainedawodel fulfills a number of our criteria for
a model which captures probabilistic effects in sentence processing. Tihe mtegrates a number of constraints,
assigns each a probability value, combines the probabilistic consttaintedict a preference for ambiguous structures
based on this probability value, and makes predictions about readingdised bn the settling time of the competition
between candidates.

While the constraint-based model is thus a good first step towardoals,gt still falls short in many ways. First,
it is only a model of one aspect of the disambiguation process: chobsimgeen ambiguous interpretations. The
model thus doesn’t have anything to say about how interpretations astrected. Related to this problem is an
unclarity with respect to the role of structural knowledge. The modgudes a constraint preferring main-verbs
to reduced-relative readings, based on a frequency difference in corporanoBuaotivation is given for why this
particular structural constraint is included and not any other. Certaialyynother syntactic structures have large
frequency differences, and are associated with different interpretations. thié& model has no principled reason for
choosing this constraint. In addition to problems with these sirataspects, the competition model uses constraint
values that represent arbitrarily different probabilistic assumptiBome are true probabilities, some are ratios of log
probabilities, others are counts. Some are probabilities conditiondte verb, some on the verb and the subject,
some are not conditioned at all. The problem is not that there are diffierebabilities in the model, but rather that
the model gives us no principle way to know which probabilities areushetl, and how they should be conditioned.
Finally, the model makes use of various parameters (weights) that arenusaalbining the probabilistic constraints,
but the model includes no component which tells us how to set these parameter

In summary, the main problems with the constraint-satisfaction ntualed to do with structure; how structured
interpretations are built probabilistically, how structural knowjeglays a role, what is the principled method for
setting these probabilities of structure, and what the structure tiseoflgorithm for combining constraints. As it
happens, there are alternative probabilistic models which focus onexaese questions of structure. For example
Jurafsky (1996) and Crocker and Brants (2000) both propose sentargesging models based on the intuitions of
probabilistic grammars, which generally offer a principled foundatiqerobabilistic structure. Could these constitute
an alternative instantiation of the constraint-based intuition?

In Jurafsky’s model, a probabilistic parser keeps multiple integpimts of an ambiguous sentence, ranking each
interpretation by its probability. The probability of an interpratatis computed by multiplying two probabilities:
the stochastic context-free grammar (SCFG) ‘prefix’ probabilithef¢urrently-seen portion of the sentence, and the
‘valence’ (syntactic/semantic subcategorization) probability for each verb.

A stochastic context-free grammar, first proposed by Booth (196&)ca&es each rule in a context-free grammar
with the conditional probability that the left-hand side expandthoright-hand side. For example, the following
equations show the probability of two types of noun phrases, repesséormally as two of the expansions of the
nonterminal NP, computed from the Brown corpus:

[.42] NP — DetN
[.16] NP — Det Adj N

These rules tell us that the probability of expanded a noun phrase asranitetr followed by a noun is .42.



Jurafsky’s model is on-line, using the left-corner probability allpon of Jelinek and Lafferty (1991) and Stolcke
(1995) to compute the SCFG probability for any initial substifog’prefix’) of a sentence.

Subcategorization probabilities in the model are also computed froBrtven corpus. For example the vetbep
has a probability of .81 of having two complemerkisép something in the fridgand a probability of .19 of having one
complementKeep somethirjgJurafsky (1996) showed that this model could account for a numbeyohplinguistic
results on parse preferences. For example, the corpus-based subcategaizats CFG probabilities fdeepand
other verbs likaediscusscorrectly modeled the preferences for these verbs in the off-line forcedecbxperiment of
Fordet al. (1982).

While the model keeps multiple interpretations, it has only limitachfielism. Low probability parses are pruned
via beam search, an algorithm for searching for a solution in a problem 8pt@mly looks at the best few candidates
at a time. Because the model prunes interpretations (rather than keepingsalii@anterpretations around) means
that occasionally the parse that was pruned will turn out to have been theetcparse. The model predicts extra
reading time (the strong garden path effect) just in these cases, the canmszhpd been pruned away and the rest of
the sentence was no longer interpretable without reanalysis. Thusr#iskju(1996) model explains the misanalysis
of garden path sentences like (15) and (16). In (15), the correct parseidn rgloed is a reduced relative, is pruned.
Thus when the parser arrivesfall, it is unable to integrate it into the parse, causing large readingitioneases. In
(16), the parse in whichousess a verb gets pruned, leaving only the nominal sensgeakesLater in the sentence,
it becomes clear that the nominal senséafisess incompatible with the sentence, again causing increased reading
time.

(15) The horse raced past the barn fell.
(16) The complex houses married and single students and their families.

In these cases, the preference differences between the interpretations are fapdelathining the SCFG proba-
bility and subcategorization probability to compute a probabibitydach interpretation.

Crocker and Brants (2000) propose a similar probabilistic modedmatefice processing that differs in using cas-
caded Markov models rather than SCFGs. Theiremental cascaded Markov modELMM) is based on the broad
coverage statistical parsing techniques of Brants (1999). ICMM is a mamiikelihood model, which combines
stochastic context-free grammars with hidden Markov models, genepttEntHMM/SCFG hybrids of Moore, Ap-
pelt, Dowding, Gawron, and Moran (1995). The original non-incretales@rsion of the model constructs a parse tree
layer by layer, first at the preterminal (Iexical category) nodes of the pasgethen the next higher layer in the tree,
and so on. In the incremental version of the model, information isggafed up the different layers of the model
after reading each word. Each Markov model layer consists of a series of nodespaording to phrasal (syntactic)
categories like NP or ADVP, with transitions corresponding tor#nig probabilities of these categories. The output
probabilities of each layer are structures whose probabilities are asdigraestochastic context-free grammar. Fig-
ure 3 shows a part of the first Markov model layer for one sentence. Each Wiawdael layer acts as a probabilistic
filter, in that only the highest probability non-terminal sequences asseu up from each layer to the next higher
layer. The trigram transition probabilities and SCFG output prditi@siare trained on a treebank.

The Crocker and Brants (2000) model accounts for various behaviorailsresutuman parse preference, such as
the Juliano and Tanenhaus (1993) studies on the disambiguatioatof

Both Crocker and Brants (2000) and Jurafsky (1996) have the advanthgeadean, well-defined probabilistic
model which both explains how structures are built and how probiaiiire assigned to them, both are incremental,
showing how probability is computed word-by-word, and both offeriear motivated probabilistic model of parse
preference. In addition, the Jurafsky (1996) parser uses a parallel pracesshitecture which can capture the
similarities between lexical and syntactic processing, and a probabliietim-search architecture which explains
difficult garden-path sentences.

Unfortunately, neither of these models is sufficient to extend or rep@ceampetition model as an explanation of
human probabilistic processing. Unlike the Spivey model, neitimedurafsky or Crocker and Brants models makes
sufficient reading time predictions. The Crocker and Brants (2000) ni®dainodel of preference, and as such does
not make specific reading time predictions at all. The Jurafsky (1996¢snakly very broad-grained reading-time
predictions; it predicts extra reading time at difficult garden-pathesets, because the correct parse falls out of
the parser's beam width. The Crocker and Brants (2000) model includesrbovalence model, and so it cannot
model valence results of any kind, syntactic nor thematic, leaving it ertalihodel the wide variety of behavioral
experiments showing the role of syntactic and semantic subcategonizatluding the McRaet al. (1998) study.



(NP|ADVP,VBD}

‘ P($|VBD,NP)

PIVBD|NP ADVE)

1P'ADVP|S NP

lPINP|$.$J

5 21}
Pladopted
PININE) |2(n[ADVP) | |veD) P(N|NP]
adoptad

DT NN RB NN KON NN

b bbb\

the company also an anti-takeover plan

Figure 3: Part of the first layer Markov model for one sentence, from @raaokd Brants (2000). The letteindicates
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companygiven theN P.

Furthermore, despite their probabilistic nature, neither the conssaiisfaction, Jurafsky (1996) or Crocker and
Brants (2000) model a key class of behavioral studies on the prattabitelation between individual words, often
known asword transition probabilitiesor word bigram probabilitiesMcDonaldet al. (2001) studied the effect of this
probability on reading time by looking at eye fixations in subject®wilere reading verb-noun pairs embedded in
sentences. Subjects either read a sentence with a high transition prghegdstitnoun pair or a sentence with a low
transition probability verb-noun pair. Other aspects of the sentencg pach as length and corpus frequency of the
noun, neutral context, and sentence plausibility were all matched.:

high-probability: One way toavoid confusionis to make the changes during vacation.
low-probability: One way toavoid discoveryis to make the changes during vacation.

McDonaldet al. (2001) found that the duration of subjects’ initial fixation on theget noun was shorter for the

high-transition-probability verb-noun pairs. MacDonald (19%§)arts on a similar earlier study using reading time.
The three probabilistic models also have a problem with modeliagb&havioral results of Pickering, Traxler,

and Crocker (2000), particularly since Pickeriatgal. (2000) argue that their results would cause problems for any

frequency-based models. Pickeriegal. (2000) looked at the disambiguation of the role of postverbal nduiages

in NP/S ambiguities. In the NP/S ambiguity, the postverbal nouagghsuch akis goalsin (17). can either be the

direct object of the higher verb (an NP) (as in (18)) or be the subject ehstial complement clause (an S), (as in

(19)):
(17) The athlete realizeldy p his goals ] at the Olympics.
(18) The athlete realizeldy p his goals ] at the Olympics.

(19) The athlete realizelg [y p his goals ] were out of reach].

Previous research, as discussed earlier, suggests that verbs have adrd®ither an NP or S complement, and
that this bias plays a role in processing. In the critical manipulaféckeringet al. (2000) looked at sentences in



which the main verb was S-biased, like the viezhlize This means that at the point of reading the verb, human readers
presumably expect the sentence to continue with a sentential complentetimjet al. (2000) then showed that if

the postverbal noun phrase was an implausible direct objecti&kexercisedn (78) below) readers took longer to
read the following words ‘one day’ than they did after a plausibledtiobject (likeher potentialin (77) below):

(20) The young athlete realized her potential one day might make her achassisprinter.
(21) The young athlete realized her exercises one day might make her a &ssdsgtinter.

In other words exercisesvas anomalous only for one interpretation (the NP reading), but causedreading
time. Pickeringet al’s result thus shows that a word which is anomalous only to the lefesped interpretation
causes a reading time increase.

The competition model has no way to account for this finding that decredsngaodness of a less-preferred
interpretation causes a reading time increase. Recall that in the competitiozaithg time increases are caused by
competition between interpretations; the closer two interpretations @refierence, the longer it takes for a winner to
settle out, and thus the longer the reading time. Thus the conssaginfaction model predicts that making the worse
interpretation even worse should make the competition easier, Bpaeding uphe reading time, not slowing it down.
In the model of Jurafsky (1996), reading time increases are caused by havebuild previously-pruned parses. But
that cannot be the cause of the reading time increase on ‘one day’, sincé #éverdirect-object parse becomes
dispreferred enough to prune, it is the sentential complement parse tioatisued in the rest of the sentence!

By contrast, Crocker and Brants (2000) note that their model can handlesghilt because they predict that it
is the direct object reading, not the sentential complement reading, whirkfesreed. Since their model does not
compute valence probabilities of any kind, sentence preference is determielydyy the structure of the SCFG, and
direct objects in general have a higher SCFG probability than sententigleorants. Thus their model predicts that
the probability of the direct object reading of (17) is actually highantthe probability of the sentential complement
reading. Thus the extra reading time for the implausible direct oigestplained by the fact that the direct object
reading was the preferred one. The ability that lets the Crocker and Br&3@)(@odel handle this example, however,
is its lack of valence probabilities. But this exact lack keeps their model frandling the extensive previous results
showing the effect of verb bias (Clifton, Jet al, 1984; Fordet al,, 1982; Jenningst al., 1997; MacDonald, 1994,
Tanenhaust al,, 1985; Trueswelét al,, 1993). Thus in general, it is unlikely that this aspect of the CrockeBaadts
(2000) model can be defended.

In summary, none of the three models we've looked at are sufficientigod#ta. The competition model has no
way to build the two interpretations that it compares, no motivationgs weights, and no principled reason for using
the specific conditional probabilities that it relies on. The Jurafé®@6) model has an impoverished view of reading
time and no clean way to combine information from multiple sources.hideinodel can explain the Pickerisgal.
(2000) result. The Crocker and Brants (2000) model also offers no sppo#filictions about reading time, and is
unable to model any effects of verb subcategorization or thematic preferertbeugt it would be easy to modify
any of them, none of the models as described predict the word bigram [drytraisult of McDonaldet al. (2001).

In summary, no current models meet the criteria expressed above for nptiedi role of probability in repre-
senting linguistic knowledge, combining evidence, selecting inteaposis, and predicting behavioral variables like
reading time.

Our goal in this paper is to attempt to build a model which meets theseiarit€he fundamental insight of
our model is the use of Graphical Models (specifically Bayes nets) in madilen probabilistic, evidential nature
of human sentence processing. Bayes nets are a type of model that can repeesans#i relationship between
different probabilistic knowledge sources, how they can be combinedyaat we know about the independence of
probabilities. In our Bayesian model of sentence processing, humansumristnamic Bayes nets incrementally
(on-line), while a sentence is being processed. Each Bayes net combinedl|stibbowledge of lexical, syntactic,
and semantic knowledge on-line. Our proposal is thus that humans wemstbiicture and evidence probabilistically,
computing and incrementally re-computing the probability of each ingémion of an utterance as it is processed.

Like the Jurafsky (1996) model, this modelds-line and incremental; it assigns structure word by word as the
sentence is read, changing structure as new information comes into tee p#es most sentence processing models,
our model is sensitive to various constraints, including syntattictire, thematic biases, and lexical structure.
Also like the Jurafsky (1996) model, our Bayesian model is protsiigijiincrementally computing the probability of
each interpretation conditioned on the input words so far, and on legiahmatical and semantic constraints and
knowledge. The most-preferred interpretation at any time is thus thevith the highest probability.



Our model differs from Jurafsky (1996) in two major ways. The fifffedence is that our model proposes a clean,
principled way to combine structural knowledge and probabilistioalkedge: the Bayes Net or graphical model.
Graphical models combine ideas from graph theory and probability theaisel with two central issues facing large
systemscomplexityanduncertainty Fundamental to these models is a notion of component compositiomiaeo
system is built by composing simpler parts. Probability theoryioles the glue that ensures that the combined
system that comprises of simpler parts is consistent as a whole andéeeis a whole to data. Graph theory
provides a visual and intuitive interface as well as a formal data-steuttat lends itself naturally to the design of
efficient inference algorithms. Graphical models (Jordan 2003) presentra@oframework for many of the classical
multivariate probabilistic systems - special cases of the general graplock fiormalism include mixture models,
factor analysis, hidden Markov models, Kalman filters and Ising models gidphical model framework provides a
way to view all of these systems as instances of a common underlying fermal

The second difference is that our model makes fine-grained predictions abding time. What kind of predic-
tions could a probabilistic model make about reading time? One relagbmeen probability and reading we have
known for a long time. High frequency words are processed more quttktylow frequency words. As we mentioned
earlier, this is a very robust result, whether from naming (Forster &nlters, 1973), lexical decision (Rubenstein
et al, 1970; Whaley, 1978; Balota & Chumbley, 1984) or other metrics. &l§e know that predictability affects
reading time. For example McDonadd al. (2001) modeled reading time results by showing that higher bigram pre-
dictability correlated with lower reading time. Indeed, the extra reading &ssociated with unexpected, anomalous,
or unpredictable words has long been used as a methodological toolgfapéxwith embedded anomalies). How can
we cash out this relationship between frequency, predictability, priyabnd reading time? In each of these cases,
low probability (unpredictable) items are read more slowly while lpgbbability items are read more quickly. Any
probabilistic model predicts the probability of upcoming wordfwu3 any probabilistic model could model reading
time by predicting that reading time is inversely proportional togtabability of upcoming words:

reading timéword) o 2 1 (22)

(word|contexj

Hale (2001) first noticed this fact about probabilistic parsers, andivedirst to propose that this intuition could be
probabilistically formalized in a probabilistic parser. His propas#hat the cognitive effort to integrate the next word
into a parse is related to how surprising or unexpected that word ishanthis surprise be measured by the amount of
information in the word. The information in a word can be measuraatintion-theoretically as the negative log of
its probability. Hale thus suggested that reading time was propaitio the negative log of the conditional probability
of a word given the context.

Equation 22 gives us a key clue to making operational predictions ataditg time from any probabilistic model.
Like any incremental probabilistic model, our Bayesian model incremergediicts the probability of all upcoming
words. Our model integrates many sources of evidence (lexical, syntati@ntic) into this probability computation.
Thus theEXPECTATION component of our model predicts that the time to process an input (fonjgbe to read a
word) is inversely proportional to the conditional probabilitytbé word given the lexical, syntactic, and semantic
evidence.

The second new way that the Bayesian model predicts increased reading time che alseed as a kind of
expectation-based effect. Recall that our model is a parallel one, keepinglendtiged interpretations. Our second
prediction is that a demotion of this top interpretation causes extrangeéiche. For example, since probability is
computed incrementally, an incoming word may make a previously dispeef@rterpretation more likely, causing
what had been the most-preferred interpretation to become second best. \Wé theddhese demotions cause an
increase in reading time. We refer to this prediction of our model agtmeNTION principle, since it is based on
our assumption that the comprehender places attentional focus on theufest-interpretation. Demotion of the
interpretation in attentional focus causes increased reading time.

In summary, the goals of this paper are threefold. First, we introthecedea of a Bayesian model for sentence
processing. Our model suggests how the Bayes net could be used to reprebabilistic aspects of human knowl-
edge of language, and how these probabilities are combined in compudipgpthability of an interpretation. Second,
we propose a specific architecture for parsing, a probabilisticditritarallel mechanism which makes specific predic-
tions about the relationship between probability and reading time. ¥z imad show that this model is able to account
for behavioral results.

In the next section, Section 2, we lay out the model in detail, show gxactl the probabilities are assigned to
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different parses of a word or sentence, how the Bayes Net is incrementallit esbthie sentence is processed word
by word, and what the predictions are about behavior.

Sections 3, 4, and 5 then show the model’s ability to handle behaviatal Gection 3 gives some motivating
examples which show how probabilities of linguistic structure candes to predict human preference in syntactic
ambiguities. In section 4 and 5 we turn to the two reading time studsesissed above, McRa al. (1998) and
Pickeringet al.(2000). It is important that our model be able to explain these beheesults for a number of reasons.
First, the two studies cover the two most frequently-studied kifidésambiguation: main clause/reduced relative and
direct object/sentential complement. Second, no previous probabhitistie! is able to account for the results of both
these studies.

2 The Bayesian Model

The fundamental insight of our Bayesian model is to build multipterpretations for the input, in parallel, compute
the probability of each interpretation, and choose the interpretatittntiaé maximum probability. Furthermore, this
probability plays a role in reading time; words or structure whichusrexpected (low probability) take longer to read.

In order to explicitly define our model and the probabilistic compaortetthat it requires, we begin by introducing
the basics of the use of Bayes rule for computing posterior probabili

We begin by considering an abstract form of the problem of choosinlgiginest probability interpretation. Imag-
ine that we are given an input sentenceand a set of potential interpretations i»,...4,. Our task is therefore to
compute the interpretatian that has the highest probability given the input sentendehis can be expressed by the
following formula:

1* = argmax P(i|s) (23)
1

The functionargmaxreturns the parameter which maximizes the value of its argument functimns dquation
(23) says that the best interpretatidnis that particular interpretatiofy which has the property that its probability
P(i;|s) is higher than the equivalent probabiliB(i,,|s of any other interpretatio,.

Equation (23) tells us that we could pick the maximum probabilitgriptetation if we just knew how to compute
P(i|s) for each interpretatiohand sentence. One way to estimate a probability of an event is called the Maximum
Likelihood Estimate: we simply count how many times the event occutsparmalize by the count of all relevant
events. So this suggests that we should comp\igs) by asking ‘out of every time that sentengeccurred in the
past, how many times did it have interpretati®. While this is in fact mathematically correct, it cannot be the
method that humans (or for that matter machines) use to compute the flitpledbnterpretations. The reason, of
course, is that language is creative and hence any given sentence is unlikale ogen ever uttered in the past, let
alone enough times to estimate the probability of each of its multipésiple interpretations.

Since the human sentence processor cannot be computing interpretaliahifities by counting every time they
occur in toto, we need a way to break down this probability computatismdo that we are counting smaller pieces of
an interpretation, each of which might have occurred often enough in tlegierpe of a language user to be counted.

We propose that the human solution to this problem is based on yidéas. The first key idea sompositional-
ity: humans break down probabilities by making use of the compositionpkpties of language; a sentence is made
up of words and syntactic structures. Generative linguistic theavighes us with good formal models of this kind
of grammatical compositionality. Phrase-structure rule systems npexiefree grammar rules systems, such as X-bar
phrase structure, provide a specific way to compose the structure ofiemsmtence out of smaller pieces. These
rules, as we will see in the next section, can be augmented with proleshilit

So we could compute probabilities for interpretations if we had a waypinbine these probabilities for smaller
structures into a single probability for an interpretation. The séd@y idea is thus a method for combining these
probabilities together: the use of tBayes rule Bayesian reasoning is important because these modern models of
linguistic structure are 'generative’. To simplify somewhat, a getiex model is one that computes a string from some
structure (for example a parse tree), rather than the other way arourekdfople, a phrase-structure grammar begins
with a start-symbol S, and then using rules lfke+ N PV P, expands this symbol, and then recursively expands the
daughter symbol#’ P andV P to generate sentences. Because linguistic rules are generative, they aratonadiyn
used to compute the probability that a particular interpretation 'geesmaparticular sentence. In other words, it turns
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out to be easier to compuf(s|:) than P(¢|s). Luckily the Bayes Rule expresses a fixed mathematical relationship
betweenP(s|i) andP(i|s), for any: ands, as follows:

(24)

Bayes rule says thak(i|s), the probability of an interpretatiangiven a sentence can itself be computed from
three other factors. The first factd?(s|i), is called thdikelihood This is the probability of seeing the sentence if
we were given that the interpretation wiasn other words, how likely the sentengavould be to occur if we knew
the interpretatiori was correct. The second factd?(:), is called theprior. This is the a priori probability of the
interpretation before we had seen any new evidence. The denomit(afois the probability of the sentence itself.

We can now use plug Bayes rule into (23)

P(s|i)P(i
i — argmax TCIP0)

TP @3)

We can simplify this equation a little. Consider the denominator t&(®). This represents the probability of
the sentence (sequence of worglg)ccurring. But equatiofi25) is asking ‘For a given sentensewhat is the most
probable interpretation?’. In other words, the string of wa¢ds the same for each of the interpretatiansThis
means that we can just eliminate it from the equation, since multipéafp probability by a constant cannot change
the ranking of probabilities that the argmax function is interpretirtgus our final equation has only two components
in the probability computation, théelihood P(s|¢) and theprior P(i|s):

likelihood prior
—
i* = argmax P(s[i) P(i) (26)

We will see the use of this combinations of likelihoods and prioriuture sections as we introduce the various
probabilistic estimators in our model (including the SCFG, valemobailities, andV-gram probabilities).

The next section introduces the Bayes Net, the computational mechaniswethiaed for implementing the on-
line probability computation that is central to our model, and the ide@nditional independence that underlies the
Bayes Net. We then return to flesh out our various probability estimators

2.1 Graphical Models as Probability Estimators

Our previous examples have dealt with complete sentences, and compahiagifities for complete candidate parses.
Indeed, statistical parsers were originally developed for text-prowggsirposes for which the entire sentence could
be parsed at once. But human language processing is incremental, and so odelparsing is done incrementally
from left to right as each word is added to the input.

The advantage of a Bayesian approach to language processing is that it givedslafwhat probability to assign
to a particular source of evidence, and how these individual pieces of eeidembined in coming up with an overall
interpretation that best fits the input. However, the sources of esidepdate in amcremental fashion, as input
comes in, and the posterior probabilities of different interpretataivage. So we need a method to compute the
incremental impact of new input.

We use Graphical Models (specifically Bayesian networksdisline updatesof individual estimators; for exam-
ple if we are estimating the probabilities of multiple possibleipretations of an ambiguous utterance, the network
will allow us to compute the posterior probability of each interpretatis each piece of evidence arrives. In addition,
the use of graphical models as a probabilistic estimator allows ustoparate any kind of evidence; syntactic, se-
mantic, discourse. This will allow us to capture the syntactic prohigsilcaptured by graphical models like HMMs
and SCFGs, while augmenting them with other probabilities, all in alinemanner. Inference in graphical models
relies on and directly exploits the structural aspects of the probabdiirce. Technically, the inference procedures
work by decomposing the overadiint probability distributionsnto a product otonditional probability distributions
This decomposition is based on exploiting the propertyafditional independence
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2.1.1 Conditional Independence in Graphical Models

Independence is a powerful property because it allows us to reason aboubreamtgin isolation. IfA and B

are probabilistic events, then evesitis independent of ever® iff P(A) = P(A|B) or equivalentlyP(A, B) =
P(A) x P(B). Note that is definition is symmetric. ThusisandB are independent events, learning about the
outcome ofB does not impact the outcome probabilities of evént

Unfortunately, most complex systems do not exhibit independencemb@oents. For instance, a patient's symp-
toms are often not independent since they are manifestations of somficsgisease. However it is often the case that
specific conditioning variables (the interface variables) render indepetideodbmponents of complex system. This
generalization of the idea of independence is calledditional independenc&wo components of a system exhibit
conditional independence when the observation of a third aspect (setalites)irenders them independent. Thus the
two components are independent given (conditioned on) the value dfitdeebmponent. For example, knowing the
disease (the conditioning variable) renders the symptoms independent.

It turns out that conditional independence does occur often in complesnsysand leads to significant savings in
representation and computation. Technically jfB, andC be eventsA and B are conditionally independent given
C iff P(A|C) = P(A|B,C) orequivalentlyP(B|A,C) = P(B|C). Thus if A andB are conditionally independent,
once we know the value @, B (4) is independent (gives no additional information) abdytB).

Conditional independence assumptions are often made in many commosgaatens. Common examples
include the assumption that symptoms are conditionally independemt g disease, and that the future and past are
conditionally independent given the present (this is the famous Maaksumption inherent in markov models). A
generalization of this notion of conditional independence is made in xoinée grammars. Here, we assume that
the derivation of a non-terminal at a certain position in a parse treeqftitside probability) is independent of the
derivation of the terminals dominated by the non-terminal in thattioos{the inside probability) given the identity
and position of the non-terminal in question. This allows us to dpleotine overall computation into top down and
bottom up components which can be computed independently and combinespfeciic node (position and value)
in the parse tree. We will have more to say about this in the next sedtigyeneral, conditional independence is the
key to reducing the representational and computational complexity itnigedpodels.

P()=0.1
HEART
P(-1)=09 ATTACK

pain into
Arm

P(H) = 0.001

P(~H) =0.999

h ~h

-c 95| .15 | .35 .05

~R 15 .95

Figure 4: A simple Bayes Net for a diagnosing diseases. The two peskdeases, indigestion and heart attack can
both cause chest pain, but only a heart attack can cause radiating arm pain. @hdergt from the links in the
network. Also knowing the disease is heart attack renders the symptamgicoally independent.

Our model is based on a Directed Acyclic Graph (DAG) version of graphicdketsaalled a Bayes net. Figure 4
shows a simple illustrative Bayes net that models the relationshipeketa set of diseases and the symptoms they
cause. The various nodes of interest (diseases, symptoms) are vertiecegtagh. In general, a Bayes net consists
of vertices which correspond to the variables of interest (such as possibleerminals in a parse). When a node
depends directly on another node, there is an edge between the appropriegés wethe graph. Hence, in Figure 4,
the vertex corresponding to the symptoohést paihhas arrows coming from the diseases it's vatlepends offin
this case bottheart attackandindigestior). If there is no direct dependence between two variables there is no edge
between the appropriate vertices in the graph (there is no edge betvikgastionandradiating pain to the arm

The basic expressions in Bayes nets are statements edvaditional probabilitiesFor exampleP(A|B) quanti-
fies the belief in the propositioA given that the propositio® is known with absolute certainty. Graphical models
use the principle of conditional independence as a basic representationiéivp. Edges between nodes represent
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direct influences between the variables.

The strengths of these influences are quantified by conditional prakesyithus for each variable nodewhich
can take values; . .. a,, with parentsBy, . .. B, there is an attached conditional probability tapld = a;|B; =
byy...,B, =0b,),p(A = as|B; = b,,...,B, =b,), and so on. The conditional probability table (CPT) expresses
the probabilities with which the variablé can take on its different values, given the values of the parent variables.
In Figure 4, the CPTs for the individual disease nod&sART ATTACK andINDIGESTION) are not conditioned on
any other variable (the disease nodes have no parents in the netwogkiie B). This unconditioned table represents
the prior probability (absent any evidence) of the diseases. Thus Apriori, acgptdithe network parameters, a
heart attack is much less likely than indigestion (.001 to .1). The CRiesdbr the various symptoms are shown
in the tables that quantify the influence on the specific symptom of dhieus joint assignments of values to the
parent variables. In Figure 4, we see that for the varialslesT PAIN we have two parentsiEART ATTACK and
INDIGESTION). The CPT for this variable has entries quantifying the likelihobthe symptom for all combinations
of values of the parent. For instance, in the case that there is neither a tacktrair indigestion, chest pain is
relatively unlikely (.05), but when there is a heart attack and no indigestiis quite likely (.85), etc.

The distribution over all the variables (the joint distributiean be compactly represented in Bayes nets. Figure 4,
if we use the chain rule of probability, the joint probability ofthle nodes is (by convention we will use lower case to
indicate variables (so the variahlbas two values, true and false):

P(i,h,r,c) = P(i) * P(h|i) * P(c|h, i) * P(r|h,1,c) (27)

By using conditional independence relationships, we can rewrite this as

P(i,h,r,c) = P(i) * P(h) * P(c|h,%) * P(r|h) (28)

where we were allowed to simplify the second term becauiseindependent of and the last term becaugas
independent of andc given its parenk.

We can see that the conditional independence relationships allow us toempttesjoint more compactly. Here
the savings are minimal, but in general, if we had n binary nodes, hjeifit would requireO(2™) space to represent,
but the factored form would requi@(n2*) space to represent, where k is the maximum fan-in of a node. And fewer
parameters makes learning easier.

Bayes Nets can answer queries about any set of variables conditioned on any offlee sétucture of the network
reflects conditional independence relations between variables, which allow apmEsiton of the joint distribution
into a product of conditional distributions. The Bayes net thusaadlas to break down the computation of the joint
probability of all the evidence into many simpler computations. Kkangple, in the example in Figure heart if there
is no conditioning evidence, then indigestion is much more likely tod&eart attack just based on the priors. Now
suppose a patient comes in with chest pain. There are two possible cautgs: feither he has had a heart attack,
or he has indigestion. Which is more likely? We can use Bayes’ rule tgputerthe posterior probability of each
explanation (where f=false and t=true).The the chance of a heart attack onrditin the symptom is

P(h:t,C:t) _ EinP(h:t,Z',T,C:t) _ 001 _
Plc=t) P(c=1) S

Ph=tlc=t) = 01 (29)

Pli=tc=t) X, Pli=tirc=t 06503 _

Pi=tle=t) = Plc=1) = P(c=t) T

59 (30)

The denominator for both calculatioris,; >, >, P(C =t) = .111 s the likelihood of the evidence.

In the case of a patient exhibiting chest pain{ t), the network predicts an increased chance (compared to the
Aprori value) of both heart attack and of indigestion, but not in the gamgortions. Absent any confirming evidence
of arm pain, the posterior probability of a heart attdéh = t|c = ¢) is still one in a hundred (sixty times less
likely than indigestion). Now, if new evidence comes in suggestingating) pain to the armr( = t), the picture
changes and the posterior probability of a heart attack becomes much lafgeofnpared to the other diagnosis of
indigestion. So as evidence comes in the posterior probability fdrdift variables changes to reflect the effect of
this new evidence. In general, the probability inference mechanism makes tieethe conditional independence
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assumptions to simplify computing the distribution over therguhodes conditioned other nodes. These algorithms
are calledbelief propagation algorithms (Pearl1988, Jensen 1995, Jordan 1999) and the exact computations are
outside the scope of this paper. The reader is referred to the referenced@edetailed treatment. We now turn

to how the notion of how conditional independence informs the cocisbn of our Bayes net model of sentence
processing.

2.1.2 Exploiting Conditional Independence in Sentence Processing

top down ‘top down

Jbottom up Jbottom uj

Phonolog

Figure 5: A Bayes net showing the structure of specific constructiongoatifferent levels, the phrase level and the
word level. In each level there are top down (syntactic, semantic, disctex®al, etc.) and bottom up sources (word,
phonology, visual input, etc.). The network embodies the assumitad given a specific construction, the top-down
and and bottom-up sources become conditionally independent. Uncertadrgyracture go hand in hand all the way
from the speech signal to discourse level constructions.

The crucial insight of our Bayes net model is to view specific interpretataslatent variableshat render top-
down 1) and bottom-up evidence () conditionally independent (d-separate them (Pearl, 1988)). We hggiath
that such a decomposition based on conditional independence exists iglenaltels all the way from the speech
signal (or visual text perception) all the way upto phrasal and even disedavel constructions. Figure 5 shows two
levels of the Bayes net structure which embodies this assumption.giire tn the left shows that a phrasal construc-
tion captures the correspondence between sets of words (bottom up) ard waet associations (n-grams), syntax,
discourse constraints and semantics (top down). The figure on fiteshigws that at a lower level of detail, a word
construction may itself capture the correspondence between sets of phicabimd prosodic features and higher
level features including the phrasal construction that the word is pdrt mterpretation, the top down constructional
constrains provide expectations (of the next word or the next@bgg) and the bottom-up constraints provide ob-
servational evidence of the recognized word (or phonology or pros@bih top down and bottom up evidence are
combined to arrive at an estimate of the overall support for a specificraatieh (phrasal or word level). We assume
that there are similarly structured networks below the phonology ([@here the bottom-up evidence may be features
extracted from the speech signal) and above the phrase level (wheredise f#vel construction may provide bottom
up evidence and discourse (and topic) level relations and informatigetste provide top-down evidence).

While our Bayes net based conceptual model supports integration ofrafimn across all these levels, the spe-
cific model implementation described in this paper is based on the phrastLotios level (the left side of Figure 5).
In work described in this paper, we assume that lexical access (the rightfskelgure 5) has already taken place.
Syntactic, lexical, argument structure, and other contextual informatitsasprior or causalsupport for an inter-
pretation (like Main Clause or Reduced Relative), while bottom-up wstiidgs other perceptual information acts as
likelihood, evidential or diagnosticsupport. Thus, it is a specific interpretation that captures explicimggncies
between syntactic, lexical and semantic sources. Technically, knowing énprietiation renders the various top down
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sources (syntactic, semantic, discoursejditionally independeraf the bottom-up sources (words). Of course, as
we will see in the next section, these sources (say syntax or semantibparseives structured and recursively de-
composable (for instance the Context Free Grammar assumption faixgymd the Bayes net formulation for the
particular source directly reflects the various conditional independencmpsns made and takes advantage of the
structure for inference. Our model is thus to have graphical models &#inal probabilistic estimators for the vari-
ous sources of support for a given construction. We then use a canagicaique for conjunctive source combination
calledNoISY-AND to come up with the overall estimate of the posterior probabilityafepecific construction.

To apply our model to on-line disambiguation, we assume that there seeof interpretationgd;, . . .i,) € I)
that are consistent with the input data. At different stages of the imputompute the posterior probabilities of the
different interpretations given the top down and bottom-up evideaer so far. As the input comes in, the posterior
probabilities for then interpretations are recomputed at different stages. Selection decisiondeipersd on how
an interpretation fits/explains the input (it's posterior valueegithe input). The interpretation that has the highest
posterior at a given stage in the input is thus the best fit to thet imipiinat stage. As the input comes in the fit of
different interpretations shifts up or down by different amounts.Heothesize that the reader is sensitive to certain
types of unexpected shifts which results in enhanced reading times. Oui&agpproach allows us to quantify and
test this hypothesis for different types of reading time data. The seotton outlines our model for computing the
various probabilistic components that provide evidence for an irgtation and our Bayesian network implementation
of the components.

We now describe how we compute the support for an interpretation\¥esiaus sources (syntactic, lexical, the-
matic) at different stages in the input and then combine the individumtssupports into an overall posterior proba-
bility of that interpretation at these input stages.

2.2 Individual Probability Estimators

We turn now to the details of computing the various probabilistimpgonents of the Bayesian model: our goal is to
arrive at an overall estimatB(i|s), the posterior probability of an interpretation given a sentence (feagyn How
should these probabilities be estimated? The computational lirggiig¢rature abounds with methods for estimating
these kinds of probabilities. One way to choose a method is to pickithglest estimation algorithm that meets
the constraints of psycholinguistic adequacy. We propose an dlgodonsisting of only three relatively simple
probabilistic components:

1. aprobabilistic word N-gram model
2. aprobabilistic syntactianodel
3. aprobabilistic verbal valencenodel,

The next three sections will define each of these three components.

2.2.1 Word N-gram probabilities

The first component of our model captures the intuition that there istaapilistic relation between adjacent words.
Words are often very good probabilistic predictors of followingre® We model this intuition with what is called
bigram probability first-order Markov relation or sometimedransition probability the conditional probability
P(w;|w;_1) of a wordw; given a previous worab;_1 .

It is important to understand how transition probability differsnfi word frequency. A word can be rare, but be
very predictable from the previous word. For example the vianebcis very rare (low frequency), but has a very high
transition probability from the wordireak thus P (havodwreak) is high.

Bigram probabilities can be easily computed from any corpus. The condlitiwobability of a particular target
word w; given a previous wora; _; can be estimated from the counts of the number of times the two words occur
togetherCount(w;_1w;), divided byCount(w; 1), the number of total times that the first word occurs:

C(wi,lwi)

P(’wi|wi71) = C(wifl)

(31)
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Figure 6: Bayes Nets for n-grams

2.2.2 Word N-gram probabilities in a Bayes Net

Probabilistic relations between adjacent words are modeled quite easilp Bayes net (see Figure 6) that models a
bigram probability the conditional probability? (w;|w;_1) of a wordw; given a previous worab;_;. Note that we
can quite easily extend the graphical model to capture more complicatedririg-gram) models.

2.2.3 A Probabilistic Syntactic model

There are a number of probabilistic models of syntactic structurs.]r&f these, perhaps the earliest and simplest is
the stochastic context free grammar. A stochastic context free gram@=&&()Ss a probabilistic version of the context
free grammar (CFG) or phrase structure grammar. The non-stocha&iis@#dely used throughout linguistics and
psycholinguistics as one of the mathematical skeleta which underlies geaérajuistics models like principles and
parameters, HPSG, and LFG (Sag-ref; Kaplan-ref).Phrase structure gremeifiaassumptions about

word grouping and ordering that date as far back as the psychologisiilvundt (1900), and were formalized
by Chomsky (1956). We have chosen to use SCFGs to implementtictusad portion of our model, because of their
relative simplicity and wide-spread use. Our model could easily be adaptdldeoprobabilistic models of syntactic
structure. We have also chosen a very simple and theory-neutral vef S@+6s.

In each context-free production, an ordered list of words and phrasaldgnaippears the right of the arrows|
while to the left of the arrow is a single symbol expressing somstel or generalization about these symbols. A CFG
can assign a structure to an entire sentence, represented as a tree, by comidiiptegres. Figure 7 shows the tree
representation of a derivation of the sentence ‘The horse slept’. €hisation consists of 6 CFG rules:

S— NP VP

NP— DT NN
VP— VBD
DT— The
NN— horse
VBD— slept
S [.47]
NP [.42] VP [.079]
|
Det [.60] Noun [.00071] VBD [.00039]
| | |
The horse slept

Figure 7: A parse tree for “The horse slept”, with SCFG probabilftieshe six rules.

A stochastic context-free grammar (SCFG) has the same phrase stmubtsras a CFG. What an SCFG adds is
that each context free rule is associated with a weight. This weight is titbtimmal probability of the right hand side
of a rule given the left hand side, i.e. the probability of a particukpamsion of a left-hand side. For example if the
expansions of a verb phrase node consist of SCFG rules of the following form:

[.079] VP — VBD
[.18] VP — VBD NP
[.051] VP — VBD NP PP
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Det [.6

The

then .079 is the probability thatP will expand toV NP, while .051 is the probability tha¥ P will expand toV NP
PP. These probabilities are all conditional ¥, which means that the probabilities of all the expansions of a given
nonterminal sum to one. These probabilities can be computed froeebank(a parsed corpus) by counting the
number of times each kind of rule expansion occurs.

The probability for an entire parse tréeand the surface sentence it produSds found by multiplying together
the probabilities for the CFG rules used to expand each node in the theis.tie probability of the entire structure
shown in Figure 7, that is to say the probability of the parse trgetkmr with the string of words, is derived as follows:

P(T,S) =

P(NP, VP, Det,Noun VBN|S, the, horse)

P(S — NPVP,NP — DetNoun VP — VBD, Det — the, N — horse)VBD — slept

P(S — NPVP) x P(NP — DetNoun) x P(VP — VBD) x P(Det— the) x P(N — horse) x P(VBD — slept)
AT % .42 %.079 % .60 % .00071 * .00039 = .0000000025 (32)

In other words, the probability of the sentence and the tree is thdupt®f the probabilities of each of the six
rules. More generally, for each noden the parse tre@reg let rule_expansion(njepresent the rule which expands
that node. Then:

FIX: REPLACE WITH THE EVIDENCE EXAMINED.

P(Treg S) = H p(rule_expansiofn)|n)
neclree

Figure 8 shows the SCFG parse tree for the sentence

The horse raced past the barn fedlhich will play a role in our later descriptions of our sentence prongssgorithm.

NP [.42]

0]

S [.47]
NP[.MW&)]
VP [.14]
PP [.93]
NP [.42]
Noun [.00071] VBN [.000022] P [.0011] Det[.60] Nou®@061] VBD [.0015]
h(‘)rse rz‘iced ‘past ‘the ‘barn ‘ fell

Figure 8: A parse tree for “The horse raced past the barn fell”, with SGBGailities for the rules. These probabil-
ities were drawn from the Penn Treebank annotation of the Brown coegaspt for the ruld/BN — raced which
didn’t occur in the Brown corpus, and was estimated using the web.

2.2.4 Processing SCFG probabilities with the Bayes net

We begin with a description of how the Bayes net computes the SCF@mpat our probabilistic model in an
incremental fashion. In this paper, we will consider only Bayes nets for previogsinerated partial parse tree
structures. We assume the presence of a chart or some mechanism to dyyageivathte the partial parse trees
for the input, given a grammar. Given a parse structure, we generate thepapte Bayes net and compute the
posterior probabilities for the competing interpretations. It $upnt that we can set up a relatively straightforward
correspondence between the computation of SCFG probabilities by a pistltabarsing algorithm (as described in
the previous section) and the ‘belief propagation’ algorithm of Bays®n
The correspondence is as follows:

3More technically, for those who are interested, the In€dégide algorithm applied to a fixed parse tree structurbtained exactly by casting
parsing as a special instance of belief propagation (Naeay2004).
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e The parse tree is interpreted as a Bayes net.

¢ Non-terminal nodes in the parse tree correspond to nodes in the Bay#seneainge of the variables being the
non-terminal alphabet.

e The grammar rules define the conditional probabilities linking pareshthiid nodes.

e The S nonterminal at the root, as well as the terminals at the leaves representiaindievidence to the
network.

e Conditioning on this evidence produces exactly the conditionalgiitibes for each nonterminal node in the
parse tree and the joint probability distribution of the pdrse.

Consider the partial parse state after the input “The horse raced”. Fgirews the partial SCFG parses for the
main clauseM C and reduced relativeR R interpretations for this input (recall the definition of the main claase
reduced relative interpretations of ‘The horse raced past the barn. .ectio8 2.2.3.)

N VAN
AR S
4N AR

N VB

D
The  horse raced TLE horse  raced

Figure 9: MC and RR SCFG parse states (parses in chart) for the inprihdnise raced.. ..

MV

DO @

|

Figure 10: Pieces of Bayes networks corresponding to two SCFG parst fprefix ‘The horse raced ...". The
... label on specific nodes in the Bayes net indicates sums over all contmuefithe partial parse state.

The orseraced The horseaced

40ne complication is that the the conditional distributiona parse treeP(Y, Z|X) is not the product distributiorP(Y'|X)P(Z|X)
(it is the conjunctive distribution). However, it is podsitto generalize the belief propagation equations to adwomijunctive distributions
P(Y,Z|X) and P(X,V|U). The diagnostic (inside) support become@) = > A(y)A(z)P(y, z|z) and the causal support becomes

m(z) = B Zu , T(W)A(v)P(z, v|u) (details can be found in Appendix A).

Y,z
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Figure 10 shows the equivalent Bayes net for the parse tree in Figuf@eé probability of the MC parse can
be computed by belief propagation on the Bayes net in Figure 10. Noteotiditional independence statements
reflect the context free assertion made by SCFG grammars. At this pdira input, the network expresses the active
structures after seeing the wdit horse raced

At this stage of the input, the network is thus computing theofeilhg probabilities:

The M C andRR parse likelihoods, given the input and the conditional independenegiass embodied in the
Bayes netis

P(T,S)4;c = P(NP,VP,Det NounVBD, Y (...)|S, the, horse, raced)
= P(S — NPVP,NP — DetNounVP — VBD}(...),Det— the, N — horseVBD — raced)
= P(S — NPVP) x P(NP — DetNounj x P(VP — VBD) (...)) x P(Det— the) x P(N — horse)
x P(VBD — raced)
(33)

P(T,S)%r = P(NP,Y.(...),NP,VP,Det Noun VBN, Y (...)|S, the, horse, raced)
= P(S = NP> (...),NP — NPVP,NP — DetNounVP — VBN>(...),Det— the, N — horseVBN — raced)
= P(S = NP} (...)) x P(NP— NPVP) x P(NP — DetNoun x P(VP — VBN>(...)) x P(Det— the)
xP(N — horse) x P(VBN — raced)
(34)

Figure 11 shows the equivalent Bayes net for the parse tree obtainedtateadiagdt + k) after the inputhe
horse raced past the barn

The horserdced past the barn The  horseraced past the barn

MV PARSE TREE RR PARSE TREE

Figure 11: Pieces of Bayes networks corresponding to two SCFG parsteefprefix ‘The horse raced past the
barn...’. The ...label on specific nodes in the Bayes net indicates sumalbgentinuations of the partial parse
state.

The M C andRR parse likelihoods, given the input and the conditional independenegiass embodied in the
Bayes net is

P(T, S)i\j}é = P(NP,VP,Det Noun VBD...|S, the, horse, raced, past, the, barn)

5Note that the use of the . labeled nodes are technically the result of summing oveasaabsible completions of the SCFG structure starting
with the specific prefix non terminal. This part of the moddiisilar to the Jurafsky (1996) model and uses well knownritlyms to compute the
prefix probability (Jelinek and Lafferty 1991; Stolcke 19%&r a given SCFG grammar.
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= P(S — NPVP,NP — DetNoun VP — VBDPP, Det — the, N — horse,VBD — raced,
PP— PNP,P — past, NP — DetN, Det — the, N — barn)

= P(S — NPVP) x P(NP — DetNoun x P(VP — VBD} (...)) x P(Det— the) x P(N — horse) x
P(VBD — raced) x P(PP— PNP) x P(P — past) x P(NP — DetN), x P(Det— the),
x P(N — barn) (35)

P(T, S);‘}f = P(NP,VP,Det Noun VBN, Y (...)|S, the, horse,raced, past, the, barn)
= P(S — NP..,NP — NPVP,NP — DetNounVP — VBNPP,Det — the, N — horseVBN — raced,
PP— PNP,P — past, NP — DetN, Det — the, N — barn)
= P(S = NP} (...)) x P(NP—= NPVP) x P(NP — DetNoun x P(VP — VBNPP) x P(Det— the)
X P(N — horse) x P(VBN — raced) x P(PP— PNP) x P(P — past) x P(NP — DetN),
x P(Det — the), x P(N — barn) (36)

Of course at the next stage in the input, the sentence ending markehafteotd “fell.” leaves only one interpre-
tation, namely the RR interpretation.

2.2.5 Lexical Valence Probabilities

The syntactic part of our model, SCFG, was used to capture structurahfamis grammatical knowledge. The third
part, a model oprobabilistic verbal valences designed to captunealenceknowledge, the biases and expectations
that a predicate (such as a verb) has for its arguments.

In most proposals for the lexical representation of verbal semanticsethenas expectations for particuthie-
matic roles Some verbs expect roles like agent and theme, other expect propositidrsy on, Our model expresses
the probability that potential arguments play particular thematic rolélse verb. This thematic role probability ex-
presses the probabilistic dependency relation that a verb has in agsapiarticular thematic role to a particular
argument. This probability is conditioned on the head words of themaegt and on their syntactic position.

For example, the verblectedmay have a preference to assign an agent role to the subject noun fhawaset
a patient role to the object noun phraeem Or the verbopenmay prefer to assign the thematic ralgentto the
subject ‘The window-cleaner’ but the thematic ritemeto the subject ‘The window’.

Since verbs may have more than one argument, this verb-argument exprecsaitbe expressed as the expectation
of a verb for a set of arguments and their thematic roles. For example @g@atexpresses the probability of the verb
takeassigning the Agent semantic role to its subjecttN@/given all the other arguments in the sentence.

P(subject=Agerjverb=takesubject=theyobject=bookstoPPcomp=to the librajy (37)

While these probabilities can in principle be computed from corporaenticorpora do not seem to be big enough
to contain such specific counts. For example, the 100 million wordsBritiational Corpus contains no instances of
the verb “fired” with a subject NP whose head noun is “employer” or an objeavhi#3e head noun is “employee”.

This suggests that people may also not be storing this exact prapabitiey may instead be approximating it
in various ways. One way to approximate this probability is to assimaiethey are stored over semantic clusters of
words rather than individual words. Thus eventually methods such stechg or other uses of semantic features can
be used to generalize corpus counts. Another way to approximate thiahiliybis to assume that the probabilities
of the individual arguments are independent. We would then be congpetipectations separately for each argu-
ment. For example for the thematic role of the subject of the ettt we would compute the following conditional
probabilities:

P(Agentverb=electsubject="they)
P(Theméverb=electsubject="they)

This thematic fit probability would be computed separately for evergmi@l argument, not just the subject.
Thus the preposition phragy the copin the sentenc&he crook was arrested by the ¢ggays the agent role for
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arrest Thus the probability expressed by Equation 38 will presumablyiteeh than the probability expressed by
Equation 39:

P(Agentverb=arrestbyPP="the cop} (38)

P(Theméverb=arrestbyPP="the cop} (39)

Even these less complex independent probabilities for each argument remunits that are too rare to find in a
corpus. Eventually these can be computed via clustered models or by cogprababilities over semantic features
rather than words. In the current study we relied on norming studresafch of the behavioral experiments we are
modeling. In one experiment, we will model data from McRdel. (1998), using their norming study counts. In
their study, the typicality of the noun as a filler of the agent versemthrole was determined by having 36 subjects
complete a rating task, answering questions like the following:

(40) How common s it for a crook tarrest someone?

(41) How commonis it for a crook to kerested by someone?

Their subjects judged role filler typicality on a 1-7 Likert; 1 correspeehto a very uncommon event, and 7 to a
very common event. We converted these numbers to probabilities bympthem (dividing the value by 7 to get a
probability value between 0 and 1).

Our second set of experiments model data from Pickegirad. (2000), using probability parameters taken directly
from the Pickering study itself. They asked subjects to complete serfrageaents like “The young athlete realized”
or “The young athlete realized her”, and counted the number of times that thgletns were syntactic direct
objects or semantitHEMES (“The young athlete realized her goals”) versus the number of times thatti@etions
were syntactic sentential complements or semaRrimPOSITIONS“The young athlete realized her exercises weren't
working”). The result was a set of probabilities of theeME or PROPOSITIONargument. given the verb, the initial
NP, and the word “her”. Because in these cagesMES correspond to DOs, arrRoPOSITIONScorrespond to SCs,
Pickeringet al. (2000) referred to these as SC versus DO probabilities, as follows:

(P(SC)|V = realized)
(P(DO)|V = realized)
(P(SC)|VP = realized, [npher . ..], Initial NP = The, young, athlete)
(P(DO)|V P = realized, [npher . ..], Initial NP = The, young, athlete)

Our model thus includes syntactic subcategorization probabilities asisvie thematic subcategorization prob-
abilities we have been discussing. We believe it is likely that it éllpossible to modify the model to rely solely on
thematic probabilities; that is, thematic probabilities may obviaeted for syntactic subcategorization probabilities.
However we save this research to be addressed in future work.

In general we believe our estimates of valence probabilities are quitd.réggvas true with our SCFG probabil-
ities, our goal is not to test this particular model of valence representdtitt to show how an approximate instance
of this knowledge type can be incorporated into our Bayesian model.

2.2.6 Processing valence probabilities with the Bayes net

Figure 12 outlines the basic structure of the Bayes net for proceiggngalence probabilities. In our model, we
compute the support for an interpretation given a verb and all its sigmratation information (syntactic arguments
(Syncat) and their fit to verb specific thematic/frame roles (Role)). Inaadibur model makes the following condi-
tional independence assumptions.

1. The identity of the verb determines its argument structure bias. i¥lshown in Figure 12 as the node labeled
Frame depends only on the identity of the verb.

2. The thematic fit of an input phrase (for the different roles (theme tigkpends only on the identity of the verb
and the potential argument fillers in the input (labeled as Argl, Argrgn). The conditional independence
assumption made here states that dependencies between a verb and it's sygtatintris captured by the
various semantic roles. This leads to the structure in the second ribvg BRyes net in Figure 12.
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P(Fit | Arg3, V)

@ P(l | Frame, Fit(V, Argl), Fit(V, Arg2), ...)

Figure 12: Bayes Nets for valence Probabilities. Given a verb (predichéeprobability of frame (thematic) roles
fitting specific argument fillers is computed along with the subcategairzbias (frame) for the verb (predicate).

3. Specific interpretations constrain the various thematic fits for engierb frame. For instance, the reduced
relative interpretation (I) requires that the subject (Argl) be the éh@tit) for a transitive verb. Thus a specfic
interpretation (I=reduced relative) captures the dependencies between the verfffeane=transitive) and the
various thematic role bindings (such as Argl:subj=theme). Thiseictimditional independence assumption
that leads to the third row in the Bayes net of Figure 12.

The second row in Equation 42 embodies the three conditional indeperaenaaptions stated above. made
in this computation.

P(Ival) = P(I|V,arg1,args, .. .argy, them_fit(V, R;,arg;) : Vi € Roles(frame))
= P(I|frame(V),them_fit(R;|arg;, V) : Vi € Roles(frame), j € Syncat(frame)
(42)

The first two conditional independence assumptions result in thelenligger of Figure 12 and the final depen-
dence is captured by the bottom layer in Figure 12. We now turn to hisnBdyes network is used to model the
lexical/thematic dependencies for the studies reported in this paper.

Figure 13 and Figure 14 show the Bayes net for the lexical and valencalplibbcomputations for the McRae
et al. (1998) data. Figure 13 (top row) shows the structure and probabiéncoded. In general we quantify the
semantic fit (Agent or Theme) based on the identity of the verb and thadimtategory argument (subject, object,
etc.) We also quantify the argument structure (transitive or inttimaspreference (bias) based on the identity of the
verb. HereArgl1 is the Subject NP andrg? is the by Prepositional PhraggP P. The networks at the bottom row
show the MC (left network) and RR (right network) for the input “Tlgness examined by the lawyer turned out to
be unreliable” at different stages of the input.

In all these cases, the node labelédthe root node of the semantic Bayes net) represents a variable that ranges
over the set of verbs. For a particular verb (ldees}, this node would set to a particular value (V = arrest). The node
labeledFrame has values [transitive, intransitive]. The conditional probabilgjues quantify the probability that
the Frame node has a specific value (trans, intragisen the identity of the verb (such as arrest, examine race). So
if the domain of interest were restricted to the three verbs (arrest, eraand race) , the table entries for tieame
node would be as follows in the second column of Table 1 below. Theusthematic fit conditional probability
distributions are shown in the third column of the table.

As input comes in, more of the lexical/thematic network gets instaati@horeargi nodes have values) and the
fit of the new potential argument nodes to frame/thematic roles can be cethpdis in other models (Gildea and
Jurafsky 2001), we assume an enumerated set of possible thematic roktgvses aggregating over these roles with
theoTHERvalue for the fit (as shown in Figure 14). As in the case of Bayes net nebdghtax (SCFG), input coming
in allows for the re-estimation of posterior probabilities for tliffedent interpretations.

Table 1 and Table 2 show examples of parameters encoded in the lexical BayeFigeténl3. Table 1 pertains
specifically to the network in Figure 13. In our model, different intetations impose constraints on the network.
We evaluate the constrained networks to compute the total posteriardarticular interpretation. The bottom left
and bottom right networks in Figure 13 specify the constraintsifei\ C and RR interpretations respectively. For
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Argl1:Type(Subj) V:examined Arg2

P(Frame | V)
P(Fit| V, Arg2)

Agent transitive Agen
Theme) [ |ntran5|t|ve other
P(Fit| V, Argl)
LEXICAL NETWORK AFTER "NP V"

Subj = The Witness V = examined Arg2 Subj = The Witness V = examined Arg2

P(Frame | V)

transitive

Agent transitive Agent] L Ve ] Agent
Theme rLlntransmve [ gen Theme intransitive other
P(Fit = Agt |

=examirfe, S=Witness) P(Fit = Theme | V =examine, S= Witness)

MAIN VERB INTERPRETATION REDUCED RELATIVE INTERPRETATION

Figure 13: The Lexical/Thematic Bayes net for valence for the Mcrae MC/iaiRnple. The bottom left shows
the network computation for the MC interpretation and the bottotnt tige network for the RR interpretation. The
networks are shown for the input The witness examined .... The ard@ is yet to be instantiated and so has no
values assigned. The two competing interpretations condition thealaxeétwork (shown unconditioned on the top
figure) with different constraints. For instance MC interpretation ireguithat the Subject NP be the Agent. These
conditioned values are shown in boldface font. The overall postermorgputed based on the network parameters
and the conditioning values.

[ P() | P(FrameV) | P(Fit]V, Sub) |
P(I = MC) || P(transitivdverb=arrest P(Fit=Agentsubject=crook,verb=arresjed
P(I = RR) || P(intranstivéverb=arrest P(Fit=Themeésubject=crook,verb=arresfed
P(I = MC) || P(transitivdverb=examing P(Fit=Agentsubject=witness,verb=examijne
P(I = RR) || P(intransitivéverb=examing || P(Fit=Themésubject=witness,verb=examjne
P(I = MC) || P(transitivéverb=race P(Fit=Agentsubject=horse,verb=raced
P(I = RR) || P(intransitivéverb=race P(Fit= Themesubject=horse,verb=raced

Table 1: Constraints on parameters for the lexical valence probabilitpetation for different interpretations (MC
and RR). The table above shows the lexical valence structures for trensegstThe crook arrested ..., The withess
examined..., and The horse raced ...

instance M C requires the subject NP to be dgent, while RR requires that thé'rame variable be set to the value
transitive and the subject NP to beTaheme. The M C interpretation could either have a transitive or intransitive
frame, so there is no constraint imposed on the subcategorization foatésfinterpretation.

How do these constraints play a role in the evaluation of the netword@mpute the posterior support for the two
interpretations # C andRR)? To illustrate this, we now go through a simplified evaluatiomhef two networks to
compute the\/ C andRR posteriors after the input “The witness examined” (see Figure 1&abw). For thel C
interpretation, the thematic posteridf,C?, . (tis the index into the specific stage where the posterior is computed
(after “NP V")) is®

P(V, Argl = Subj, Frame, Fit(Argl,V) = Agent|V = ezamine, Subj = witness) =
P(Fit = Agent|V = examine, Subj = witness) Z (FramelV = examine) =

Frame
P(Fit = Agent|V = examine, Subj = witness) (43)
(44)

SFor ease of exposition, we don't consider the yet unseendarg?. It's effect on the posterior at this stage is the same fotvilosinterpretations.
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Argl:Type(Subj) v Arg2:byPP

©)

P(Frame | V)
XN

P(Fit | V, Arg2)

Agent transitive Agem
Theme) [ |ntransmve other
P(Fit | V, Argl)
LEXICAL NETWORK AFTER "NP V PP"

Subj = The Witness V = examined byPP = by the lawyer Subj = The Witness V =examined byPP = by the lawyer

_P(Frame | V) y (FFQW (A%)

<

Agent transitive
eme intransitive

Agent] transitive ] ‘Agent
[D gent Theme] intransitive other
P(Fit = Agt | —exam|

ther

, S=Witness) P(Fit = Theme | V =examine, S= Witness)
P(Fit = Other | examined, byPP) P(Fit= Agent | V =examined, byPP)
MAIN VERB INTERPRETATION REDUCED RELATIVE INTERPRETATION

Figure 14: Bayes Nets for valence Probabilities for the McRae exampleasgrestage (compared to Figure 13 after
the “byPP” input has been processed. Hdrg?2 is the byPP for the input “by the lawyer” phrase. The bottom left
shows the network computation for the MC interpretation and thebyotight the network for the RR interpretation.
The networks are shown for the input The witness examined by thestaw. The by phrase and the second NP (the
lawyer) are additional input nodes that influence the thematic fit andasteigors. For instance RR requires that the
second NP be the Agent.

The M C interpretation does not constrain tfieame, since it can apply to both transitive and intransitive verbs.
To take account for this fact, we sum over all it's values. This summati@ndginalizing over the¢rame variable) for
a given verb sums up to 1 and hence gets taken outof the final equation.

The RR interpretation, however, requires the verb to be transétivetthe subject to be the theme. Hence, here we
have the two constraints (shown in boldface in Figure 13. Withehesnstraints, the reduced relative interpretation
thematic posteriotlRR!, is

P(V, Argl = Subj, Frame = transitive, Fit(Argl, V) = Theme|V = examine, Subj = Witness) =
P(Fit = Theme|V = examine, Subj = witness) x P(Frame = transitive|V = ezamine)
(45)

Our second study modeled the sentential complint&titversus direct objecDO behavioral data reported in
Pickeringet al. (2000) (recall “The athelete realized her ...” examples from the previou®seuntd from the in-
troduction). Table 2 shows the parameters for the different interpetafSentential Complement (SC) and Direct
Object (DO)) after the input “the young athlete realized her potential”. Betdithe network structure and model can
be found in Section 4.3.

[ PU) | P(FrameV) | P(Fit]V, Sub) |
P(I = DO)! P(DO(frame)verb=realiz¢ || P(Fit=Agentsubject=athlete,verb=realized
P(I=50) P(SC(frame)verb=realiz¢ || P(Fit=Themeésubject=athlete,verb=realized
P(I = DO)*** | P(DO(frame)verb=realiz¢ || P(Fit=Themeésubject=athlete,verb=realized,NP= her poteptial
P(I = SC)t*! || P(SC(frame)verb=realiz¢ || P(Fit=Propositiofsubject=athlete,verb=realized,NP= her potept|al

Table 2: Constraints on parameters for the lexical valence probabilitpetation for different interpretations (DO and
SC). The table above shows the lexical valence structures for the senftéecgsung athlete realized her potential. . . at
two stages; one before and one after the NP “ her potential”.
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2.2.7 Other estimators

Figure 5 shows our general architecture involving different evideatialces (top-down and bottom-up) that con-
tribute different degrees of support for an interpretation. We desttiilbdetail three of the simplest estimators which
as we show in the following sections suffice to model important aspéd¢tarnan sentence processing. Of course,
as we are able to investigate more subtle aspects of sentence and discouessipg, we fully expect (indeed as

Figure 5 suggests), other estimators including discourse and deepantgesources to become increasingly neces-
sary and important. We further believe that these sources exhibifisagn structure and the techniques for building

structured estimators (as for the syntactic and lexical/thematic soweds)ombining them (described in the next

section) provide a flexible and natural framework to investigate ttwgitributions to language interpretation. We (and
we hope others) will use our framework for adding new knowledgegces, making predictions about reading times
and other even finer-grained aspects and testing their validity experinyentall

2.3 Combining probability estimators

The last section outlined how we calculate the various probabilistiggoments (the syntactic, lexical valence, and
word N-gram) of our Bayesian model. Of course, all of these (and possib&r) components have to be combined
to provide an estimate of the total posterior probability for a givéerpretation.

In some cases, as with the SCFG, we have relatively complete modelsinfi#pendence assumptions between
probabilities. In other cases, for example between thematic and syntaati@hlities, we do not yet have a good idea
what the exact causal relationship is between probabilities.

Ideally, we would like the combination technique to be independeriteotiita domain, so we can avoid creating
one rule for the interaction of syntax with semantics and another fantbeaction of syntax with lexical valence and
yet another for the interaction of syntax with word N-grams etc.

Fortunately, there is a canonical and widely applicable model of proht#bdsurce combinations that works for
our purpose. The model is calledh@isy-AND model (Pearl, 1988) which is the method of choice when a member
of a set of several components (say the syntactic component) can cause a spéxifine (in this case a specific
interpretation to be selected), and where the likelihood of the outcorey high only when all the conditions prevail
simultaneously. Theoisy-AND model (Pearl, 1988) is thus a causal independence assumption made iniogmput
the conjunctive impactf the multiple sources. Furthermore there is now good evidence @i@velopment studies
that this model seems to be an important inductive bias in causal learnthgdren (Cheng 1997).

TheNoIsY-AND model makes the following two assumptions.

1. Accountability: An Event E is false if any of the causal factors is false.

2. Enabling Independence If both conditions C1 and C2 can cause an Event E, then the mechanism #idéeslis
the effect of C1 on E is independent of the mechanism that disables the efté2iouf E.

The NOISY-AND model is the probabilistic interpretation of the logical AND. In tm@del, each parenX;, a
binary stochastic variable, is interpreted as the condition for the éff¢atso a binary stochastic variable). So in the
case in Figure 15, the various parents are the different types of ddpptite competing interpretatiods andI,.’

TheNOoISY-AND requires that the enabling effects to be independent. Let us assume théthefedn individual
source,S; € S, is characterized by the enabling probabijity = P(I = t|S; = t). Then, using theioISY-AND
causal independence assumption, the interpretation is true to the thetethte enabling sources (s) are active.

PI=T)=]] ps (46)
S;=t

P(I=F)=1-]] ».
S;=t

"There is also a generalized versiomaiisy-AND calledNoOISY-MIN that allows for multiple (non-binary) interpretations te simultaneously
considered.
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N-gram support Syntactic Support

Type(Subj)

Semantic Support

transitive
intransitive

P(Arg | V)
Agent
Theme,
The  witness ekamined

P(Sem|V, S)
NOISY| AND

Interpretation

Figure 15: Thenoisy-AND Model to combine multiple conjunctive sources for an interpretafion

So for a set ofn sources; to s, (with a posterior probabilitie®(S; =t) ... P(S,, = t), we have the following
equatiort

P(I=T)= [] P(Si=1) xp.,
s=1

(47)
Notice that is we set uniform weights @ffor the influence of the individual sourcés;, = 1;Vs; € S), the
equation above becomes a multiplication of the posterior probabititittee individual sources.
P(I=T)= ][] P(Si =t (48)
s=1

For all the experiments described in this paper, wenget 1.

In our model, we need to compute the posterior probability of each meetjonl; € (I;...I,). Since hu-
man parsing is incremental, we will need to re-compute this probabiliéy abch input stage, i.e. after each word
t; € (tl ..

tx). Thus the preferred interpretation at each stage is the interpretation miadmizes this posterior
probability. In other words, the preferred interpretation at timkt, is:

P*(I') = argmax  P(I}) (49)
icinterpretations

How are each of these posterior probabilities of parses computed? Theigogtobability is aNOISY-AND of
all the different types of support for the interpretation (includiexgcal, syntactic and valence support). lsetange

over them various types of support for an interpretatieng (syntaz, lezical,valence), m = 3. ThenP(I}), the
probability of an interpretatiofy can be computed as follows:

s§=m It

P(I}) = ELK;,& (50)
j=1 Hs:l Ijs

In other words, for each type of evidential support for an interpretatie separately compute the probability of
the interpretation given that support, and then sum and normalize.

8Recall that in our sentence processing model the posteritrapilities of the various sources are the output proltigsilof the estimators
described in the previous section.
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How are the probabilities given each of these types of evidence computed® tliiussed 3 types of evidence:
lexical N-gram, syntactic, and valence. The posterior probability given each kindiddrece can be expressed as
follows:

P(Iflex) = P(I}|(ngram-modko; , ws, ..., w;) (51)
P(Ifsyn) = P(I}|(syntactic-modého; , ws, ..., w;) (52)
P(vaal) = P(I!|(valence-modétv,, wa, ..., wy) (53)
(54)

To summarize, the best interpretation at tim@* (1t), can be computed as:

P(I} ) x P(If,,) < P(I} )
P*(I') =  argmax lex = Ssy:nm - val (55)
icinterpretations io1 ez 1,

Thus the preferred interpretation is the one which has the maximurarprgirobability given all the evidence.

3 The Predictions of our Model

The previous section described how the model assigns probabilitéiffdoent parses of sentences. In this section
we describe how the probabilities, and the on-line updating of thesgabilities as each new word is read, affect
behavioral performance.

The first kind of behavior that the model predicts is parse preference hé\previous section described, the
preferred interpretation is the one which has the maximum posteribapility given all the evidence. The previ-
ous section also described how this probability is computed. Thusrétiéction of the model is that the preferred
interpretation at any point in the processing of a sentence is the ietatipn with the highest posterior probability.

The remainder of this section focuses on a further behavioral predigifogessing time. We will describe two
predictions about how long it takes to read words or phrases in the ¢afifgrticular ambiguities.

3.1 Reading time: the role of the Expectation principle

Our first reading time prediction has already been sketched in Equation B2 inttoduction, and is based on the
expectation principle. This principle states that the parser impligiyntains probabilistic expectations about up-
coming words and structure, and that the parser assumes that futurewilbtsconsistent with these probabilities.
Words which violate these expectations produce increased reading time.

Equation 22, repeated below as equation 56, gives the heart of the proposal.

reading timéword) x P 1 (56)

(word|contexj

In order to operationalize this proposal, we have to flesh out the®fmord/contexj. The conditional probability
of a word given the previous context can be expressed as follows:

P(w;|wy, ws - - - w;—1, parsetrewy, ws - - - w;_1 ), valencgws, ws - - - w;—1)) (57)

Following (Hale, 2001), we can use the definition of conditional ptility to re-write this equation for conditional
probability as the ratio of two joint probabilities. This rewnitekes it clear that the conditional probability of a word
given the context is related to tliehangein probability caused by the introduction of a new word. As in thevjous
section, we usé (It) to mean the probability of interpretatidnat timet:
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P(w;|wy,ws - - - wi_1,
parsetre@u;, ws - - - w; 1),
valencéw;, ws - - - w; 1))

P(wl...wi,l)
_ P
- PItY) (58)

Thus the conditional probability of a word can instead be expressedadis af two probabilities: the probability
of interpretation/ at timet divided by the probability of interpretatiohat timet — 1. But this equation relies on the
simplifying assumption that each sentence only has one interpretatiaou@e this isn’t true, and since our model
has a parallel architecture, more than one interpretation may be maintainedtahanyRecall from the previous
section that we therefore need to compute the posterior probability ofieepretationl; € (I, ... I,) for each
input stage; € (¢; ...tx), and then combine these via NOISY-AND:

-1 7
j=n s=m ¢
=" 1,

j=1 s=1

P(I}) =

i (59)
wheres ranges over then various types of support for an interpretatierg (syntaz, semantics, lezical, thematic).

How does the ration of probabilities we have discussed lead to a claint plmessing time? Let us define a
variable corresponding to the change in probability caused by thalinttion of a new word, called, and allow in
its definition the possibility of multiple interpretations:

P(1t
5(1) = i) (60)
P(I;)
We can now give a flesh out the intuition of Equation 56 as follows:
ProcessingTin]gXpectationw —6(Ly) (61)

3.2 Reading Time: the role of the Attention Principle

The second reading time prediction comes from the Attention princigliehistates that although the comprehension
mechanism may keep multiple parallel interpretations, that the attentmmed fs on the most-probable interpretation.
Any time this highest-ranked interpretation drops from its hig$itian, the surprise causes a longer reading time. One
way that a re-ranking can cause a processing delay is when a new word is readamtdchthe probability of the
first interpretation more than the second-ranked interpretation, catlg@rtgvo to become reordered, or ‘flipped’ in
preference. Since the first interpretation has attentional focus, attentistrsiiift whenever some other interpretation
replaces this one, causing a processing delay.

The mathematical definition of reordering is quite simple. Recall Btgf?), the most preferred interpretation at
timet, is defined as the interpretation which has the maximum posterior piitypabi

P*(I') = argmax  P(I}) (62)
icinterpretations

A reordering is then defined as a change in preferred interpretation:

P*(I) # P*(I'™Y) (63)

Any reordering of this kind causes a reading time increase. What is the tudgof this increase? The expectation
principle predicts a reading time increase proportional to the changeolmability massg(Z;:). What additional
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increase in processing time should be accounted for by the reorderinganité&now the amount of this increase in
advance, but we make the simplifying assumption that it is a lineariftmof the expectation-based reading time.
Letwy;, be a weight which indicates the additional increase do to reordering.ollbeving equation then gives our
prediction for the impact on processing time.

ProcessingTiqueordering ~
—wyip X 6(I;t), if P*(I') # P*(I'")
=\ o), it Pr(I) = P*(I'")

While we are not able in this paper to exactly determine the proper vaituesf;,, we will show later that simply
settingwy,;, to 2 accurately accounts for behavioral results.

4 Motivating Examples: preference handled by a probabilistic model

Before we turn in the next two sections to test our probabilistidehagainst behavioral results from (McReteal.,
1998) and Pickeringt al.(2000), we use this section to show how the probabilistic model earsed to explain parse
preferences due to probabilistic structure. We choose two simple éxapneference due to morphological category
probability, and preference due to syntactic category probability.

4.1 Morphological Category Probability

We know that the frequency of words and in particular of the differempimological or syntactic categories of a word
plays a role in parse preference. For example Burgess and Hollbach (1@8Buaswell (1996) studied words such
assearchedandselectedwhich are ambiguous between a preterite (simple past) and a participlegésoimetimes
called the VBD/VBN ambiguity after the respective names for the preterideparticiple part-of-speech tags in the
Penn Treebank tagset). Verbs likelectedare more likely to be a participle, whiearcheds more likely to be a
simple past, as shown in the following table:

Selected89% participle, 11% simple past
Searched22% participle, 78% simple past

Trueswell (1996) showed that these more fine-grained lexical categdglpitities play a role in the disambigua-
tion of main verb/reduced relative ambiguities. He did this by embedtiege verbs in sentences which have a local
ambiguity. Each sentence had an initial word sequenceTii& room searchedhich is syntactically ambiguous
between a relative clause reading (compatible with the participle formyamain-verb reading (compatible with the
simple past). Trueswell found that verbs with a frequency-based prefefenthe simple past form caused readers
to prefer the main clause interpretation (as measured by longer readingtimadéntence which required the other
interpretation such as (64)):

(64) The room searched by the police contained the missing weapon.

This suggests that the frequency with which the different morphcdbgategories of a verb occur plays a role in
whether one syntactic parse is preferred or not.

How does the Bayesian model handle the results of Trueswell (1996xhbated an effect of lexical category
frequency on preference? The fact that, for example, the seletteds more likely to be a participle than a simple
past, whilesearchedas the opposite preference, is handled in our model by the probalslistactic grammar. In the
SCEFG, this is represented by the fact tR@/BNselected)s higher tharP(VBDselected) The SCFG tree structure
includes the likelihood P(select&BN); we can use Bayes rule on the SCFG structure to compute the grogterior
(counts are again from the Brown corpus):

P(selected” BN)P(VBN
P(VBN|selected) = (Seecﬁgaectzem(v ) 0022 +.029/.000071 = .90 (65)
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P(selected” BD)P(VBD
P(VBD|selected) = (Seeclfg;ectiﬁ(v ) — 00015 + .047/.000071 = .10 (66)

(67)

The SCFG structure thus lets us compute that the posterior prithalbiselectedbeing a participle (VBN) is thus 9
times higher than its probability of being a preterite (VBD).

4.2 Syntactic Structure Probability

There is also evidence that the probability of larger (supralexicafjasyin structures plays a role in processing.
We saw earlier that McRaet al. (1998) used the low probability of the reduced relative structure, apamd
with the main clause structure, as part of their model of reduced relativeeattiffisulty. In this section we briefly
explore another kind of ambiguity: sentences beginning with an embesagdntial subject, which are known to
cause processing problems. For example, the wloatlis ambiguous between a determiner and a (more frequent)
complementizer. Consistent with work described above on lexical categonyencies, Juliano and Tanenhaus (1993)
found thatthatis interpreted most easily as a complementizer after verbs. But sentencdyjnitien interpreting
the the wordthat as a complement would require an embedded sentential suttjatts instead interpreted as a
determiner.

In the following sentences from Juliano and Tanenhaus (1993), for dgarepders incorrectly parse the wainet
as a complementizer in 68, causing an increase in reading time at thediptochat. Similarly, readers incorrectly
parse the worthatas a determiner in 68, causing an increase in reading time at thedipbochats in (71). Sentences
that are compatible with readers preferences are underlined.

(68) The lawyer insistethatexperiencedliplomat would be very helpful

(69) The lawyer insistethatexperiencedliplomats would be very helpful

(70) Thatexperiencediplomat would be very helpful to the lawyer.

(71) Thatexperiencediplomats would be very helpful made the lawyer confident.

The SFCG model successfully predicts Juliano and Tanenhaus’s (199BXhesthe wordthat tends to be in-
terpreted as a complementizer after a verb, but as a determiner at the begirmisgntence. The dispreference for
an initial complementizer, for example, follows from the very low prdligiof rules like S—SBAR VP. This rule,
corresponding to a sentential subject of the main clause, has an extremglydbability (.00065). Partial SCFG
parses for the four sentences are shown in Figures 4.2— 19.

S
VP [.033]
S-BAR [1.00]
NP
NP [.0016]
Det Noun VBD Comp[.52] VBN/\Noun
TLe lawyer ins‘isted ‘that experienced ‘
Figure 16:
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S
VP [.042]
S
NP NP[.%
Det Noun VBD  Det[.045] VBN Noun
TLe lawyer insisted ‘that experienced ‘
Figure 17:

S

NP [.m..

Det [045] VBN NN

That experienced ‘ ..

Figure 18:

In each of these two pairs of parses, we have shown the rule proteshilitly where the rules are different across
parses. For example, and show the initial parse fragments for the tsgibp@parses of the sentence fragmems
lawyer insisted that experienced. .At this point, the parse trees only differ in 7 rules. We have augetkthte tree
with the probabilities for each of these rules. Our model’s preferencthéoparse in whiclthatis a COMP can be
computed by multiplying the probabilities of the various rules #iratunique to each parse.

P(parse in which that
P(parse in which that

COW) = .033 * .52 * ,0016 = .000027456
DT) = .042 * .0071 * .045 = .0000134190

Similarly, Figure 18 and Figure 19 show the initial parse fragmémtshe two possible parses of the sentence
fragmentThat experiencedAt this point, the parse trees only differ in 6 rules. (the secondepamsvhichthatis a
COMP, is more complex, with 2 more rules than the first parse). Once,agaihave augmented the tree with the
probabilities for each of these rules. In this case, our model assign$erpgpbability to the parse in whidhat
is a DT (Determiner). This probability can be computed by multiplytimg probabilities of the various rules that are
unigue to each parse.

5 Study One: The Main Clause/Reduced Relative Ambiguity and McRae
et al. (1998)

The results in the previous section sketches the intuitions of hovpmbabilistic model is accounts for qualitative
results on disambiguation preference. In this section we test the modelaaefully by seeing if can account for
the results of a comprehensive reading time experiment. As describesteadichose to model the data collected by
McRaeet al.(1998) for two reasons. First, itis crucial to show that our model cadleawide variety of well-studied
cases of ambiguity, and the MC/RR is perhaps the most-studied case. SbediMicRaeet al., 1998) study provides

a model for their results based on their own competition-based modele 8iny provide the norms and counts that
their model is trained on, this allows us to compare more directly agieistmodel.
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S [.00065]
SBAR [1.0]
Comp [.52] S
NP [.0016]
VBN NN
That experienced ‘ .
Figure 19:

5.1 The Model and the Input Probabilities

The model is based on the Bayes net described in Section 4. The parametersisisoédhe structure of the net
expressing probabilistic independence assumptions, and the gitybiables associated with the net. The overall
structure of the combined lexical-thematic and syntactic networksh®MC vs. RR interpretations is shown in
Figure 20.

As shown in Figure 20, there are two Bayes nets computing the semadtsyatactic fit of the input sentence to
the different possible interpretations.

1. The column on the left in Figure 20 computes the support pro\agiede thematic role and semantic fit for the
two interpretations (the Main Claus#/(C) (top row) and Reduced Relativ& R)(bottom row)). The structure
and parameters of this (sem) network are similar to the one shown ineRégu

2. The column on the right in Figure 20 computes the support geaMby the syntactic parses of the input sentence
for the two interpretations (the Main Claus® (') (top row) and Reduced Relativ&R) (bottom row)). The
structure and parameters of this (syn) network are similar to the avensin Figure 7.

The combined evidence for a particular interpretation is obtained bygakmNoOISY-AND that estimates the
conjunctive support of the different sources.

The various parameters of the network in Figure 20 are the conditioolapilities both for the syntactic and the
valence/subcategorization networks. The syntactic probabilities areutechpased on an SCFG grammar and the
network structure and computations for the SCFG parse are explaietiion 2. The probabilities are described in
Table??. For the valence network, we used the probability of the initial Ndpain Agent (Patient) given the verb
and initial NP P(Agent (Patientjerb, initial NP). These numbers were obtained from the normingesudported in
McRaeet al. (1998).

The first row in Table 3 expresses the probabilistic constraint bieatvbrd “cop”(for example) is an agent, given
that the verb is “arrested”. The second row constraint expresses the pitgkihht it is a patient. For both these,
we used the norming study reported in McRaeal. (1998), where subjects rated the plausibility of the word “cop”
as an agent and as a patient of the predicate arrest on a sdate ©f We used the norming scale as a conditional
probability. So, if the agent was ratddn the scale, we took the P(Agérerb, initial NP) in that case to b&/7. In
general, when we had norming study data, we used this approximationdiional probabilities.

The third and fourth constraints express the probability that ted""form of the verb is a participle versus a
simple past form (for example P(Participlerrest’)=.81). These were computed from the POS-tagged British National
Corpus. Verb transitivity probabilities were computed by hand-lagetubcategorization of 100 examples of each
verb in the TASA corpus. (for example P(transitilentertain”)=.86). Main clause prior probabilities were computed
by using an SCFG with rule probabilities trained on the Penn Treebaslowesf the Brown corpus. Section 3 and
Section 5 detail the SCFG probability calculation procedure.

Appendix C summarizes the Good Agent, Good Patient probabilitiem(fh® norming study), the transitive
versus intransitive bias at the specific verb and the Simple Past (needbd fdain Verb interpretation) versus Past
Participle distinction calculated for th® verbs in the McRae study.
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MV_syn MV _lexthm

Subj = The Witness V = examined Arg2

(Fram%Ng
e 0 Agent transitive
Theme _ertransmve ot%i?
P(Fit = Agt | V=examirte, S= Wltness)
MAIN VERB INTERPRETATION
he  witnessexamined

RR_syn RR_lexthm

Subj = The Witness V = examined Arg2

(Fr‘a{n?i Mj
Agent transitive Agent
Theme |nt|'anS|t|Ve Other

P(Fit = Theme | V =examine, S= Witness)

REDUCED RELATIVE INTERPRETATION

The witness examined

Figure 20: A Bayes net combining SCFG probabilitisg()with subcategorization, thematith(m), and other lexical
probabilities to represent support for the main verb (MC) and reduce/s{&R) interpretations of a sample input.

From the parameters, for each sentence in the McRae data, we compute thederieattic and syntactic support
for the two interpretation8/ C andRR. For each stage in the input

At the initial NP (ex. the witness),
At the verb (ex. examined),

At the preposition (ex. by),

At the second NP (ex. the lawyer),

our model computes the following entities
P(MC'%|syn), P(MC*|sem), P(RR!|syn), P(RR"|sem) (72)

Our model computed the SCFG based syntactic probability and the themdtgemantic fit probabilities for the
MC andRR interpretations at different points in the input. These probatslitvere then combined using theisy-
AND function described in the previous section. So, for each input stage,meuted the posterior value for tiéC
andRR interpretation given the syntactic and the thematic/semantic support.

5.2 Model results

We tested our model on sentences with4belifferent verbs in McRaet al. (1998). For each verb, we ran our model
on sentences with Good Agents (GA) and Good Patients (GP) for thal iNi®. Our model results are consistent
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Data | Source
Valence Probabilities
Valence Probabilities for the Subject NP

P(Agentverb, initial NP) McRaeet al. (1998)
P(Patientverb, initial NP) McRaeet al. (1998)
P(transitivgverb) TASA corpus counts
P(intransitiveverb) TASA corpus counts

Valence Probabilities for the PP Agent
P(RRinitial NP, verb-ed, by) McRaeet al. (1998) (.8, .2)
P(RRinitial NP, verb-ed, by,the) McRaeet al. (1998) (.875. .125)

P(Agentinitial NP, verb-ed, by, the, NP) McRaeet al. (1998) (4.6 average)
SCFG Probabilities

P(MC| SCFG prefix) SCFG counts from Penn Treebank and BNC
P(RR SCFG prefix) SCFG counts from Treebank and BNC
P(Participleverb) SCFG counts from Treebank and BNC
P(SimplePasterb) SCFG counts from Treebank and BNC

Table 3: Source of probabilities for our model

with the on-line disambiguation studies with human subjects (hyregiormance data from McRa&¢ al. (1998)) and
show that a Bayesian implementation of probabilistic evidence combmaticounts for garden-path disambiguation
effects. We first walk through how the model assigns probabilitiesdosentences. We then test the Bayesian model
against the behavioral results on sentence completion from MeRag1998). Finally, we test our model against the
behavioral results on reading time from McRateal. (1998).

5.2.1 Walking through the assignment of probabilities to two entences

Table 5.2.1 refers to the assignment of probabilities by our modbktbao sentences:

(73) Thewitness examined by / the lawyer / turned out/ to be unreliable.

(74) Theevidencéexamined by / the lawyer / turned out/ to be unreliable.

[ Examine | InitNP | verb-ed| by | the [ agentNP]|

P((MC)/P(RR)|GA) | 291 | 1.729 | .432] .062| .01
P((MC)/P(RR)|GP) | 0.47 | 0.201 | .090| .039| .01 |

Table 4: P(M)/P(R) results of the model on example sentences “Tit@essexamined by the lawyer turned out
to be unreliable (Good Agent (GA)), and “Tle¥idenceexamined by the lawyer turned out to be unreliable” (Good
Patient (GP)).

Shown in Table 5.2.1 is the ratio of the posterio”{#/C/P(RR)) for the Main Clause (MC) and Reduced
Relative (RR) interpretations for the two sentences. The difference isahtences is that in one case, the Subject NP,
witnessis animate (and hence a Good Agent (GA); while in the other case thecsiNip,evidencein inanimate and
hence a Good Patient (GP). The ratio of the posteriors is computed @is@oints in the input, such as at the initial
NP, the verb, after the preposition “by” and the determiner “the”, and at thetayg “lawyer”.

¢ Atthe end of the initial NP, the MC interpretation is m@é times more likely as the RR interpretation for the
GA (the witness) andt7 times as likely for the GPgvidencecase.

¢ At the main verb boundanekaminedithe ratio of the posteriors changes to B¥4/C)/P(RR) = 1.73) for
the GA sentence and®(M C)/P(RR) = .20) for the GP sentence.
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¢ Atthe next stage, which is the “by” phrase, our model continues the eegbretjectory for the GP sentence and
the M C interpretation continues to decrease from beid® as likely as theRR interpretation to beind0%
as likely. For theG A sentence, however, we see an expectation violation, in both a sharp declihe 3/ C
interpretation as well as a demotion of the best interpretatiéiig an preference for the two interpretations.

¢ At the verb boundary th@/C interpretation was the prefered orie73 : 1). After the “by” phrase is encoun-
tered, the prefered interpretation changeR®and theM C interpretation is now only half as likely as tiiR
interpretation. Thus based on the posterior probabilities, there véotation of expectation. The best inter-
pretation has become disprefered and the second-best interpretation lserieading candidate interpretation.
Thus our model predicts reading time difficulty for the GA sentence atli#ephrase and none for the GP
sentence.

5.2.2 Modeling the Sentence Completion Study of McRaet al. (1998)

MV/RR

NP verbed by the NP

‘E] Model Good Agent B Human Good Agent (I Model Good Patient CJHuman Good Patient‘

Figure 21: Human sentence completion results (MC counts/RR countshaahel predictions (P(MC)/P(RR) for the
McRaeet al. (1998) sentence completion data.

Figure 21 shows the predictions of our model as well as the human sestanpéetion data from the McRa al.
(1998) experiment. The human and model predictions were computed stdges:

1. theverb(The crook arresteq

2. by (The crook arrested By

3. the(The crook arrested by the

4. the Agent NPthe crook arrested by the detectjve

For the human data, the Y axis in Figure 21 shows the ratio of senteng@atmon count (MC counts/RR counts). For
the model, the Y axis in Figure 21 shows the ratio of probabiliti@d®/P(RR).

The human data (the second and fourth bars at each word in Figure 21) smomeber of trends. First, thematic
fit clearly influenced this gated sentence completion task. Note that the Gyt 8entences have a higher MC/RR
ratio at the “NP verbed” stage than the Good Patient sentences . The model nihisttiference. Next, at the
“by phrase”, the human data shows that the posterior probability afyming an RR interpretation increases sharply
(hence the MC/RR ratio drops). Thematic fit is at least one of the fagtliteencing this increase, since the Good
Agent MC/RR ratio is still higher than the Good Patient MC/RR ratimalty, both the model and the human data
reliably predict that after seeing the second NP, there is no chance of genaratiftd completion, since the MC/RR
ratio has gone to zero.
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5.2.3 Flips A Qualitative correlate of reading time effects

Our model predicts a qualitative difference in reading times when thereasaking through demotion of the top
(highest posterior) interpretation to a lower rank. We refer to thiston as dlip. Figure 22 shows the change in the
posterior probability for thél/ C and RR interpretations for the Good Agent (GA) cases. The data is averaged over
the40 verb/GA sentences in the McRae data. The data shows the following effects

Average Good Agent (GA) MV and RR Posteriors at different input stages

0.9

0.8
—#— Reduced Relative
0.7 4

0.6

P(X)
o
o

Main Clause (P(MC))

0.4 0.34

0.3

0.2

5 \ 008

NP1 (GA (The witness)) + VP (examined) by NP2 (the lawyer)
Input Stage

‘—O—Main Clause (P(MC)) —#—Reduced Relative (P(RR)) ‘

Figure 22: P(MC) and P(RR) for the ambiguous region showingpa fli

1. At the initial NP phrase th&/C interpretation is twice as likely as thRR interpretation. This reflects the
SC FG structural probabilities prior to seeing the verb (not shown in &yur

2. At the verb boundary phrase th&C interpretation is still high (more than twice tiiR interpretation). This
reflects the fact that although the verbs are likely to reflect a high trambitas (favoring th&® R interpretation),
the fact that the subject is a good agent continues to favoMide interpretation. The combined effect is
reflected in the average posterior probability of & interpretation which is now only twice as probable as
the RR probability.

3. After the “by” phrase, things change a lot. Now we notice thatRl#&posterior is twice as high as tid C
posterior. This reflects thBRR bias at the by phrase, where there is now a high probability that ttial iNP
is assigned the theme (rather than the agent) role in the sentence ane thexttdnce is transitive. Both these
boost theR R posterior resulting in the situation shown in Figure 22.

4. Thus after the “by” phrase, there ifli@. The previously top ranked interpretatiaid C) is now second ranked
and the previously second ranked interpretatiBR) is now the top ranked interpretation. Our model predicts
that such dlip correlates with an increased reading time effect.

Figure 23 shows the change in the posterior probability fotMh@ RR interpretations for the Good Patient (GP)
cases. The data is averaged overdb@erb/GP sentences in the McRae data. The results show the following effects
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Average Good Patient (GP) MV and RR posteriors at different input stages
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Figure 23: P(MC) and P(RR) for the ambiguous region for the Qeettient (GP) case

1. At the initial NP phrase thd/C interpretation is more than twice as likely as tR® interpretation. This
reflects theSC F'G structural probabilities prior to seeing the verb.

2. Atthe verb boundary phrase tiRR interpretation is on average slightly highé?*((Z C) = .59). This reflects
the fact that both transitive bias of the verbs as well as the better thefinaifcthe initial NP to the them
(favouring theRR interpretation).

3. Afterthe “by” phrase, things change even more. Now we notice thd fhposterior is almost five times as high
as theM C posterior. This reflects thRR bias at 30 the by phrase, where there is now a much higher probability
that the initial NP is assigned the theme (consistent with the puevassignment) role in the sentence and that
the sentence is transitive. Both these boostRIReposterior resulting in the situation shown in Figure 23.

4. Thus after the “by” phrase, the previously top ranked interpreté@fd®) continues to be the top ranked inter-
pretation receiving more syntactic and thematic/semantic support Wikilgettond ranked interpretatiaid C)
continues to be second ranked. Hence in the good patient (GP) sentenceis,tbdlip. Thus our model does
not predict increased reading time effects for GP sentences.

In summary, Figure 22 and Figure 23 show how the human reading échetion effects (reduced compared to
control sentences) increase for Good Agents (GA) but decrease for Goodi$atidre ambiguous region. This is
consistent with the reading time effect in the data in Figure 1. Ourainareédicts this larger effect from the fact that
the most probable interpretation for the Good Agent dhge from the MC to the RR interpretation in this region.
No such flip occurs for the Good Patient (GP) case. In Figure 23, we seth¢h@P results already have t%
ratio less than one (the RR interpretation is superior) while a flip scitur the GA sentences (from the initial state
Wherelg—lchj > 1 to the final state Wher% < 1. This finding is fairly robust§5% of GA examples) and directly
predicts reading time difficulties. In contrast, dl0(%) of GP examples showo flip, and no reading time difficulty
is predicted for these examples.
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5.2.4 Quantifying the reading time effect

While aflip predicts increased reading time, can we quantify the magnitude of the effeet@ discussed earlier, we

know the absolute value of reading time is dependent on many factonslinglword length, grapheme or phoneme

probability and transition probability, word imageability, puration, the specific location of the phrase on the text,

and a wide variety of individual differences in working memory, readpegsl, and other factors. Our model of course

has no way to model these factors. Our model instead will attempt to captiyrdifierences in relative reading time.
Equation (61), repeated here as Equation (75), shows our predictiogidtive reading time differences:

ProcessingTimeypectatiorr —0(Zit) (79)

More specifically, since any sentence has multiple interpretations, tddartagnitude of the change in the proba-
bility mass from wordt — 1 to wordt is

P(I})
o(t) = ! 76
0= 230 (76)
Thus our model predicts that the magnitude of the total change in comaliprobabilities (summed over all
interpretations) should correlate with changes in reading time.
Figure 25 and Figure 26 show the reading time effects predicted by alglrmompared to the reading time effects
observed by McRaet al. (1998). Both sets of values are re-normalized as described slightly latés isection, and

so the graph shows only the correlation between our probabilistiégpicts and reading time, by normalizing both
values and showing them on the same graph.

5.2.5 §(¢) alone is insufficient: Flip has a specific effect

Predicting reading time difficulty with different methods

100

80

% correct

40

delta(t) flip
Method

fliptdelta(t)

Figure 24: Reading time difficulty predictions from delta(t) along, #llone and the combination of flip and delta(t)
(flip was weighted 2.0)
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Figure 25 and Figure 26 show that the correlation between our pradtabgiredictions and reading time seems
reasonable; on average we do indeed predict the general locus of readingctieasas.

But when we look at the correlation with individual sentences, we seeldgono We computed thé(t) values
for the ambiguous region in each of the 40 sentences in the ih@ai¥% (20/20) of the Good Patient (GP) items were
classified correctly; in each case the valué @) predicted no enhanced difficulty at reading the “by” phrase. But
only 12 of the 20 Good Agent (GAB(% of GA) cases were classified correctly; (i.e., the valué(of only predicted
enhanced reading times at the “by” phr&&& of the time). Thus the overall classification accuracy using just the
4(t) values is80% (24512 = .8). The first column of the bar chart in Figure 24 shows this result.

Thus the Expectation principle by itself is insufficient to explamteading time results from (McRagal., 1998).
Could the Attention principle predict the results? Suppose we raai@ple prediction that any sentence with a flip
caused a reading increase. Figure 24 shows the resulting reading timeltiffirediction when we just looked at
which of the40 sentences flipped at the “by” phrase. In this case, we found all 20 of the GP té&#sdf GP) did
not show a flip, while 17 out of 20 of the GA cas&5% of GA) flipped and thus predicted reading time difficulty.
Thus just looking at the cases of flip alone, we had an overall classificatioreagoii92.5% (1%20 = .925). The
second column of the bar chart in Figure 24 shows this result.

Neither of these models accounts for all of the data. We instead applied thed we introduced in the introduc-

tion, repeated here as (77).

ProcessingTirT]Qeordering ~
—wyip X 6(Iit), if P*(I') # P*(I'"}
= o), it P (1) = (1

This equation combines the expectation and attention principles by makiognbined prediction for reading
time increases, using a single weight.,.q.. Figure 24 shows the reading time difficulty predictions when we set
Wreorder 10 2, Which corresponds to weighing data points that exhibited a flgpagibuting double to the reading
time increase. This combined model of flip af(d) explains all the data point, with an overall classification accuracy
of 100% (% = 1). The third column of the bar chart in Figure 24 shows this result.

We experimented with a few parameter settings for weighting the flip detta. best results were obtained for
valuesin range (1.2 31(2 < wsi;, < 3). The results shown here use a value roughly in the middle of amaer (2).
While our model of this data thus suggests that a flip causes additeedihg time beyond the normal expectation
violation based ord(t), we will need more data to properly quantify this enhanced reading tineeteflThe next
section details our reading time results with the combinatiaf{©)fand flip metric {v ¢1;, = 2).

5.2.6 Reading time results with the combined{(¢) + flip) metric

For our final set of reading time models, we attempted to model the differtegtween the reduced (“The cop exam-
ined”) versus unreduced (“The cop that was examined”) reading times at each afghks st the input. Again, since
our model does not predict absolute values of reading time, we comparedgmitute of the change in conditional
probabilities with the percentage of the reading time effect at a partioyat stage. To compute the scaled reading
time effect in the data, we measured the percentage of reading time effects ahaigige from the McRaet al.
(1998) data (Figure 5 from McRaat al. (1998)). For example, if the total reading time effect was 100 ms (over all
stages) and the the particular stage (say at the verb) was 20 ms. then thegmercemtribution of that stage was
computed to be2y = .2.

To compute the reading time effect as predicted by the model, we calculatedrtdeniage of the total change in
conditional probabilities weighted by the flip weight (of 2) (summedrall interpretations at all stages) contributed
by a particular input stage. For instance, the total change was 10, and tlye dusntributed by a particular stage was
2, then the model predicts an effect of magnitq?ge: .2 for that stage.

Figure 25 shows the reading time effect for the Good Agent (GA) sentgmedgted by the model compared to
the McRae reading time data. The results are averaged over the 40 verb/@Acggmairs in the McRae data. In each
case, the posterior probability was computed for the reduced (NP verlffesiedt stages of the input. The total effect
was summed over the ambiguous region of the input (Initial NP + \&PhSecond NP). The scaled effects were then
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Average reading time effects for good agent sentences
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Figure 25: Reading time effect for GA sentences in the ambiguous regiroparing the model predictions to data
from McRae

computed quantifying the magnitude of an individual stage. The redutegeffect from the data was computed as
described above and scaled to 1.

In Figure 25 we see a fairly close match between the scaled human performanaadiiie model predictions of
the reading time effects. In this case, the following facts emerge froor&@p.

1. Atthe verb boundary (X-ed) we find on average a low reading time effacs The model is more likely to show
an reduced reading time (compared to the unreduced case) at the verb boundagfiod agent case. In the
model roughly. 14 of the magnitude of the reading time effect was at this input stage. §banisistent with the
human performance data in McRetal. (1998). The scaled (to 1) value for the human data shows an effect of
around.2.

2. After the “by” phrase, we find on average enhancedeading time effect. Thus the model is more likely to
show an enhanced reading time (compared to the unreduced case) after the “by'boluradary for the good
agent case. In the model rough#y3 of the magnitude of the reading time effect was at this input stage. his i
consistent with the human performance data in Mc&aad. (1998). The scaled (to 1) value for the human data
shows an effect of arounds.

3. Consistent with the previous observation, at the second NP phvasind on average aanhancedeading
time effect. Thus the model is more likely to show an enhanced readingc¢ongp@red to the unreduced case)
after the second NP phrase boundary for the good agent case. In the mayhdy rdd of the magnitude of the
reading time effect was at this input stage. This is consistent with thrahyerformance data in McRaeal.
(1998). The scaled (to 1) value for the human data shows an effect of a#flind

Figure 26 shows the reading time effect for the Good Agent (GA) sentgmedited by the model compared to
the McRae reading time data. The results are averaged over the 40 verb/@Acsepairs in the McRae data. In
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Average reading time effects for good patient (GP) sentences
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Figure 26: Reading time effect for GP sentences in the ambiguous regigpacimg the model predictions to data
from McRae

each case, the posterior probability was computed for the reduced (NP véribhevunreduced (NP that was Verb) at
different stages of the input. The total effect was summed over the amisgagion of the input (Initial NP + verb,
PP, Second NP). The scaled effects were then computed quantifying the udagfitin individual stage. The reading
time effect from the data was computed as described above and scaled to 1.

Again we see a fairly close match between the scaled human performance data mwodéh@redictions of the
reading time effects. In this case, the following facts emerge from Ffiire

1. At the verb boundary (X-ed) we find on average the reading time efféggiest. Thus the model is more
likely to show anenhancedreading time (compared to the unreduced case) at the verb boundary for the goo
patient case. In the model roughBp of the magnitude of the reading time effect was at this input stage. This
is consistent with the human performance data in Mc&aa. (1998). The scaled (to 1) value for the human
data shows an effect of arour@f.

2. After the “by” phrase, we find on average a reduced reading time effect.t@usodel is less likely to show
an enhanced reading time (compared to the unreduced case) after the “by” phradarpéanthe good patient
case. In the model roughlg5 of the magnitude of the reading time effect was at this input stage. $his i
consistent with the human performance data in Mc&aad. (1998). The scaled (to 1) value for the human data
shows an effect of around.

3. After the second NP phrase, we find on average a much reduced reading &ote Bffus the model is much
less likely to show an enhanced reading time (compared to the unreduced casdjeafiecdnd NP phrase
boundary for the good patient case. In the model roughf the magnitude of the reading time effect was at
this input stage. This is consistent with the human performance dMaRaeet al. (1998). The scaled (to 1)
value for the human data shows an effect of arog8d
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5.3 Summary of Results for Study One

In summary, our model for the McRae data shows the following effects.

1. Asin McRaeet al.(1998) the data shows that thematic fit clearly influenced the gated sentengiettomtask.
The probabilistic account further captured the fact that atghphrase, the posterior probability of producing
an RR interpretation increased sharply, thematic fit and other factors influbotedhe sharpness and the
magnitude of the increase.

2. Our model predicts this larger reading time effect (see Figure 1) &6itod Agent(GA) sentences from the
fact that the most probable interpretation for the Good Agent fisdrom the MC to the RR interpretation in
this region. No such flip occurs for the Good Patient (GP) case. In &R@Birwe see that the GP results already
have the MC/RR ratio less than one (the RR interpretation is supeiile a flip occurs for the GA sentences
(from the initial state where MC/RR 1 to the final state where MC/RR 1). This finding is fairly robust
(85% of GA examples) and directly predicts reading time difficulties.

3. Ourmodel shows that the magnitude of the reading time effect is ateddbboth a) the magnitude of change of
the conditional probabilities and b) the flip effect. The size of reading effect at any stage is thus predictable
from modulating the the change in conditional probabilities (sumawed all interpretations) whenever there is
a flip at that stage. Intuitively, this is consistent with the flip tlyemd offers a quantitative model for predicting
reading time effects.

6 Study Two: The DO/SC Ambiguity and Pickering et al. (2000)

The previous section showed that the Bayesian model, via the ExpecaaibAttention principles. was able to

account for the variation in reading-time across the processing of theafzaise/reduced relative ambiguity shown
by (McRaeet al, 1998). As we saw in the introduction, however, no previoubahbdistic model has been able to

model both the (McRaet al, 1998) results and the (Pickerirgg al, 2000) results on the direct object/sentential
complement (DO/SC) ambiguity. Besides the importance of testing odehon more than one class of ambiguity,
the (Pickeringet al,, 2000) study is important also because their results have been intgfaet direct argument

against frequency-based models of any sort. Accounting for these nsdhits a crucial test of our model.

6.1 The data

Recall that Pickeringt al. (2000) studied DO/SC ambiguities in which the post-verbal noun wasjglausible direct
object of the verb, likexercisedelow:

(77) The young athlete realized her potential one day might make her achassisprinter.

(78) The young athlete realized her exercises one day might make her a &ssdsgtinter.

Pickeringet al. (2000) showed that reading time was delayed on the plmasalayafter the implausible direct
objecther exercisesut not after the plausible direct objdwtr potential In other words, reading time on the phrase
one daywas higher in 78 than after 77. Since the verbs (iga&lize were S-bias verbs, as shown in norming studies,
this implies that a further reduction in plausibility of the lesaydible interpretation caused a reading-time increase.

Their materials were based on 6 verlalihitted, examined, decided, hinted, implied, and preténated 16
sentence-pair items such as the one above. In order to norm the verbs, ifigiekesl, 2000) had participants
complete sentences with them, both in isolation and with a subject noasghn the second test only subject-verb
completions that produced twice as m&fy asDO completions were used in the reading time study. The plausibility
norming study asked subjects to assign a number frémr¥ for various postverbal noun phrases (such as potential or
exercises above). For plausible Npstentialin “The young athlete realized her potential.”), the lower bound svas
or higher (out of7). For implausible NPsgxercisesn “The young athlete realized her exercises”), the NP was used if
the plausibility rating wag or lower (out of7).
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6.2 The model

Our model predicts two ways that a probabilistic model can explain increaseling time: a low probability as-
signment to the next word (equal to a large change in probability d(@ags or a ‘flip’, i.e. a demotion of the best
interpretation.

The parameters of the model were set from the norming data computed leyiRgt al. (2000), consisting of:

P(SC|verbd) (79)
P(DOlJverb)
P(SC|initial N P,verb)

)

P(DOlJinitial N P,verb

For example for the sentence prefix “The young athlete realized her”, we usddllittwing probabilities from
Pickeringet al. (2000).°

| Parameter | Value ||
(P(SC)|V = realized) .35
(P(DO)|V = realized) 0.25
(P(SC)|VP = realized, [ypher ...], Initial NP = The,young, athlete) | .8

[ (P(DO)|V P =realized, [vpher .. ], InitialN P = The, young, athlete) [ 0.2 ||

Table 5: The verb bias and the subcategorization probabilities foetitersce fragment “The young athlete realized
her..”

In order to test the model, we thus need to measure the probabilitynadsig the interpretation before and after
the implausible direct objeeixercisesSince our model rebuilds the Bayes net after each word, each probabilitg woul
be generated by a slightly different net.

Figure 27 shows the structure of the Bayes net just after the direettobas been read. The top row shows
the syntactic and lexical/thematic networks for the SC interpretatitnile the bottom row shows these networks
instantiated for the DO interpretation. The probability for each intgtion (DO or S) is computed given the sentence
so far. The NOISY-AND combination function is applied to combine léracal/thematic and syntactic support to
arrive at the overall posterior probability of an interpretation at ai@der stage of the input.

Recall that our model predicts that reading time is proportional to to &anthe probability mass from word
t — 1 to wordt, or

P(I})
a(t) = t 80
0= 2307 (80)
6.3 Results
In this section we presently jointly the predictions of our model dredreading-time results of the Pickeriagal.
(2000) study.

We begin with an illustrative example, walking through the prolités our model assigns to the following two
sentences:

1. Plausible Object The athlete realized her potential one day might make her a world clastesprin
2. Implausible Object: The athlete realized her exercises one day might make her a world classrsprint

Table 6 shows thé(t) computed by our model after each region of both input sentences.
For the implausible object condition, the posteriors behaved ifotleving manner:

9Note the verb bias data don’t sum upitgsince there are other possible sentence completionseaueith.
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SC_Syn SC_lexthm

The athleteealizedher ﬁ‘oten_tial
her exercises

"the athlete" V =realized "her potential"

plausible
Implausibl

P(Prop|\V)~p P(Proposition | Verb, NP)

DO_Syn DO_lexthm

"the athlete" V =realized "her potential"
plausible
Implausibl;

P(Trans|\H.P P(Theme | Verb, NP)

The athleteealized her potential
her exercises

Figure 27: SC vs Object analysis: modeling the Pickeeingl. (2000) data.

| Realized | Matrix Verb | Noun | Post-noun| Modal verb ||
(6(t)|ezercises) | 1.4 3.2 1.6 15
(6(t)|potential) | 1.0 15 14 3.3

Table 6:4(t) results of the model on example sentences “The athlete realizezkbarise®ne day might make her
a world class sprinter” (Implausible object), and “The athlete realizeghbtantialone day might make her a world
class sprinter” (Plausible Object).

o After reading the matrix vertréalized, P(Is. > P(14,), S0 the model prefers th&C' reading (these probabil-
ities are not shown in Table 6)(¢) (in Table 6 is 1.4, not particularly high.

e After reading the pronourealized herP(I,. > P(I;,), SO the model continues to prefer tH€' reading.

o After seeing the implausiblekercisesdirect object, there is a high drop in the posterior for the objeetrint
pretation §(¢) jumps from1.4 to 3.2). This is a large change in probability; the wagercisess unexpected
and the interpreter is surprised. Our model thus predicts a readingnimaase at this point.

¢ No large changes in probability mass happen in later words.
For the plausible objecpptentia) case, the posteriors behaved in the following manner

o After seeing the matrix verbréalized, P(I;. > P(l4,), SO the model prefers th&C reading. There is no
change in probability mass

¢ Atthe prepositiorrealized hey, P(1s. > P(Iy,), S0 the model continues to prefer tH€' reading.

¢ After seeing the plausiblgobtentia) direct object, there is a small drop in the posterior for the objeetjme-
tation.d(¢) is 1.5, not particularly high, and our model not predict any reading ifmease at this point.
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Reading time effects (plausible and implausible object readings).
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Figure 28: Overall Predictions for Pickering data. Shown are the moded@aied (to 1) human reading time effects
(please see text for the details) for both plausible object and implaushject sentences.

e At the post-nourone dayregion,d(t) is 1.5, not particularly high, and our model not predict any reading time
increase at this point.

¢ At the disambiguating modal verlimighi), the modal has a low probability, i.e. there is a large change in
probability massg(t) increases from.4 to 3.3. Our model registers an expectation violation and predicts an
increase in reading time at this stage.

The walk-through above shows the qualitative results of our madete regions show a larger probability mass
changei(t). Do these areas correspond to regions of longer reading time? To answgrehtion, Figure 28 compares
the overall reading time effects predicted by our model to those observeitkgringet al. (2000). The results are
averaged over the six verbs (admitted, decided, hinted, implied, pretendedadized) and sixteen sentences for the
two conditions (implausible and plausible object) in the Pickeehgl. (2000) experiment.

Because this figure is somewhat difficult to read, we break this figure dowigure 29 and Figure 28. Figure 29
compares the reading time effects predicted by our model for plausible skjatetnces (ex. The athlete realized her
potential..) to those observed by Pickeritgal. (2000). Figure 30 compares the reading time effects predicted by our
model for plausible object sentences (ex. The athlete realized her exerdisghoye observed by Pickerireg al.
(2000).

How were these figures generated? In Figure 28, the human data is obtaimeBi€keringet al. (2000) (Table
3, pp. 456). Their reading time data was measured at four different itgyess for the two conditions, plausible
object potentia) and implausible objecekercises The reading time was measured at 1) the noun (potential) , 2) the

postnoun region (one day), 3) the disambiguating modal (mighejrakd 4) the postverb region (her a world class
sprinter).
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Reading time effects for plausible sentences
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Figure 29: Predictions for plausible object sentences in the Pickeatay &hown are the model and scaled (to 1)
human reading time effects (please see text for the details) for thelpkaobiect sentences.

Our model does not make exact predictions about the absolute valueliestotihds of reading time from prob-
abilities. Such a mapping would be possible in principle, but weatglire solving a number of problems that we
simply don't currently have the data for, including choosing acfiom to map probability to time (log? cube-root?) as
well as setting weight parameters. Instead, our goal is to show that thel ma#les the correct predictions about the
relative magnitude of reading time increases.

In order to do this, we renormalize the human reading time data by camgghe scaled (to 1) magnitude of the
reading time contributions for the two conditions at each of the fopui stages. For instance, at the Noun stage,
Pickeringet al. (2000) report a total reading time of 367 milliseconds for the plalasibject condition, and a reading
time of 430 milliseconds for the implausible object condition. ®oehthe reading time effect for the plausible case
is 3&% = .46 and%fﬁ = .54 for the implausible case. Figure 28 shows the value of the readirgeffact
computed in this way for all the four stages and for the two conditionise Pickeringet al. (2000) data.

For the model, we computed the total change in the posteriors fomhednditions between the various input
stages. We fixed the initial baseline for the change computation at theopre¢The athlete realized her) stage. Thus
the first change in posterior compares the value of the change in posferithe two conditions between the pre-noun
and the noun stage. For the model, we computed the change in posteriortha disambiguating modal statfe As
in the case of the human data we measured the relative contributiontefalemnditions (scaled to 1).

Figure 28 shows the bas@ossoveresult found by Pickeringt al. (2000). Participants exhibited greater read-
ing time difficulty starting at the noun boundary and continuingh® post-noun region for implausible sentences.
However at the disambiguating modal verb the reading time was largeldosiple compared to the implausible

10we did not compute the change in posteriors for the post-stae since it was not relevant to the Pickesgl. (2000) results
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Reading time effects for implausible object sentences
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—#— Model prediction
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Input Stage

‘—O—Reading time data (scaled to 1) —#—Model prediction (scaled to 1) ‘

Figure 30: Predictions for implausible object sentences in the Pickddta. Shown are the model and scaled (to 1)
human reading time effects (please see text for the details) for the isiiplaobject sentences.

readings.

Thus as shown in Figure 28 our model predicts greater surprise and hreatergeading time effects at the initial
object NP for the implausible object but at the post disambiguatigigmgaftermightfor the plausible object. This
is consistent with the data in Pickerieg al. (2000). Our quantification of expectation violation (or surprise)ebas
on large changes in the sum of the posterior probabilities for tHerdift competing interpretations is thus able to
account for theerossover effedh the Pickering data using a structured probabilistic sentence piogessdel.

6.4 Discussion

In summary, our model predicts two effects for the data in Pickeztrag. (2000). First, the model predicts a greater
reading time at the direct object noun for the implausible object thapltusible object, since the conditional prob-
ability of the noun is quite low for the implausible reading. In trast, for the plausible object case, there is no
significant change in the posteriors, since the noun is approximategllgdikely under both interpretations, so the
sum of the posteriors does not change much between the pre-noun andmheonoadary. This is consistent with the
human data shown in Figure 30

Second, by contrast, the model predicts a greater reading time at the mdulatigét for the plausible object
case. This is because reading the verb causes a significant change in sum ditéhiemorobabilities of the two
interpretations, since the verb is extremely unlikely for the direg¢aitreading. In contrast, for the implausible
object case, there is no significant change in the posteriors, since tat @#ding is already low, and the sum of the
posteriors does not change much between the post-noun and the verlaulyodiis prediction is consistent with the
human data shown in Figure 29.
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7 General Discussion

This paper introduced a probabilistic model for human sentence progegdiith computes probabilities incremen-
tally, integrates probabilistic versions of linguistic knowledonline, and makes predictions about parse preference
and reading time. Our predictions, from the principles of Expectationfdightion, were that the probability of up-
coming words is one key predictor of reading time, and that demotidmeofap-ranked interpretation is another. We
tested the model against behavioral experiments studying the disaatibig of the main clause/reduced relative and
the direct object/sentential complement ambiguity. No previous pristabimodel has been able to model both of
these classes of results. We showed that our model is able to explameah@étation preferences as well the relative
increases and decreases in reading time from each experiment.

In understanding the implications of any computational model of humgnition, it is important to distinguish
potential insights into human language understanding from mer@imgitation details and other assumptions made
for purely practical reasons. We think our model does offer some highilesights into human language processing.
First, we believe that human language processing is inherently pfistiabSecond, we believe that human language
processing makes use of a variety of rich sources of linguistic knowlatigiany levels. Third, since human language
processing is on-line, any such model of this probabilistic process atep be able to model this dynamic process. We
believe our Bayesian model provides one vision of how these threaamstprobabilistic computation, incremental
update, combination of structured and probabilistic knowledge) canceed.

The relationship between probabilistic models and reading time exqor@sshe Expectation and Attention prin-
ciples can also be viewed as a high-level insight that may carry over inéo dtisses of models.

Beyond the high-level claims of our model, other aspects of our work poay a direction for integration with
other current models. One of the problems with the competition modelits lack of a motivated way of modeling
language structure, the class of possible constraints, and the wergbtédence combination. The Bayesian model
provides a way of answering all these questions. Thus a hybrid modebenalyle to capture aspects of both models,
perhaps making predictions about reading time effects due to either cdopegkpectation, or attention.

The structured probabilistic aspects of our model may also have arral®deling language production. In a
class of models dating back to Schuchardt, linguistics have argued thainharical production is sensitive to the
predictability of words. A series of experiments by the second authotafehgues (Gregory, Raymond, Bell, Fosler-
Lussier, & Jurafsky, 1999; Jurafsky, Bell, Gregory, & Raymond)2Qlurafsky, Bell, & Girand, 2002) have shown
that this predictability can be measured probabilistically, and proptsedhe reduction or shortening in the surface
form of words is proportional to the conditional probability b&tword. But that work has so far not proposed a model
of how various probabilities combine to predict the posterior prdialof a word. We think our Bayesian model
could help show how this is done.

8 Appendix A: Propagation in Bracketed SCFG trees

These are the derivations of the belief propagation rules for brackete® ®€€s. Without loss of generality, we
assume that the SCFG grammar is in the Chmosky Normal Form (CNE3. &ty node in the Parse tree has at most
two children. Clearly in an SCFG productien— yz the specific non-terminalgsandz are not independent given
unlike in standard Bayes nets.

We can modify the propagation rules for Bayes nets which have a treeustrtietreflect this dependence. We will
use the notation from (Pearl 1988) including the conventiondhaande; denote the causal and diagnostic evidence,
respectively, relative to a node. We now compute the diagnostic (bottom-up) and causal (top-dayppost some
nodesX, Y, andZ in the SCFG parse tree. By convention, we will use the lower gaeaepresent the instantiation
of the variableX, y to represent the instantiation of nodeandz to represent the instantiation of node In this case
z, y, andz range over the non-terminals in the grammar.

Diagnostic support:

o) = Plexlo) (81)
= ZP(e},y,z\a:) (82)

Y,z
= Y Plexly, 2z, 2)P(y, z|z) (83)

Y,2
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= ) Plexly:2)P(y,2[z) (84)

(becausé’, Z separateX fromey) (85)
= Y Pley Uegly,2)P(y,zlx) (86)
= D Pleyly)P(egl2)Ply, z]z) (87)
(becauséf A separate;, e, from each other) (88)
= Z)\ P(y, z|z) (89)
Causal support:
n(z) = Pl(zle) (90)
= ZP(m,u,v|e}) (91)
= Y P(zlu,v,e})P(u,vle}) (92)
= Y P(z/u,v)P(u,vle}) (93)
(becauséf V separateX frome%) (94)
= ZP z|u,v) P(u,v,e}) (95)
The second term in the summation can be expanded as follows:
P(u,v,ek) = P(u,v,ef; Uey) (96)
= P(u,e?})P(v,e;\u,e?}) (97)
= P(u,ef)P(v, ey |u) (98)
(becauséd/ separate¥ from eg;) (99)
= P(ulef;,)P(ef;)P(ey v, u)P(v|u) (100)
= P(uleg))Peg) P(ey [v) P(v]u) (101)
(becausd” separate#’ frome;,) (102)
= m(u)P(ef)M(v) P(v]u) (103)
Substituting back into the equation for
+
r(z) = P(eg) 3" w(w)A(v) P, v) P(v]u)
P(ex)
(7))

w(u)A(v) P(z, v|u) (104)

st

Il
o
[ e
F\_/M &

+
The normalizing constar‘g((?; = P(e}\eJr) can be computed implicitly by scaling th€z) to sum to unity.
p.q vitu

Finally, it can be seen how the outer probabilities arise naturally bygusie propagation scheme forwithout

normalization:
Z fz P(y, z|z) (105)

Simple substitution in (104) shows that the fixed point for thiectional equation (105) i§(z) = n(z)P(e%), the
generalized outer probability.
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9 Appendix B: Parameters for Experiment 1

Verb Intrans CGoodAgt GoodPat Past Part Sinpl ePast
A P A P
accuse 0.279452 .67.33 .33.67 .46 .53
arrest 0.530612 .81.19 .17.83 .81 .19
capture 0.317016 .75.25 .34.66 .63 .37
carry 0.329179 .81.19 .16.84 .77 .23
chase 0.380952 .72.28 .36.64 .49 .50
convict 0.533333 .67.33 .19.81 .84 .16
cure 0.440678 .64.36 .19.81 .80 .20
devour 0.396825 .61.39 .37.63 .49 .51
di sm ss 0.275176 .76.24 .20.80 .61 .39
entertain 0.399160 .76.24 .20.80 .54 .45
eval uate 0.344086 .62.38 .37.63 .87 .13
exam ne 0.310172 .74.26 .32.68 .63 .37
execute 0.392857 .57.43 .40.60 .78 .22
fire 0.553366 .72.28 .23.77 .50 .50
frighten 0.156627 .78.22 .27.73 .60 .40
grade 0.714286 .73.27 .25.75 .84 .16
hire 0.381271 .70.30 .19.81 .57 .43
hypnotize 0.666667 .74.26 .20.80 .76 .34
instruct 0.320388 .76.24 .23.77 .58 .42
interrogate 0.565217 .80.20 .23.77 .75 .25
interview 0.463722 .72.28 .28.72 .65 .35
investigate 0.345679 .74.26 .36.64 .76 .24
invite 0.161580 .60.40 .23.77 .68 .32
ki ck 0.560680 .64.36 .23.77 .30 .70
| ecture 0.800000 .72.28 .26.74 .34 .66
lift 0.467054 .71.29 .30.70 .42 .58
puni sh 0.282051 .68.32 .20.80 .85 .15
question 0.557452 .69.31 .23.77 .61 .39
recogni ze 0.582450 .61.39 .36.64 .71 .29
rescue 0.358209 .78.22 .21.79 .71 .29
search 0.701571 .82.18 .21.79 .38 .62
sentence 0.289157 .84.16 .19.81 .80 .20
serve 0.711992 .73.27 .18.82 .69 .31
shoot 0.608943 .71.29 .14.86 .63 .37
sl aughter 0.406250 .81.19 .13.87 .70 .30
study 0.479351 .65.35 .41.59 .62 .38
teach 0.425798 .72.28 .20.80 .26 .74
terrorize 0.478261 .75.25 .18.82 .98 .02
torture 0.630435 .78.22 .19.81 .75 .25
wor ship 0.763975 .62.38 .18.82 .45 .55

10 Appendix C: Results for Experiment 1

Verb (at Initial NP) (at verb-ed) (at by) (at the) (at agent NP)
P(MP(R P(M/P(R) L(IML(RP(M/P(R) L(ML(RP(M/P(R) L(IML(RP(M/P(R L(ML(RP(M/P(R)

accuse

GA .667 .333 2.00 .355 .156 2.282 .071 . 125 .568 . 009 .109 .082 . 002 .090 .022

GP .327 .673 0.49 .174 .314 0.553 .035 .251 .139 .004 .122 .033 . 001 .100 .010
arrest

GA .807 .193 4.19 .170 .156 1.083 .034 .125 .272 . 039 . 005

GP .169 .831 0.20 .032 .671 0.048 . 011 . 002 . 0002
capture

GA .750 .250 3.00 .278 .158 1.762 . 440 . 063 .011

GP .338 .662 0.51 .125 .416 0.301 . 075 .011 . 002
carry

GA .810 .190 4.25 .189 .146 1.295 . 324 . 046 . 008

GP .162 .838 0.19 .038 .643 0.059 . 014 . 002 . 0002
chase

GA .667 .333 2.00 .355 .156 2.282 . 568 . 082 . 022

GP .327 .673 0.49 .174 .314 0.553 . 139 . 033 . 010
convi ct

GA .846 .154 5.49 .138 .129 1.070 . 268 . 038 . 007

GP .192 .808 0.24 .031 .737 0.043 . 010 . 002 . 0002
cure

GA .642 .358 1.79 .127 .288 0.440 . 110 . 016 . 003

GP .187 .813 0.23 .037 .653 0.056 . 014 . 002 . 0003
devour

GA .614 .386 1.59 .311 .190 1.640 . 410 . 059 . 010

GP .375 .625 0.60 .191 .308 0.620 . 155 . 022 . 004
di smi ss
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GA . 760 .240 3.16 .299 .145 2.060 .515 . 074 . 013
GP

.203 .797 0.26 .080 .483 0.165 . 041 . 006 . 001

entertain

GA . 761 .239 3.19 .350 .130 2.69 . 673 . 096 . 017

GP .202 .798 0.25 .093 .433 0.214 . 054 . 008 . 001
eval uat e

GA .618 .382 1.62 .083 .330 0.252 . 063 . 009 . 001

GP .367 .633 0.58 .050 .548 0.091 . 023 . 003 . 0005
exam ne

GA . 744 256 2.91 .278 .161 1.729 . 432 . 062 . 011

GP .318 .682 0.47 .119 .590 0.201 . 050 . 007 . 001
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