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The problems of access-retrieving linguistic structure from some mental grammor 

-and disomblguatlon-choosing among these structures to correctly parse 

ambiguous linguistic input-are fundamental to language understanding. The 

literature abounds with psychological results on lexical access, the access of 

idioms, syntactic rule access, parsing preferences, syntactic disombiguation, and 

the processing of garden-path sentences. Unfortunately, it has been difficult to 

combine models which account for these results to build a general, uniform 

model of access and disombiguation at the lexical, idiomatic, and syntactic 

levels. For example, psycholinguistic theories of lexical access and idiom access 

and parsing theories of syntactic rule access hove almost no commonality in 

methodology or coverage of psycholinguistic data. This article presents o single 

probabilistic algorithm which models both the access and disambiguation of lin- 

guistic knowledge. The algorithm is based on a parallel porser which ranks con- 

structions for access, and interpretations for disambiguation, by their conditional 

probability. Low-ranked constructions and interpretations ore pruned through 

beam-search; this pruning accounts, among other things, for the garden-path 

effect. I show that this motivated probabilistic treatment accounts for a wide 

variety of psycholinguistic results, arguing for a more uniform representation of 

linguistic knowledge and for the use of probabilistically-enriched grammars and 

interpreters as models of human knowledge of ond processing of language. 

1 INTRODUCTION 

The problems of access-retrieving linguistic structure from some mental 
grammar-and disambiguation-choosing among combinations of these 
structures to correctly parse ambiguous linguistic input-are fundamental 
to language understanding. Recently, a number of computational cognitive 
models of these tasks have appeared, including models of lexical access, 
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(Cottrell, 1985; McClelland & Elman, 1986), lexical disambiguation (Small 
& Rieger, 1982), syntactic disambiguation (Abney, 1989; McRoy & Hirst, 
1990; Shieber, 1983), the access and disambiguation of idioms (van der 
Linden, 1992; van der Linden & Kraaij, 1990; Wilensky & Arens, 1980), and 
the difficulties in disambiguating garden-path sentences (Gibson, 1991; 
J. Henderson, 1994; Pritchett, 1988). 

It has proven difficult to combine these models to build a general, uniform 
model of access and disambiguation at the lexical, idiomatic, and syntactic 
levels. For example, psycholinguistic theories of lexical access and idiom 
access and parsing theories of syntactic rule access have almost no common- 
ality in methodology or coverage of psycholinguistic data. In part, this has 
been due to an assumption that these levels, or at least the lexical and 
syntactic levels, are functionally distinct in the human language processor. 
In part, a uniform model has been difficult to reconcile with traditional lin- 
guistic models, which have tended to split into phonological, syntactic, and 
semantic modules. And finally, uniformity has met with problems from the 
psycholinguistic data which have suggested quite different models for lex- 
ical and syntactic processing. For example, there is a great deal of evidence 
for parallelism in lexical processing (Swinney, 1979; Tanenhaus, Leiman, & 
Seidenberg, 1979; Tyler & Marslen-Wilson, 1982). Thus, in most models of 
lexical access, multiple candidate words are activated from the mental lex- 
icon based on orthographic or phonological input. Psycholinguistic models 
of syntactic processing, however, have generally been serial, rather than 
parallel. That is, only one parse of the input is maintained at all times. One 
reason for this has been the need to account for the unacceptability of 
garden-path sentences like (1). 

(1) # The horse raced past the barn fell. (Bever, 1970) 

As we will see in $4, sentences like (1) are difficult because they are locally 
ambiguous at some point in the processing (e.g., between a main-verb and 
reduced-relative reading of the word ‘raced’). In most syntactic accounts of 
this data, the serial nature of the parser requires only one of these interpre- 
tations to be chosen, and local heuristics cause the incorrect main verb 
reading to be chosen. These serial models of syntactic processing are incom- 
patible with the parallel models of lexical processing. 

Finally, while robust frequency effects have long been noted in lexical 
processing, neither linguistic theories of syntax, nor the parsing algorithms 
which use them to build parses, have suggested methods for dealing with 
probabilistic effects in syntax. 

Despite these problems and differences, most researchers agree that at 
least some features of the language processing architecture are uniform across 
levels. For example there is evidence for on-line processing at the lexical, 
idiomatic, and syntactic levels, including evidence from comprehension 
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(Marslen-Wilson, 1975; Potter & Faulconer, 1979), lexical disambiguation 
(Marslen-Wilson, Brown, & Tyler, 1988; Swinney, 1979; Tanenhaus et al., 
1979; Tyler & Marslen-Wilson, 1982), pronominal anaphora resolution 
(Garrod & Sanford, 1991; Swinney & Osterhout, 1990), verbal control 
(Boland, Tanenhaus, & Garnsey, 1990; Tanenhaus, Bolard, Garnsey, & 
Carlson, 1989); and gap filling (Carlson & Tanenhaus, 1987; Crain & 
Fodor, 1985; Garnsey, Tanenhaus, & Chapman, 1989; Kurtzman, Crawford, 
& Nychis-Florence, 1991; Stowe, 1986). 

But more fundamentally, recent years have seen a convergence among 
linguists and psychologists toward less modular, more interactive models of 
language and language processing. The rise of unification-based linguistic 
theories (Bresnan, 1982; Pollard & Sag, 1987; Sag et al., 1985) has led to the 
ability to represent information at every level of representation with the 
same formalism. Tanenhaus and associates (Spivey-Knowlton, Trueswell, & 
Tanenhaus, 1983; Trueswell & Tanenhaus, 1991; Tanenhaus et al., 1989) 
have argued that semantic aspects of lexical information such as verbal 
semantic valence play an early role in syntactic parsing, and that semantic 
information plays a role in garden-path effects. Finally, MacDonald (1993) 
and Kawamoto (1993) have noted a number of similarities between lexical 
and syntactic disambiguation, and suggested that a uniform constraint- 
based mechanism might be built to account for disambiguation across 
linguistic levels. 

In this article we follow these recent directions to propose a single com- 
putational architecture that models both access and disambiguation, account- 
ing for psycholinguistic results on lexical and idiomatic access, lexical and 
syntactic disambiguation, and garden-path sentences. The model is based 
on a preference for coherence in interpretation. Intuitively, constructions 
are more likely to be accessed when they are more coherent with the previous 
context, and interpretations are preferred over other interpretations when 
they are more coherent. Significantly, we show that this intuition of coherence 
can be formalized with a probabilistic foundation. While linguistic grammars 
which include frequency information date at least back to Ulvestad’s (1960) 
work on subcategorization, only recently has a body of techniques become 
common for dealing with stochastic grammars (Baker, 1979; Fujisaki, 
Jelinek, Cocke, & Black, 1991; Jelinek & Lafferty, 1991) in which every rule 
of the grammar is augmented with a conditional probability. Recent studies 
have applied these probabilities to linguistic theories like LTAG (Resnik, 
1992), and have shown the use of such probabilistic grammars for modeling 
synchronic change (Tabor, in press) and learning (Stolcke, 1994; Stolcke & 
Omohundro, 1993). In this article we show that a probabilistic model dif- 
fers from the frequency-based models traditional in psycholinguistics and 
argue that true probabilities are essential for a cognitive model of sentence 
processing. 
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The algorithm is designed in the framework of Construction Grammar 
(Fillmore, Kay, & O’Connor, 1988; Goldberg, 1991; Goldberg, 1992; Kay, 
1990; Koenig, 1993; Lakoff, 1987; Lakoff, 1993; Lambrecht, in press), a uni- 
fication-based theory in which the mental lexicon, idiom list, and grammar 
are represented as a uniform collection of grammatical constructions. Con- 
struction grammar is a sign-based theory, like HPSG (Pollard & Sag, 1987), 
in which each construction represents well-formedness conditions across 
various domains of linguistic knowledge, including phonological, morpho- 
logical, syntactic, semantic, and pragmatic domains. Although we describe 
the algorithm in the construction grammar framework, it can be applied to 
any sign-based unificational linguistic theory which allows the expression of 
predicate valence (HPSG, cognitive grammar, Montague Grammar, cate- 
gorial grammar, RRG, probably LFG) simply by the addition of the appro- 
priate probabilities. 

The model consists of a parallel parser augmented with probabilities and 
a pruning heuristic which models both access and disambiguation. The 
model addresses access by unifying lexical access, syntactic rule access, and 
idiom access. In this Bayesian access or evidential access algorithm, phono- 
logical, syntactic and semantic evidence, top-down as well as bottom-up, in 
integrated to determine which constructions to access, by computing the 
conditional probability of the construction given each piece of evidence. 
Lexical, idiomatic, or syntactic constructions are activated in parallel when 
the weight of evidence passes a threshold. Our model of construction dis- 
ambiguation, the local coherence model, similarly conflates lexical disam- 
biguation, idiom disambiguation, syntactic disambiguation, and semantic 
disambiguation. The algorithm again computes the conditional probability 
of each interpretation given the input, and ranks interpretations according 
to these probabilities. The algorithm prunes these interpretations to keep 
the search space manageable; a by-product of this pruning is the garden-path 
effect, which we model as the pruning of what turns out to be the correct 
parse. 

The actual probability computation involves two sources of expectations, 
constituent and valence information. Constituent expectations arise from 
the phrase-structural skeleton of the grammar. Each context-free rule is 
annotated with a conditional probability that the left side will expand to the 
right side. These probabilities place a distribution over the kind of daughters 
each phrasal node requires. Valence, or subcategorization expectations are 
associated with verbs and other predicates. Each predicate may express con- 
straints on the syntactic, thematic, or semantic form of their arguments. 
For each such argument, the predicate is also annotated with a conditional 
probability that the argument will be filled. 

We draw three conclusions from this work. First, we show a unified model 
of a number of psycholinguistic phenomena, including parse preferences, 
explaining the difficulty of garden-path sentences, and results on lexical and 
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idiom access. The model requires only simple probabilistic augmentations 
to concepts of phrase structure and valence that already exist in most 
modern grammars and theories of sentence processing. Second, we argue 
that these results demonstrate the need for probabilistic augmentation to 
grammatical theories if they are to be able to deal with a broad range of 
phenomena as a processing model. In this vein our model is part of a larger 
effort involving computational implementations of linguistic theory (Jurafsky, 
1992) and large-scale implementations of probabilistic augmentations to lin- 
guistic models for speech recognition (Jurafsky et al., 1995; Tajchman et 
al., 1995). 

Finally, the idea that lexical, idiomatic, syntactic, and semantic struc- 
tures are uniformly represented and processed contrasts sharply with the 
traditional modular view, which holds that each of these kinds of linguistic 
knowledge is separately represented and processed. A number of linguists 
and psychologists have recently argued that an integrated view of linguistic 
structure and processing is necessary to account for linguistic data (Fillmore 
et al., 1988; Goldberg, 1991; Lakoff, 1987; Lambrecht, 1995; Langacker, 
1987; MacDonald, 1993; McClelland, St. John, & Taraban, 1989; Spivey- 
Knowlton & Sedivy, in press; Spivey-Knowlton et al., 1993; Taraban & 
McClelland, 1988; Trueswell & Tanenhaus, 1991). We hope that by showing 
that a single parallel probabilistic algorithm deals uniformly with lexical 
access data, idiom processing, parsing preferences, and garden-path data, 
to provide additional evidence that a uniform, nonmodular theory of lan- 
guage representation and process is possible. 

2 ARCHITECTURE 

Access and disambiguation are only a small part of a complete model of 
parsing. In order to maintain the advantages of computational efficiency in 
the face of complex recursive structure, we assume our parser is built with 
the standard dynamic programming (chart) parsing architecture. Then our 
access and disambiguation algorithms are implemented as a set of pruning 
heuristics that augment this standard algorithm. In the next sections we 
give an overview of the motivation for using pruning heuristics as a cogni- 
tive model; detailed arguments will be presented in 53 and §4. We then turn 
to our model of linguistic representation. 

2.1 Parallel Parsing 
As we will discuss in $3, psycholinguistic results on lexical access and idiom 
access, as well as recent results on syntactic processing and our own argu- 
ments in $4 on garden-path processing lead us to believe that the underlying 
architecture of the human language interpretation mechanism is parallel 
(although cf. Frazier [1987]). 
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However, many researchers have noted that without some special attempts 
at efficiency, the problem of computing parallel syntactic structures for a 
sentence can be quite complex. Church and Patil(l982) showed, for example, 
that the number of ambiguous phrase-structure trees for a sentence with 
multiple preposition-phrases was proportional to the Catalan numbers, while 
Barton, Berwick, and Ristad (1987) showed that the need for keeping long- 
distance agreement information and the need to represent lexical ambiguity 
together make the parsing problem for a grammar that represents such in- 
formation NP-complete. If we expect our parsing algorithms to extend to 
spoken-language input, the ambiguity problem explodes even further, first, 
because just allowing the input to be strings of phones rather than words 
adds phonetic parse and lexical segmentation ambiguity, and second, be- 
cause phonetic estimation itself is likely to require probabilistic, nondiscrete 
inputs to the parsing algorithm. 

All solutions to the problem of maintaining multiple parses of an ambig- 
uous sentence, while still parsing in polynomial time, involve dynamic pro- 
gramming techniques. These methods, from the well-formed substring table 
(WFST) of Kuno (1965), to the chart parsing algorithm of M. Kay (1973) 
and the Earley algorithm of Earley (1970), all essentially trade memory for 
processing time. The parser stores the common subparts of multiple parses, 
allowing subparses to be represented only once, instead of once per parse 
tree. 

We assume that the human parser will need to use some such dynamic 
programming algorithm for parsing control and for rule-integration. 

2.2 Why Pruning? 
However, the efficiency gained by dynamic programming algorithms for 
pure syntax may not generalize to the problem of interpretation. For exam- 
ple, if two parse trees both include an NP, the dynamic programming algo- 
rithm can simply store the NP once, because the internal structure of the NP 
is irrelevant to the global parse. But if two interpretations share the same 
NP, it may not be possible to store the NP only once, because its internal 
structure, and particularly its semantic structure, is relevant to the interpre- 
tation, and may be needed by the interpreter to produce part of an on-line 
interpretation. Building the semantics of the NP into the interpretation may 
involve binding variables differently in the context of different interpreta- 
tions. Although some semantic structure can most likely be shared, the 
sharing will not be as efficient as for syntactic structure. 

However, there is another simple way to improve the computational tract- 
ability of parsing. The results of Church and Patil (1982) and Barton et al. 
(1987) rely on the fact that syntactic ambiguities in these parsers are not 
resolved until after the entire sentence has been parsed. It is the need to 
represent ambiguities for indefinite lengths of time in parsing that causes 
complexity. One way for a cognitive model of parsing to be computationally 
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tractable, then, is to do some sort of on-line pruning. That is, rather than 
searching the entire space of possible interpretations for an input utterance, 
we rank our hypotheses and abandon the disfavored ones, or indeed find 
some way to avoid even suggesting (accessing) them. 

Our models of access and disambiguation are based on this idea. As we 
will see in $3, in a standard model of parsing like bottom-up parsing, every 
possible rule which could possibly account for the input data is accessed. As 
the rule-base grows, this becomes quite a large set. If we would like our 
access algorithms to extend to speech processing, the nondeterminism of 
phonetic input makes the number of possible structures which could be in- 
put even larger. In order to make the access problem tractable, we argue 
that it will need to do some sort of pruning, either by accessing many struc- 
tures and then dropping some, or by accessing fewer structures in the first 
place. 

While access pruning happens as linguistic structures are suggested from 
the mental grammar, disambiguation happens after structures are integrated 
together. Disambiguation is a kind of pruning by definition, selecting an in- 
terpretation which is better than other interpretations on some metric. In 
order to avoid the computational complexity of maintaining ambiguities 
over long distances, our model disambiguates on-line by pruning unlikely 
interpretations.’ 

Both the access and disambiguation pruning algorithms work by using 
probability to rank constructions to be accessed or interpretations to be dis- 
ambiguated. In the next section we introduce the grammatical formalism 
that will allow these probabilities to be computed. 

2.3 Grammar: Uniformity and Probability 
The representational component of our processing model is based on con- 
struction grammar. Construction grammar adopts from traditional grammar 
the idea that a grammar consists of a large collection of grammatical con- 
structions. Each grammatical construction is a sign, a conventionalized 
association between form and meaning. Formally, these signs are represented 
as typed unification-based augmented context-free rules in the version of con- 
struction grammar we consider here. In these senses construction grammar 
resembles most phrase-structure and unification-based linguistic theories, 
including among others LFG (Bresnan, 1982), HPSG (Pollard & Sag, 1987),’ 

’ See Mathis and Mozer (1995) for other arguments for the computational utility of 
disambiguation. 

* Note that uniform processing of lexical and syntactic knowledge can take place whether 

we assume that lexical entries or CF rules are the more fundamental mechanism; i.e., lexical 

entries can be modeled as trivial lexical insertion rules in a CFG formalism, or alternatively 
phrase structure constituency can be represented with special attributes with complex feature 

structures. 
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and certain versions of Categorial Grammar. Other versions of construction 
grammar, and closely related theories like Cognitive Grammar (Langacker, 
1987), share the sign-based foundation of the version of construction gram- 
mar we discuss here, but differ on the use of feature structures and CF rules 
as a formal implementation. Like all these similar approaches, construction 
grammar contrasts with the nonsign-based Principles and Parameters/ 
Minimalist approach to grammatical representation. This article will also 
show how to augment construction grammar with certain kinds of probabil- 
ities. As we will see, these same probabilistic augmentations could be made 
to any other of these sign-based theories which meets certain requirements. 

Our processing model relies on four assumptions concerning grammatical 
representation: 

1. The representation of constituent structure rules as mental objects. 
2. A uniform context-free model of lexical, morphological and syntactic 

rules. 
3. Valence expectations on lexical heads. 
4. A lack of empty categories. 

In the rest of this section we describe and motivate each of these assump- 
tions, discussing the extent to which each is true of construction grammar 
and other theories. 

The first assumption deals with what Fillmore et al. (1988) refer to as 
“the distinction between knowing and figuring out,” what is often called in 
psychology the ‘economy of representation’ hypothesis. L. Henderson 
(1989) has remarked that linguistics and psychology hold quite different 
views about representational economy. A fundamental motivating principle 
for many linguistic theories is the minimal-redundancy, maximally eco- 
nomical grammar or lexicon, Psychological models, on the other hand, 
often emphasize the vast storage capability of the mind. Construction gram- 
mar borrows from these tendencies in psychology by modeling grammar as 
a comparatively large collection of structures, including larger phrase- 
structure rules as well as lexical entries. Generalizations across these struc- 
tures, including simple lexical entries as well as complex phrase-structural 
projections such as the correlative conditional construction of Fillmore 
(1986) described as follows, are captured by a type hierarchy, resembling 
the type hierarchy of HPSG or the schematic networks of cognitive gram- 
mar. Figure 1 shows part of the construction grammar type hierarchy. 

The idea that the grammar is a collection of these structures arranged in a 
type hierarchy has two implications for processing. First, because construc- 
tions and the type hierarchy are the sole mechanism for capturing generali- 
zations, the theory places no requirement on the processing mechanism to 
implement redundancy rules, metarules, movement, or enrichment of surface 
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construction 

Figure 1. Part of the Construction Grammar Type Hierarchy (from Koenig 8 Jurafsky (1995) 

form.” We will use the lack of traces to model the psycholinguistic results of 
Tanenhaus, Stowe, and Carlson (1985) in $4. In as much as LFG has elim- 
inated traces, and recent versions of HPSG have begun to do away with 
traces (Pollard & Sag, 1994) and lexical rules (Krieger & Nerbonne, 1993), 
this assumption of representational minimalism is met by a number of 
theories. Second, allowing these structures means the theory has an indepen- 
dent, relatively rich phrase-structural component, in which phrase-structural 
patterns are stored in the mental inventory. We will see the need for storing 
constituent-structure patterns (and their probabilities) in modeling garden- 
path effects in 84. Besides construction grammar, the storage of these struc- 
tures is assumed by the sign-based theories (HPSG, Cognitive Grammar) 
and LFG, but not by categorial grammar, and also not in the PP/Minimalism 
paradigm, in which phrase structural categories act only as a kind of prin- 
ciple-based filter on possible trees, and have no independent existence in 
any kind of mental store (and hence cannot be augmented with probabilities). 

The second fundamental assumption of construction grammar is represen- 
tational uniformity. Uniformity has a number of facets. First, construction 
grammar makes no distinction between the lexicon, the morphology and the 
syntactic rule base; each is represented with an augmented CFG formalism. 
A lexical entry is a construction that may have only a single constituent. 
Morphological knowledge is represented with context-free rules (Selkirk, 
1982) for example, an affix like English plural ‘s’ may be treated as a rule 
N[+pluralj - STEM ‘s’.’ This assumption allows our processing model to 
treat lexical and syntactic processing equivalently; although we don’t consider 
morphology in this paper, we expect to apply the same parsing algorithms 

’ For arguments that inheritance together with on-line type construction is sufficient to 
replace lexical rules, see Koenig and Jurafsky (1995). 

’ See Langacker (1987) for a related, although noncontext-free, proposal within Cognitive 
Grammar and Koenig (1994) and Orgun et al. (1995) for a development of context-free mor- 
nholoev within cnnstruction prammar. 
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conditional 
i i subtype 

correlativelconditional 

[rob antecedent] 

The mare time I spend on this problem the 

the 

less I understand it 

Figure 2. The Correlative Conditional Construction (after Fillmore [1988]) 

for morphology as we have for syntax. The idea that lexical, morphological, 
and syntactic structures are uniformly represented is a fundamental principle 
of sign-based linguistic theories such as Cognitive Grammar and categorial 
grammar. With the exception of morphological knowledge this is also true 
of HPSG.’ Because in sign-based theories like construction grammar con- 
structions can be associated with semantics like lexical items, the access and 
disambiguation processes can make reference to semantic structure. 

As an example of a construction and the use of inheritance to capture gen- 
eralizations, consider the CORRELATIVE CONDITIONAL construction described 
by Fillmore (1986) and (1988) and McCawley (1989), which models 
sentences like (2): 

(2) a. HERMZA: The more I hate, the more he follows me. 
b. HELENA: The more I love, the more he hateth me. 

Figure 2 shows Fillmore’s analysis of the construction. 
Note that the correlative conditional construction is a subtype of the con- 

ditional construction, which is itself a subtype of the subordination con- 
struction. In addition, the second and fifth constituents are constrained to 
be of type COMPARATIVE. Fillmore argues that sentences like (2) simulta- 
neously exhibit conditional and comparative properties, and that these 
various grammatical properties of the construction are inherited from the 
conditional and comparative constructions. 

5 Although LFG makes a crucial distinction between the lexicon and the grammar, re- 

cent LFG work has discussed similarities between lexical and syntactic structure such as assign- 

ing semantic rules to specific syntactic constructions like relative clauses (Dalrymple, 1992). 
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For example, the correlative conditional inherits from the conditional 
construction many facts about the tense and aspect possibilities of the two 
clauses, such as the suppression of future will in the protasis: 

(3) a. The faster you (*will) drive, the sooner you’ll get there. 
b. If you (*will) drive fast, you’ll get there by 2:O0. 

As McCawley (1989) shows in (4), the second and fifth constituents of 
the correlative conditional exhibit the complete range of ordinary compara- 
tive morphology; -er on short stems, more on long stems, and suppletion 
with good, bad, will, badly, much, many, little. 

(4) a. The worse the weather gets, the happier I am that we stayed home. 
b. The worse he behaved, the less attention we paid to him. 
c. The better you treat him, the less trouble he’ll give you. 

The correlative conditional has a number of idiosyncratic properties 
which cannot be predicted from its super-types. For example, some particulars 
about the use of the comparative are unique to this construction; the two 
comparatives (“the more time” and “the less”) are fronted and semantically 
express a correlation between an independent and a dependent variable. For 
a sentence like (5), the interpretation might be paraphrased as “The degree 
to which I spend time on this problem will determine the degree to which I 
understand it”. 

(5) The more time I spend on this problem, the less I understand it 

Again, a guiding intuition of construction grammar is that such complex, 
nonlocal constructions are stored along with lexical entries in the mental 
grammar. 

We turn now to the probabilistic augmentations we propose for construc- 
tions. We argue that constructions should be augmented with probabilities 
in two ways. First, every construction will be annotated with a simple prob- 
ability. These express the prior probability of choosing a particular con- 
struction at random from the mental lexicon or from a random utterance. 
This prior probability resembles the “resting activation” of the frequency- 
based models traditional in psychological theories of lexical access. Second, 
constructions are augmented with probabilities in every case where some 
part of the construction expresses a linguistic expectation. A feature-based 
lexical grammar expresses expectations in at least two ways. First, each 
context-free rule expresses an expectation for the constituents which con- 
stitute the rule. That is, given that we have evidence that the parser has seen 
a certain phrase structure rule, we can expect each constituent of the rule to 
appear. Second, each valence-bearing predicate expresses an expectation for 
its valence-fillers. That is, given evidence for a predicate, we can expect to 
find further in the string a constituent which will satisfy each valence (or 
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subcategorization) slot of the predicate. Our model allows each of these 
expectations to be probabilistic. 

How are these probabilities to be defined? The prior probability of a 
construction is the simplest. We assume here a frequentist interpretation of 
prior probabilities. That is, the prior probability of a construction is just a 
maximum likelihood estimate from relative frequencies. We make the sim- 
plifying assumption that these frequencies can be computed either from 
psychological norming studies or from carefully chosen corpora. The most 
widely available balanced corpus is the million word Brown corpus. Francis 
and Kucera (1982) give frequencies for every lexical item in the Brown corpus, 
and also for simple lexical categories. Computing frequencies for phrasal 
constructions requires parsing the corpus. For phrasal construction fre- 
quencies we used the Penn Treebank (Marcus, Santorini, & Marcinkiewicz, 
1993), which includes a parsed segment of the Brown corpus. 

Given the prior probabilities for each construction, computing the prob- 
abilities for constituent expectations can be done with a simple normaliza- 
tion step. Constituent expectation probabilities are in fact the standard 
Stochastic Context-Free Grammar probability. This is the conditional prob- 
ability of the right hand side of a rule, given the left hand side, that is, the 
probability of a particular expansion of a left-hand side. Thus, if the expan- 
sions of A consist of SCFG rules of the form 

(6) b11 A - B C 

(7) bzl A - D E F 

then p, is the probability that A will expand to BC, while p2 is the probability 
that A will expand to DE F. Since these probabilities are all conditional on 
A, it follows that Zipi = 1 .O. Thus, we can compute the SCFG probability 
of any rule just by dividing the prior probability of the rule by the sum of 
the prior probabilities of all expansions of the left-hand side. 

For example, in order to compute the probability of the simplified rule 
(8), we would use the treebank to get a frequency for all NPs (52,627), and 
then for those NP’s which consist of a Det and an N (33,108). The condi- 
tional probability is then 33,108/52,627 = .63. 

(8) (.63] NP - Det N 

The second kind of grammatical expectations are valence expectations 
that a lexical predicate bears for its arguments. As discussed above, the 
valence of a predicate in construction grammar may constrain the syntactic 
category, grammatical function, thematic role, or semantics of their argu- 
ments. Each lexical predicate may bear a valence attribute which specifies a 
set of valence arguments. In our probabilistic model, each of these argu- 
ments is augmented with a probability of occurrence. This probability ex- 
presses the conditional probability of the argument being filled given the 
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predicate. Obligatory arguments, for example, will have unity valence prob- 
ability, while optional arguments will have a value between 0 and 1. 

An alternative algorithm might assign probabilities to entire thematic 
grids rather than individual arguments. Although we express our probability 
computations in terms of individual-argument rather than thematic-grid 
probabilities, we will show our pruning algorithm is compatible with either 
model. The data we discuss in this article does not allow us to definitively 
choose between the two models of valence probability. 

We have relied on two methods of determining valence probabilities. 
Connine, Ferreira, Jones, Clifton, and Frazier (1984) provide frequencies for 
the different syntactic subcategorizations of 127 verbs. These were determined 
by giving subjects a list of verbs and asking them to write a sentence for each 
one. The authors then computed frequencies on the corpus this produced. 

For verbs which were not studied by Connine et al. (1984), we used the 
Penn Treebank (Marcus et al., 1993) just as for construction probabilities. 
That is, to determine the valence probabilities for a verb, we counted the 
number of times the verb occurred with each frame, and normalized by the 
total count for the verb. Since these initial sources of valence probabilities 
only include syntactic information, we have left the use of semantic valence 
probabilities for future research (see $5). 

3 ACCESS 

Every model of parsing, lexical access, or sentence processing includes a 
theory of access, and yet the problem of access has been strikingly balka- 
nized. In this section, we compare previous models of access at the lexical, 
idiomatic, and syntactic levels, and hold them up to psycholinguistic results. 
We show that each of the models fails to model all the relevant data, and 
then present the Bayesian access model, based on computing the conditional 
probability of a construction given top-down and bottom-up evidence. We 
show that the model is consistent with psycholinguistic results and outline 
the model’s predictions. 

3.1 Previous Models of Access 
Consider the difference between serial and parallel access algorithms. The 
earliest models of lexical, idiomatic, and syntactic access were all serial, in- 
cluding lexical models like ordered-access (Hogaboam & Perfetti, 1975), 

models of idiom access like the idiom list hypothesis (Bobrow & Bell, 1973) 
and the direct access hypothesis (Gibbs, 1984), and models of syntactic access 
in parsers like PARSIFAL (Marcus, 1980) and the Sausage Machine (Frazier 
& Fodor, 1978). In serial models a single lexical entry is accessed from the 
lexicon at a time. For example, in the idiom list hypothesis, idioms are stored 
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in a separate idiom dictionary, and a single idiom is accessed when the com- 
putation of literal meanings for a string fails, while the direct access model 
of idiom access proposes just the opposite: idiomatic meaning is accessed 
first, and literal meaning is only computed when the access of idiomatic 
meaning fails. 

In recent years, serial models of lexical and idiom access have fallen some- 
what out of favor, due to extensive results which argue for parallelism 
(Swinney, 1979; Swinney & Cutler, 1979, etc). Thus, most researchers on 
idiom processing assume some form of the lexicalization hypothesis (Swinney 
& Cutler, 1979), which proposes that idioms are stored as long lexical items 
and accessed in parallel with normal lexical items. 

Syntactic access is treated very differently in the psycholinguistic and 
computational communities. Psycholinguistic parsers (such as the early 
models of Bever, 1970, and Kimball, 1973, as well as later models like the 
Sausage Machine), are traditionally serial, motivated as they are by the 
garden-path results we will discuss in $4. Computational parsing models 
(such as the Earley, CKY, and chart parsers) are usually based on some 
form of dynamic programming algorithm, and hence are fundamentally 
parallel in nature. 

However, we will argue in 84 following Kurtzman (1985), Norvig (1988), 
and Gibson (1991), that garden-path phenomena can be modeled with a 
parallel architecture as well, eliminating one of the strongest arguments for 
serial parsing. Although psycholinguistic results on syntactic access seem to 
be somewhat contended, a number of recent results argue for parallelism in 
syntactic processing as well (Boland, 1991; Gorrell, 1987; Gorrell, 1989; 
Kurtzman, 1985; MacDonald, 1993). Because all modern models of lexical 
access, and most models of idiom or syntactic access are parallel, then, the 
remainder of this section focuses on parallel access algorithms, examining 
previous models from two perspectives: how to access (i.e., what sorts of 
evidence to use), and when to access (i.e., the time course of access). For ex- 
ample, consider the problem of accessing either the syntactic rule S - NP 
VP or the lexical item ‘about’ (A b CY’+’ t) given some input. Figure 3 sketches 
four standard rule access models, showing the type of evidence each algo- 
rithm would use to acess the rule S - NP VP or ‘about’ - A b CX’+’ t. 

In the bottom-up model, access of a rule depends only on evidence from 
the input, and is delayed until the entire set of constituents has been seen. One 
interpretation of the lexicalization hypothesis (Swinney 8z Cutler, 1979) would 
process idioms in this way; van der Linden and Kraaij (1990) built a compu- 
tational model of this proposal, in which idioms are not accessed until the 
entire idiom has been seen. In a top-down model (such as the selective access 
model of lexical access (Glucksberg, Kreuz, & Rho, 1986; Schvaneveldt, 
Meyer, & Becker, 1976), access depends only on previous expectations. 
Neither the top-down nor bottom-up models meets our concern with psycho- 
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Access Method 
0 Bottom-Up 
l Top-Down 
0 Left-Corner 
l Island 

about 

Examples 
shift-reduce 
LL(k), selective access 
Cohort 
head-comer, key, MSS 

A 
NP VP 

Phonological Evidence Syntactic Evidence 
abawt NPVP 
about S 

iaWr 
NP 
N 

Flgure 3. Previous Models of Phonological and Syntactic Access 

logical plausibility. For example, we cited in the introduction a large number 
of studies showing that language processing is strictly on-line, ruling out a 
bottom-up model which delays until every constituent has been seen. Simi- 
larly, a number of studies have shown results inconsistent with selective 
access and other purely top-down models (Swinney, 1979). 

The left-corner model combines advantages of the bottom-up and top- 
down models; a rule is accessed by only the first constituent, and then pro- 
cessing continues in a top-down manner from the rest of the rule. Such 
models have been proposed for both syntactic parsing and lexical access. 
For example, Marslen-Wilson’s (1987) Cohort model of lexical access in 
speech perception is in many respects a left-corner model, using bottom-up 
information to access entries, and then top-down information to process 
them further. In the Cohort model, bottom-up phonetic information is 
used to access a set of lexical entries whose initial phonemes are compatible 
with the input so far. The set, called the cohort set, is then weeded out by 
using various top-down as well as bottom-up information sources to prune 
words which don’t meet their constraints. 

The final class of models, the island models, propose even more sophisti- 
cated ways of accessing a rule. In head-corner access, only the head of the 
first constituent need be seen to access a rule. While the head-corner model 
was proposed independently by van Noord (1991) and Gibson (1991) for 
syntactic parsing, Cutler and Norris’s (1988) MSS model of lexical segmen- 
tation is essentially a head-corner model applied to speech. The MSS model 
accesses words based on their first stressed syllable; the stressed syllable 
thus acts as the parsing head. 

Finally, in what can be viewed as an extension to the head-corner model, 
two algorithms (Cacciari & Tabossi, 1988; Wilensky & Arens, 1980) have 
been proposed which mark specific constituents idioms as the key or 
indexing clue, and access idioms only after this constituent is seen. This 
allows these algorithms to model results indicating that the access of differ- 
ent idioms will occur at differing positions in the idiom. 
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3.2 Problems with Previous Models 
Clearly there is a trend in more recent access models to be more and more 
sophisticated about the kind of evidence that is needed to access a rule or 
structure. Unfortunately, none of these models is quite sophisticated enough, 
and all suffer from two major problems. The first is their inability to handle 
timing effects; in particular, construction-specific, context-specific, and fre- 
quency effects in access. The second is their reliance on a single kind of 
information to access rules; either strictly bottom-up or top-down informa- 
tion, strictly syntactic information like the restriction algorithm of Shieber 
(1985), or solely semantic information, as in conceptual analyzers like 
Riesbeck and Schank (1978) or in Cardie and Lehnert (1991) or Lytinen 
(1991). Thus, each of these models is only able to model a particular range 
of evidential effects. 

Consider the psycholinguistic evidence on timing. First, there is evidence 
that access timing is different for different constructions. The access point 
(point in time when the construction is accessed) for different constructions 
may be quite distinct. For lexical constructions, Tyler (1984) and Salasoo 
and Pisoni (1985) show that while the average access point for lexical items 
is approximately 150 ms after word-onset, timing is quite dependent on the 
frequency of the lexical item. High-frequency lexical items have higher initial 
activation than low-frequency ones (Marslen-Wilson, 1990), are accessed 
more easily (Tyler, 1984; Zwitserlood, 1989), and reach recognition thres- 
hold more quickly (Salasoo & Pisoni, 1985; Simpson & Burgess, 1985). 
Swinney and Cutler (1979) showed that some idioms were not accessed 
immediately after the first content word of the idiom, but rather that it took 
at least two words to access the idiom. Cacciari and Tabossi (1988) found 
that different idioms are accessed at quite different rates. 

One way to model the access timing differences between constructions is 
with the island or key algorithm of Cacciari and Tabossi (1988) and Wilensky 
and Arens (1980). In these algorithms, each construction in the grammar 
would have one of its constituents (the key or island) marked. The construc- 
tion could only be accessed after the key had been seen. One problem with 
this approach is that it requires specifying this information for each con- 
struction in the language; an approach which was able to predict the access 
point without having to learn it for each construction would be preferable. 

A more serious problem with the island/key algorithm is its inability to 
account for the second class of timing results. These results show that dif- 
ferent contexts change the access point even for the same construction, that 
is, that the access point is context-sensitive. Cacciari and Tabossi (1988) 
showed that the access of idioms was faster in the presence of context. Salasoo 
and Pisoni (1985) showed the same for lexical entries. Marslen-Wilson et al. 
(1988) showed the dual case-that anomalous contexts can slow down the 
access point of lexical constructions, and that the more anomalous the con- 
texts, the higher the response latencies. 
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Thus, whatever sort of access algorithm we propose, it must allow the 
accumulation of evidence to cause some constructions, in some contexts, to 
be accessed faster than other constructions, in other contexts. 

3.3 The Probabilistic Model 
Our proposal is that access and disambiguation should be treated with a 
single probabilistical model. We refer to the access part of the model as the 
Bayesian or evidential access algorithm. For each construction, we compute 
the conditional probability of the construction given the evidence. Evidence 
can come from syntactic, semantic, and lexical sources, both top-down and 
bottom-up. Constructions are accessed according to a beam-search algo- 
rithm. In beam-search, every construction falling within a certain percentage 
of the most highly-ranked construction is accessed. We propose that this 
beam-width, which we call the access threshold 01, is a universal constant in 
the grammar. 

For each construction, the conditional probability of a construction 
given top-down evidence is relatively simple to compute in a Construction 
Grammar or any other augmented-stochastic-context-free formalism. Recall 
that the SCFG prior probability gives the conditional probability of the 
right hand side of a rule given the left hand side. 

Given these probabilities, the conditional probability of a construction c 
appearing given some top-down evidence construction e+ can be computed 
from the probability that e+ will expand to c. In particular, since the parser 
operates left to right, the top-down probability P@(e) is the probability that 
the evidence construction e+ left-expands to c: 

L’ 
(9) P@ - 4 

In a context-free grammar, a nonterminal a left-expands to a nonterminal 
b if there is some derivation tree whose root is a and whose leftmost leaf is 
6. Consider the toy example in (10). 

(10) a. [.5] S - NP VP 
b. [.7] VP - VNP 
c. [.2] VP - VNP PP 
d. [.l] VP - Adv VP 
e. [.l] V - ‘eat’ 
f. [.3] v - ‘go’ 

Suppose the parser is in the process of parsing a sentence and has found 
the first NP of an S. The left expansion of the next constituent, the VP, 
includes the symbols V, eat, Adv, and go. Figure 4 shows a schematic 
example of left expansion. 

Equation 9 holds whether the evidence is valence evidence, that is, evidence 
from a lexical head that a particular complement (syntactic or semantic) is 
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Figure 4. Left-Exponsion: o schematic example 

expected, or constituent evidence, that is, evidence from an incomplete con- 
struction. If no recursive production cycles occur in the expansion of e to c, 
then P(cle) is very simple to compute as the product of the probabilities 
associated with each rule in every possible expansion. If recursive production 
cycles occur, Jelinek and Lafferty (1991) give an algorithm for efficiently 
computing left-corner probabilities, while Stolcke (1995) shows how the 
standard Earley parser can be augmented with them. Jurafsky et al. (1995) 
shows an application of a version of this algorithm as a model of lexical 
access for a speech recognizer. 

In order to compute the conditional probability of a construction c given 
evidence e which is bottom-up evidence, we use the Bayes Rule: 

(11) P(c I e) = 
p(e I W(c) 

P(e) 

The probabilities P(c) and P(e) are simply the prior probabilities which 
annotate each construction, computed by normalizing frequencies. For the 
likelihood P(e ) c), we can now use the standard algorithm above in reverse, 
computing the probability that c left-expands to e. 

Once given these estimates for top-down and bottom-down probabilities, 
combining the evidence to estimate the posterior probability of a construc- 
tion is quite complex. In current work, we are examining Bayes net realiza- 
tions of the combination problem, which is in fact the subject of a large 
Bayes Net literature (Pearl, 1988). Certain assumptions may make the com- 
bination problem much simpler. For example, if we assume that top-down 
and bottom-up evidence interact disjunctively, they can be combined with a 
simple noisy OR-gate. Alternatively, we can make the simplifying assump- 
tion that e+ can effect e- only through c, producing the following: 

(12a) P(cle) = P(c\e+, e-) = 
P(c, e-/e+) 

P(e- le+) 

= P(cle+) PClc, e+) 
P(e-le+) 

= P(cle+) P(e- Ic) 
P(e-le+) 
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Since, as we show below, we will be comparing the ratios of the probabil- 
ities for different constructions, the denominator P(e- le+) remains con- 
stant and we can simply treat it as a normalizing factor, producing a very 
simple equation for evidence combination: 

(12b) P(cle) = XP(cje+) P(e- Ic) 

However, psycholinguistic results on the relation between top-down and 
bottom-up evidence are quite controversial. While most studies agree that 
top-down evidence is used in parsing, many researchers have argued that 
bottom-up evidence is used first or more strongly (Frazier, 1989; Mitchell, 
1989; although cf. MacDonald, 1993). This might be modeled by parameter- 
izing the amount of weight given to top-down versus bottom-up evidence, 
perhaps via exponential weighting of the probabilities. A more complete in- 
vestigation of evidence combination awaits future work. 

Now given that the algorithm assigns a conditional probability to each 
construction, how should we choose which ones to access? We might choose 
to access any construction with nonzero probability. But as we argued in 
02.2, accessing every possible construction may lead to far too many con- 
structions, especially with noisy input such as speech. Furthermore, the 
results of Cacciari and Tabossi (1988) previously discussed argue that idioms 
are often not accessed until more than one word of them has been seen. This 
suggests that the access algorithm operates with some sort of pruning. For 
example, if the phonetic evidence suggests both a lexical entry and an idiom, 
but the lexical entry was much more probable, a pruning algorithm might 
keep the idiom from being accessed. Since the data rules out any sort of 
absolute threshold, our proposal for both access and disambiguation pruning 
is to use relative-width beam search, which prunes any construction more 
than a constant times worse than the best construction. If an idiom is much 
less probable than a lexical item, it would only be accessed if enough of the 
idiom had been seen to provide more evidence for the idiom that just for the 
lexical item. Our preliminary proposal is that there is a single fixed access 
beamwidth threshold for the grammar, (Y, and that all constructions are 
accessed whose probability is within a multiple of cr of the most likely con- 
struction. Because there is insufficient psycholinguistic data on syntactic 
access in particular, we do not propose a specific value for (Y in this article. 
We do, however, propose a specific range of values for the disambiguation 
beam-width in 44. 

Let’s work through one example of access. Suppose we are parsing a 
sentence beginning ‘who can. . . ‘. The parser has just seen the word ‘who’, 
and already accessed a couple of the sentential constructions which model 
wh-questions, the MAIN-CLAUSE-NON-SUBJECT-WH-QUESTION and the 

SUBJECT-MATRIX-WH-QUESTION. Both of these constructions are marked 

with role [gfmainj to indicate that they are main-clause-level constructions, 
and syn @iffin& indicating that they will have finite verb phrases. Both of 
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Figure 6. Top-down expectations from two arcs on the chart 

these constructions begin with a wh-element, marked [syn [wh +// in Figure 
5. In the SUBJECT-M-WH-QUESTION this is followed by a VP (a fact which 
is inherited from the SUBJECT-PREDICATE construction); in the MC-NON- 
SUBJECT-WH-QUESTION this is followed by an inverted clause. 

The inverted clause construction (‘are you there?‘, ‘so will she’) requires 
an Aux as its first constituent. The VP construction requires any verb as its 
first constituent. Consider now the dynamic programming chart on which 
the parser will keep records of interpretations in progress. The chart will 
have an arc for each construction being considered. Assume for simplicity 
that these were the only two constructions active on the chart, as shown in 
Figure 6. Each arc on the chart is associated with a construction, which has 
a dot to indicate the current place in the parse. Thus, both constructions 
have already seen their first constituent (marked [s_~n [wh + I]). 

The probability based on top-down evidence for an Aux appearing next 
given the MC-Non-Subject-Wh-Question is 1 .O, since the construction 
requires an Aux to appear. Since Aux subsumes CAN in the type hierarchy, 
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the likelihood P(CANI AUX) is simply P(CAN)/P(AUX). Computing the 
prior probabilities of each of these construction from the Brown Corpus 
(Francis & Kucera, 1982), gives us P(CAN)/P(AUX) = .0017/.025 = .07. 
The probability based on top-down evidence for any verb appearing next 
given the Subject-M-Wh-Question is 1 .O, again since a verb is required. Since 
the prior probability of a VERB in the Brown Corpus is .085, this makes 
P(CANISUBJECT-M-WH-QUESTION) = P(CANIVERB) = P(CAN)/P(VERB) = 
.0017/.085 = .021. The probabilities of ‘can’ given the two Wh-Question 
constructions are independent, and so the actual probability based on top- 
down evidence of ‘can’ is a weighted sum: 

P(MC-Non-Subject-Wh-Question(context), assuming just the context of 
this sentence, i.e. the first word ‘who’, is the probability of the derivation of 
this prefix ‘who’ from the MC-Non-Subject-Wh-Question. Whatever these 
probabilities are, the final P(cunle+) will be between 0.21 and .07. This is 
the evidence that will be combined with any bottom-up evidence for ‘can’. 

3.4 Advantages of the Model 
The probabilistic model of access accounts for a number of psycholinguistic 
results. First, the model explains the frequency effect in lexical access. Lexical 
items with a higher frequency will tend to have a higher probability. We can 
see this by considering the equation for bottom-up evidence, applied to 
lexical access: 

(14) P(w ( e)= P(e I wPW9 

p(e) 

(14) implies (15), that is, that the probability of any word w is directly 
proportional to its prior probability P(w), which we take from maximum 
likelihood estimates from relative frequencies. 

(1s) JYw I 4 a W+9 

Since idioms and lexical items are treated equivalently, the model thus 
also accounts for experiments on idioms which show that more familiar 
idioms are accessed more quickly (d’Arcais, 1993). Finally, the model pre- 
dicts that this frequency effect should extend to syntactic constructions. 

But the probabilistic algorithm differs from a simple frequency-based 
algorithm in making the prediction that access of a construction will be 
inversely proportional to the probability of the evidence. In other words, 
the relationship between the posterior probability of a construction and the 
priors of evidence and construction is as follows: 
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(16) JYc I 6 a 
p(c) 
p(e) 

Intuitively, things which are common are not good evidence for any one 
construction in particular. This aspect of using posteriors rather than priors 
to model access explains experimental results in both lexical and idiom 
processing. 

First, the model provides a way to formalize the intuitions of Cacciari 
and Tabossi’s (1988) results on idiom access. Cacciari and Tabossi distin- 
guished predictable and unpredictable idioms in Italian. Predictable idioms 
are those like in seventh heaven in which they considered there to be an early 
cue to idiomaticity. Unpredictable idioms were those like go to the devil in 
which the cue that the phrase was not literal came late in the idiom. They 
found that the idiomatic meaning was accessed immediately for predictable 
idioms, but much later for unpredictable idioms (300 ms after offset). Since 
the authors controlled for frequency of idioms, this cannot be accounted 
for by assuming that more frequent idioms were accessed earlier. 

But consider what it means to be a cue to idiomaticity. Essentially, the 
longer the structure of the idiom resembles a literal phrase, the later the cue. 
That is, the cue is marked by a particularly unlikely or rare word, combina- 
tion of words, or construction. This is exactly what we would expect from a 
probabilistic approach. A more common structure, that is, one which is a 
very likely candidate for literal interpretation, will have a high probability. 
A further examination of their late-cue idioms showed that many of them 
also began with very common words such as venire (‘come’), or andare 
(‘go’). The probabilistic interpretation of this result, then, is that the highly 
probable words or constructions which began the idiom did not prove a 
good source of evidence for the idiom, because they provided evidence for 
so many other constructions as well. Again, this supports the use of a true 
probabilistic model, rather than the simple relative-frequency model assumed 
by previous lexical access theories, 

Next, the probabilistic model explains the similarity neighborhood effects 
found by (Lute, Pisoni, & Goldfinger, 1990) and others. Lute et al. showed 
that words differ in their similarity neighborhoods, the set of words which 
resemble them phonetically. They showed a correlation between the time to 
access a word and the size of its neighborhood; words with large neighbor- 
hoods were slower on auditory naming and lexical decision. These effects 
are predicted by the probabilistic model just as for idiom access. The differ- 
ence between a frequency-based and a probabilistic theory of lexical access 
are the likelihood term P(eJc) and the prior of the evidence P(e) in (14). The 
likelihood term will model the goodness-of-fit of a lexical entry to the input; 
we don’t consider this further. If the evidence for a word is some (perhaps 
noisy) string of phones, then the evidence prior expresses how common this 
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string of phones is a priori, perhaps the phonotactics of the language. But 
consider what it means to have a large frequency-weighted neighborhood; it 
means that there are a lot of words which strongly resemble the target word. 
But if a lot of words resemble the target word, the target word must have a 
very common phonology. In other words, a large neighborhood means the 
prior probability of the evidence will be high. A small neighborhood means 
there are very few words in the language whose phonotactics resemble the 
target word, and hence the string of phones used as evidence will have a 
small probability. 

Lute et al. (1990) explained the neighborhood effects by adding terms for 
neighborhood size and frequency to R.D. Lute’s (1959) choice rule. We 
show that their modified Lute rule is an approximation to our probabilistic 
model. Lute et al. (1990, p. 125) gives the following equation: 

(17) zJ(ZD) = 
P(stimulus word) x freqs 

P(stimulus word) X freqs + CT=1 p(neighborj) x freqj 

What they describe in their equation as P(stimulus word) corresponds to 
our likelihood term, but their method of computation blurs the distinction 
between likelihood and posterior. Using confusion matrices between under- 
lying and surface phonological form, they compute P(stimulus word) as 
P(stimulus wordlinput string) rather than P(input stringlstimulus word). 
For example, they compute the probability of the stimulus word/k&/by 
multiplying together the confusion probabilities P(kJk), P(&E), and P(tlt). 
Since with no deletions, insertions, or reductions, these probabilities are 
symmetric, their computation does in fact simulate the actual likelihood 
computation. But the actual likelihood computation would be completely 
different if the lexical entry for a word does not have the same string of 
phones as the surface string (e.g., for deletions, P(0lt) + P(tl0)). 

The denominator of (17) incorporates the neighborhood size and con- 
fusability with the target word. But this equation can also be viewed as a 
heuristic to approximate the actual prior probability of the evidence. By 
definition, the true prior probability of the evidence is equal to a weighted 
sum over all words 1 in the lexicon of the conditional probability of the evi- 
dence given I: 

What Lute et al. (1990) compute only approximates this true prior. First, 
they again compute the posterior P(neighbor wordlinput string) rather 
than P(input stringlneighbor word). As we discussed above for the likeli- 
hood computation, the difference is not very great in their case, since they 
use single-phone confusion matrices and a simple string-of-phones model of 
phonology. But again, the more different the neighbor word is from the 



160 JURAFSKY 

target, the more likely that asymmetries in the confusion matrices will cause 
their equations to diverge from the true probabilities. Second, they only 
consider the probability of neighbor words, rather than all words in the 
lexicon. In practice, this is probably a good approximation, since it is the 
neighbor words that will provide the bulk of the probability mass, since the 
likelihood p(e\I) will be extremely low for words which are very different 
than the target word. However, it is only an approximation, and requires 
making an arbitrary decision about what constitutes a neighbor. Computing 
the true prior requires no such arbitrary definitions of neighborhood. 

A final source of evidence for the Bayesian evidential theory has to do 
with the varying use of top-down evidence in syntax versus phonology. 
Tanenhaus and Lucas (1987) note that psycholinguistic evidence of top-down 
effects is very common in phonology, but much rarer in syntax. Researchers 
have noted that top-down syntactic/semantic effects on lexical access are 
only reported in extremely strong contexts, particularly with lexical con- 
texts. For example, Wright and Garrett (1984) found evidence for 
top-down syntactic effects by showing that very strong syntactic contexts 
affected the reaction time for lexical decisions on nouns, verbs, and adjec- 
tives. In one experiment, a context ending in a modal verb sharply reduced 
the time for lexical decision to a verb. Similarly, a context ending in a pre- 
position reduced the time for lexical decision to a noun. In phonology, the 
conditional probability of a phoneme appearing given a word in which it 
occurs is very high, and thus top-down evidence will be quite high. Syn- 
tactic constraints, on the other hand, are generally specified in terms of very 
abstract constructions like NOUN or VERB. Thus the top-down conditional 
probability of any particular noun appearing is quite low, and top-down 
evidence will be much lower. 

The Bayesian access theory predicts that top-down syntactic effects are 
more likely in cases where a syntactic construction refers to a particular 
lexical item. Here the conditional probability of this given word occurring 
will be quite high. Preliminary evidence for this prediction comes from 
Cacciari and Tabossi (1988), who found just such top-down syntactic effects 
from idioms. 

We can summarize the psycholinguistic data which support our probabi- 
listic algorithm as follows: 

l The access-point of a construction varies across constructions and 
contexts. 

l Evidence for a construction is weighted in direct proportion to the fre- 
quency of the construction. 
-Lexical access time correlates directly with word frequency. 

l Evidence for a construction is weighted in inverse proportion to the fre- 
quency of the evidence. 
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-Lexical items with high frequency-weighted neighborhoods take longer 
to access. 

-Idioms with high-frequency words take longer to access. 
l Top-down evidence for a construction is weighted in proportion to the 

relative specificity of the evidence and the construction. 

In the next section we continue our arguments for a probabilistic model 
of language processing, showing that using probabilities to rank interpreta- 
tions of an ambiguous utterance, just as we rank constructions to access, 
can account for psycholinguistic results on disambiguation. 

4 DISAMBIGUATION 

Natural language is inherently ambiguous. In studying the response of 
human subjects to this ambiguity, cognitive studies have amassed a large 
collection of results to be accounted for by a computational model. This 
includes on-line and off-line experiments on parsing preferences, (Britt, 
Perfetti, Garrod, & Rayner, 1992; Crain & Steedman, 1985; Ford, 1982; 
Frazier & Rayner, 1987; Taraban & McClelland, 1988; Whittemore, Ferraro, 
& Brunner, 1990) results on the interpretation of garden-path sentences, 
(Bever, 1970; Frazier 8c Rayner, 1987; Kurtzman, 1985) and studies of gap- 
filling/valence ambiguities (Tanenhaus, Stowe, & Carlson, 1985, etc). 

Whether a model of parsing is serial or parallel, disambiguation prefer- 
ences are accounted for by applying a ranking across interpretations or 
parse-trees. In serial parsers, the top-ranked interpretation is chosen and the 
others discarded. In parallel parsers, some broader set of highly-ranked 
interpretations is maintained. 

The two classes of parsing algorithms differ more substantially in model- 
ing garden-path effects. A serial parser models garden path effects by rely- 
ing on some additional heuristics or innate parser structures which make the 
parser unable to build the correct interpretation. These structures might 
include the 3constituent window of Marcus (1980), or the similar word- 
based window of the early Sausage Machine (Frazier & Fodor, 1978). 

In a parallel parser, by contrast, garden path effects are usually modeled 
as an effect of pruning. Memory or other constraints require the parser to 
prune some interpretations. Using the same ranking which models disam- 
biguation preferences, the parser prunes some set of low-ranked interpreta- 
tions. The garden-path effect is explained because the correct interpretation 
of an utterance is among these pruned interpretations. 

In this section we argue that a parallel algorithm which ranks interpreta- 
tions by their probability and prunes low-probability interpretations via 
beam-search can explain both preference effects and garden path effects. In 
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addition, we show that the consequence of using probability as a metric is to 
choose interpretations which are the most coherent with previous expectattions. 

44.1 first introduces relevant data on parsing preferences and garden-path 
sentences, and then 04.2 presents the local coherence model of disambigua- 
tion. $4.4 will compare our model with previous models of disambiguation 
and garden paths, arguing that the parallel probabilistic algorithm, besides 
accounting for the access results discussed in §3, accounts for a much broader 
variety of disambiguation results than previous models. 

4.1 Psychological Results 
The psychological results on disambiguation may be separated into two 
classes. First are studies, both on-line and off-line, on human disambiguation 
preferences. Examining which interpretations a subject prefers (of, say, an 
ambiguous prepositional phrase attachment) provides data to be modeled by 
a potential theory of disambiguation. 

For example, Ford et al. (1982), in an off-line experiment, asked subjects 
to perform a forced choice between two meanings of an ambiguous utter- 
ance. They showed that in (19), subjects preferred to attach the prepositional 
phrase on the beach to the noun dog, while in (20), subjects preferred to 
attach the prepositional phrase to the verb kept. 

(19) The women discussed the dogs on the beach. 
a. The women discussed the dogs which were on the beach. (9070) 
b. The women discussed them (the dogs) while on the beach. (10%) 

(20) The women kept the dogs on the beach. 
a. The women kept the dogs which were on the beach. (5%) 
b. The women kept them (the dogs) on the beach. (95%) 

Taraban and McClelland (1988) studied a number of preposition-attach- 
ment ambiguities, by measuring preferences when subjects had seen a 
sentence up to and including the preposition, but not including the preposi- 
tional-object head noun. In general, they found that subjects used both ver- 
bal and nominal expectations to try to attach the prepositional objects. 
They found for example in (21)-(23) that subjects preferred noun phrase 
attachments. 

(21) The executive announced the reductions in the budget / evening. 
(22) The philanthropist appreciated the story on his generosity / deathbed. 
(23) The high-school senior stated his goals for the future / principal. 

The second kind of psychological result deals with garden-path sentences. 
In garden-path sentences, readers are fooled by locally ambiguous structures 
into selecting an incorrect interpretation. We summarize here a number of 
cases of ambiguities that lead to the garden-path effect as well as some that 
do not6 

’ We follow Gibson (1991) in marking garden-path sentences with a pound-sign (4. 
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1. Main Clause-Relative Clause ambiguity is often resolved in favor of the 
main clause analysis. 

(24) # The horse raced past the barn fell. (Bever, 1970) 

However, semantic context can reduce or eliminate the garden-path 
effect (Cram and Steedman, 1985). 

(25) # The teachers taught by the Berlitz method passed the test. 
(26) ?The children taught by the Berlitz method passed the test. 

2. Lexical category ambiguities sometimes cause garden-path effects, 
sometimes do not. 

(27) # The complex houses married and single students and their families. 
(Hearst, personal communication, December, 1991) 

(28) The warehouse fires destroyed all the buildings. (Frazier & Rayner, 1987) 
(29) The warehouse fires a dozen employees each year. (Frazier & Rayner, 

1987) 
(30) # The prime number few. (Milne, 1982) 
(31) # The old man the boats. 
(32) # The grappling hooks on to the enemy ship. (Milne, 1982) 

3. Valence ambiguities sometimes cause garden path effects 

(33) # The landlord painted all the walls with cracks. 
(34) # Ross baked the cake in the freezer. (from Hirst (1986)) 

Any cognitive theory of disambiguation must explain why certain ambig- 
uities cause processing difficulties and why others do not. 

Indeed, recent psycholinguistic results have been used to argue that this 
distinction between disambiguation preferences and garden-path sentences is 
only an approximation, and that processing difficulty is better modeled as a 
continuum, with slight preferences at one end and garden-path-like pruning 
at the other (MacDonald, Pearlmutter, & Seidenberg, 1994; Tabossi, Spivey- 
Knowlton, McRae, & Tanenhaus, 1994). Since a probabilistic algorithm 
maps sentences onto the real numbers, it is well-suited to modeling this kind 
of continuum. In the absence of sufficient data on the details of the process- 
ing difficulty continuum, however, the rest of this section will simply show 
that our coherence-based algorithm models the parse preference effects, 
and that the same preference ranking together with a pruning algorithm can 
be used to predict the garden-path effect for the garden-path data. 

4.2 The Model 
$3 showed that a parallel algorithm which uses probabilities to rank con- 
structions could be used to model lexical and constructional access. This 
section shows that the same probabilistic ranking can be used to account 
for disambiguation preferences. Each interpretation will be ranked by its 
probability, computed from both constituent and valence probabilities. We 
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TABLE 1 

Choosing a Beam-Width: Probability Ratios 

#The complex houses married and single students and their families 267:l 
ti”h sheriflwcrm’t sure which rock the cowboy razed... (desperately past) 12:l 
t The disrricr attorneyfound our which church rhe reporter asked... (anxiously about) 5.6: 1 
The warehurefires destroyed all the buildings 3.8:1 
7’he bini found in the room died. 3.7:1 ( 

show this ranking is able to account for the psychological data on disambig- 
uation preferences. 

A disambiguation model must also explain the processing difficulties 
that garden-path sentences cause human parsers. The serial parsing models 
that were traditional in psycholinguistics model garden path effects by rely- 
ing on some particular heuristics or innate parser structures which make the 
parser unable to build the correct interpretation. For example, because of 
its 3-constituent window, Parsifal (Marcus, 1980) is unable to simultaneously 
view the initial noun phrase ‘the horse’ and the final word ‘fell’ in (24). 
Since the parser is required to build structure before ‘the horse’ moves out 
of its window, and since there is no evidence yet for the reduced-relative parse, 
Parsifal will build the main-verb parse. Thus a hardwired memory con- 
straint is used to force the parser to drop the correct parse from consideration. 

In a parallel parsing model, however, there is a natural alternative to 
these specific heuristics or parser structures, proposed by Kurtzman (1985), 
Norvig (1988), and Gibson (1991). In their models, garden-path sentences 
are explained by the same ranking that is used to model disambiguation 
preferences. The parser ranks each hypothesis, and then relies on some sort 
of constraint (such as limited-memory) to force low-ranked hypotheses to 
be pruned. The garden-path effect is explained because the correct interpre- 
tation of an utterance is among these pruned hypotheses. 

In our model, the parser ranks each parse by its probability, and uses 
beam-search to limit the search-space. As Gibson (1991) proposes, we can 
find an empirically acceptable beam width and also test our model by con- 
sidering the probabilities of each interpretation of ambiguous sentences. A 
sentence where there is evidence for pruning (such as the garden-path effect) 
sets an upper bound on the beam width. A sentence where there is no evi- 
dence for pruning (both interpretations are acceptable) sets a lower bound 
on the beam width. We show that a beam-width ratio of anywhere between 
3.8:1 and 5.6: 1 between the best and the pruned hypothesis is sufficient to 
account for a number of garden-path examples. Table 1 summarizes some 
of the garden-path/embedded anomaly and nongarden path examples which 
we will work through in the rest of this section. In the first three examples 
(explained in further detail here; jindicates a local embedded anomaly) the 
ratio between the probabilities of the best and pruned hypothesis is 5.6 or 
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S 
S -> NP . . . [.92] 

/ 

L 

NP -B Det Adj N . . . [.28] 

N --> ROOT s 1.231 

Det Adj 

I I ‘; 
N --> houses [.0024] 

the complex houses 
Adj - > complex [.00086] 
Det - > the [. 711 

probability = 8.5 * 10 -8 

Figure 7. Computing the probability of a derivation 

greater. In the last two examples, where the local ambiguity does not cause a 
garden path, the ratio is 3.8 or less. 

We turn now to the actual computation. $2 summarized the two kinds of 
probabilities that augment constructions, constituent probabilities and 
valence probabilities. The constituent probability is the standard SCFG 
rule-probability, and as we discussed an SCFG assumed that the probability 
of each rule or construction is independent, and hence that the probability 
of a parse tree can be computed by multiplying the probabilities of the indi- 
vidual rules. We also make the simplifying assumption that valence proba- 
bilities are independent of constituent probabilities and of each other. Thus, 
the likelihood of a sentence given an interpretation is the product of each 
constituent and valence probability in its derivation. Figure 7 shows the 
probabilities associated with a small noun phrase beginning a sentence. 

4.3 Modeling Preference Effects 

Lexical Valence Preference 
Consider the Ford et al. (1982) results on attachment preferences for keep 
and discuss summarized above. Ford et al. explained their results by 
proposing that keep and discuss each had two possible subcategorization 
frames; one with a single < NP> complement, one with < NP PP> . They 
proposed that the verbs differed, however, in their preferences for these 
valence structures; keep prefers < NP PP> , while discuss prefers < NP> . 

Our interpretive model is conveniently set up to test Ford et al.‘s intui- 
tions, since both constructions and valence structures are annotated with 
conditional probabilities. We assume that keep and discuss each have two 
valence frames. For discuss, we assume for simplicity that the two frames 
are defined strictly syntactically as C NP> and < NP PP> . For keep the 
frames are somewhat more complex to define. While the optional second 
argument of keep can be a PP (keep the dogs on the beach), Table 2 shows 
that it can also be an AP, a VP, or a particle. 
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TABLE 2 

Complements of Keep 

Ap keep the prices reasonable 
VP keep his foes guessing 
VP keep their eyes peeled 
PRT keep the people in 
PP keep a number of surprises under our hats 
PP keep his nerves from jangling 

TABLE 3 

Valence Probabilities Computed from the Penn Treebank 

discuss <NPPP> .24 
.76 

keep cNP XP[pred +]> 231 
<Np> .19 

Most theories model this class of complements syntactically, as secondcrry 
predicates, represented as [pred+], although it is also possible to capture 
them thematically as RESULTS. Assuming, again only for simplicity, the 
[pred+] representation, keep has the thematic grid options < NP> and 
< NP XP[pred + ] > . 

We used the Penn Treebank to compute probabilities for each valence 
structure. The results are shown in Table 3. 

If we only consider these probabilities, we arrive at a result consistent 
with the Ford et al. (1982) data. Since discuss prefers a lone NP comple- 
ment, the PP will attach to the noun phrase, while keep prefers to attach the 
PP as an argument of the verb. 

However, the different attachments of the preposition phrases also lead 
to different phrase structures. Figure 8 shows the different phrase structures 
for each interpretation. The interpretation in which on the beach is a com- 
plement of ‘keep’, is shown. This interpretation includes the VP-level rule 
with a slot for oblique complements:’ 

(35) [.lS] VP - VNP XP 

The probability of this interpretation includes this probability, .15, as well 
as the valence probability that keep fills its RESULT argument, or .81. All the 
other probabilities involved in the interpretation are shared with the other 
derivation, and so we need not consider them when comparing the two. The 
second interpretation has a slightly more complicated phrase structure at 
the NP level, and so there are two rules in this parse that are not in the other: 

7 We assume here a GPSG-like treatment of VP rules; generalizations across different VP 
types are captured by an abstract VP in the type hierarchy. 
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k-p the dogs on the beach 

(a) .I5 l .81 = .12 (prefered) 

1.391 VP --> V NP 

root 

L 

k=p V 
Vakll~ cNF% .19 

I/ 

7% 
1.141 NP --> NP Postmodifier 

NP PP 

AA 
k=p the dogs on the beach 

(b) .I9 l .39 l .14 = .Ol (disprefered) 

Figure 8. Annototed Parse Trees for Two Interpretations of keep the dogs on the beach 

(36) [.39] VP - VNP 
(37) [.14] NP - NP XP 

Note that the probability of the simple transitive VP is higher than the prob- 
ability of the multiple-complement VP above. This is offset, however, by 
the lower probability assigned to the unfilled RESULT valence slot, and in 
addition by the lowered probability due to the extra NP rule. Thus the prob- 
ability of the verb attachment is .12/.01= 12 times the probability of the 
noun attachment, roughly modeling the Ford et al. (1982) results, in which 
the verb attachment was preferred 19 times over the noun attachment (95%). 

Figure 9 shows the two interpretations of discuss the dogs on the beach. 
Although the syntactic structures are the same, the different valence proba- 
bilities of discuss and keep will cause the model to prefer the opposite inter- 
pretation. Although the prediction is correct, the model’s 53% preference 
for the NP attachment does not quantitatively match the 90% preferences 
in the Ford et al. (1982) results. One possible explanation for this is the 
forced-choice nature of the Ford et al. experiment. Requiring the subjects to 
choose between the two interpretations may have caused the experiment to 
overestimate the probability of the most-preferred interpretation. 

Augmenting valence slots with probabilities also allows us to explain 
with no further assumptions the stronger preferences for obligatory over 
optimal arguments. Obligatory arguments will have unity or near-unity 
probabilities, while optional arguments will have lower probabilities. Britt 
(1991) showed, for example, that an obligatory argument slot placed a 
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] /&LwLw 

discuss the dogs on the beach 

(a) .15 * .24 I .036 (disprefered) 

VP [.39] VP -> V NP) 

1.141 NP --> NP Postmodifier 

diSCUSS the dogs on the beach 

(b) .76* .39 * .14 = .041 (prefered) 

Figure 9. Annototed Parse Trees for Two interpretations of discuss the dogs on the beach 

stronger expectation to be filled than an optional one. In an on-line experi- 
ment, Britt showed that when choosing between noun and verb attachment 
of ambiguous preposition phrases in two-referent contexts, subjects preferred 
to attach the PP to the verb if the verb obligatorily subcategorized for the 
PP. If the verb only had an optional subcategorization for the PP, there 
was a preference for noun attachment instead. 

Viewing the probabilistic model in a more general way, we can explain 
the general preference for arguments over adjuncts as resulting from a com- 
bination of valence probabilities and constituent probabilities. The argu- 
ments will have a nonzero valence probability, while adjuncts do not fill a 
valence slot in a predicate, and so not attaching an adjunct incurs no proba- 
bilistic penalty.* This is true for both nominal and verbal adjuncts. In addi- 
tion, when choosing between verbal arguments and nominal adjuncts, since 
nominal adjuncts will require an extra stochastic context-free rule to adjoin 
with, they will have a lower probability than a simpler structure that has no 
such rule. This is because due to the independence assumption inherent to 
context-free grammars, the probabilities of each rule are multiplied together. 
Thus a more complex structure will have more probabilities to multiply, and 
since each probability is less than 1, a lower total probability. Note that the 
fact that a more complex structure is likely to have a lower probability than 

8 This is especially true if we assume the common model in which complements are the 

arguments of verbs but adjuncts act as predicates in their own right. 



PROBABILISTIC MODEL OF ACCESS AND DISAMBIGUATION 169 

a simpler structure may explain the success of heuristics like Minimal Attach- 
ment, which preferred attachments producing the simplest syntactic struc- 
ture. However, a simpler structure will not necessarily have a higher proba- 
bility, since it is not just the cardinality of the probabilities but their values 
which matter. 

In order to explain this sort of preference, Ford et al. (1982) and Abney 
(1989) proposed a heuristic that preferred attachments to verbs over attach- 
ments to nouns. Relying on valence probabilities eliminates the need for this 
occasionally faulty heuristic. 

4.4 Modeling Garden Path Effects 
In our model, as in most explanations for the garden-path effect, the effect 
arises when the processor chooses an interpretation which fulfills local 
linguistic expectations over one which is globally plausible, pruning the 
more plausible interpretation. Testing this model requires showing that the 
theory predicts pruning in a case of ambiguity whenever the garden-path 
effect can be shown to occur. If the beam width is set too wide, the theory 
will mislabel a garden path sentenec as merely a less preferred interpreta- 
tion. Conversely, if the window is too narrow, the theory will mislabel par- 
sable sentences as garden-paths. 

In many ways we view our model as an extension of the parallel model of 
Gibson (1991). Gibson first showed that a parallel (although nonprobabilis- 
tic) model could account for the wide range of syntactic garden-path effects, 
and proposed that probabilistic garden-path effects might also be modeled 
with a parallel algorithm. In the rest of this section, we work through some 
examples of garden paths, showing that the coherence model can not only 
account for garden paths that seem obviously probabilistic in nature (such 
as (27) and (31) above), but also more traditional garden-path sentences 
such as (24). We consider these garden paths in three classes: those caused 
by constituent probabilities, those caused by valence probabilities, and 
those caused by combinations of the two. 

We will show that a beam-search in which interpretations are pruned if 
they have less than about l/5 the probability of the best interpretations can 
account for all of the data we consider. 

4.4.1 Garden Paths Caused by Construction Probabilities 
For simplicity, we begin by considering garden paths caused by simple 
phrase-structure probabilities. Consider the garden path sentence (38). In 
the intended interpretation of the sentence, ‘complex’ is a noun, and ‘houses’ 
is a verb; thus the students are housed by the complex. However, most readers 
initially interpret ‘the complex houses’ as a noun phrase, and are confused 
by the lack of a verb. 
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S --> NP . 1.921 

/FL 

NP->DetAdjN...1.28] 

N --> ROOTS L.231 
Det Adj 
I I 

N - > house [.00241 

the eo,,,,,,er ,,o_ Adj --> ~0~1~ I.owsSl 

m2;g291 

the complex houses V --> ROOTS [.0861 

(a) (prefered) 1.2 * 16’ (b) (disprefered) 4.5’ 10 -‘O 

Figure 10. Annotated Parse Trees for Two Interpretations of The complex houses 

(38) # The complex houses married and single students and their families. 
(Hearst, 1991) 

Figure 10 shows the two interpretations of the prefix the complex houses. 
For convenience (and in order to make the model maximally general) we have 
shown the phrase structures in a simplified minimal-assumption framework. 

In the initially preferred interpretation in (a), ‘houses’ is the head noun 
and ‘complex’ is an adjective. In the dispreferred interpretation in (b), 
‘houses’ is a verb and ‘complex’ the head noun. The difference in probability 
between the two interpretations is due mainly to the different lexical category 
probabilities. (39)-(44) show conditional probabilities generated from the 
Brown Corpus. Notice that ‘houses’ is more likely to be a noun than a verb, 
while ‘complex’ is more likely to be an adjective than a noun. In addition, 
we have shown the probabilities of the plural and 3rd-person-singular inter- 
pretations of the ambiguous ‘s’ morpheme. 

(39) [.0024] N - house 
(40) [.0006]V - house 
(41) [.00086] Adj - complex 
(42) [.O’IOO29] N - complex 
(43) [.23] N - ROOT s 
(44) I.0861 I/ - ROOT s 

The nonlexical nodes of the parse tree seem irrelevant here because the 
rest of the trees differ in probability only by about 20%. Computing the 
complete probabilities of the two interpretations correctly predicts the 
garden path effect; first, the probabilities correctly prefer the (a) interpreta- 
tion, and second this reading is 267 times more probable than the dispre- 
ferred reading. Since this is much greater than the beam width, interpreta- 
tion (b) will be pruned. 

By contrast, (45) shows an example due to Frazier and Rayner (1987) 
where a similarly ambiguous construction does not cause the garden-path 
effect. 

(45) a. The warehouse fires destroyed all the buildings. 
b. The warehouse fires a dozen employees each year. 
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S --5 NP [.92] 

.,+ 

NP -a Dct Adj N . . I.281 NP --> Det N 1.631 

N ->jire [.OOO72/ /\ I 
Det N 

S --> [NP&V... 1.481 

I I “I’ 
N --> ROOTS 1.231 

I I ‘i 
v ->jire [.OoO42] 

the warehouse fires the warehouse fires 
V --> ROOT s [.084] 

(a) (prefered) 4.2 l lo-’ (b) (disprefered) 1.1 l 1 Oe5 

Figure 11. Annotated Parse Trees for Two Interpretations of The worehouse fires 

Note that the difference between (38) and (45) cannot be due to valence 
differences or nonprobabilistic structural differences, since the two examples 
have very similar valence and syntactic structure. The difference between 
the two examples is in the lexical probabilities. 

The difference in probability of lexical category forfire is shown in (46)- 
(47). The two interpretations in Figure 11 
and 1.1 * 1O-5; their ratio of 3.8/l is less 
neither interpretation will be pruned. 

(46) [.00072] N - fire 
(47) [.00042] V - fire 

have probabilities of 4.2 * 1O-5 
than the beam-width, and hence 

4.4.2 Garden Paths Caused by Valence Probabilities 
For an example of the garden path effect caused by valence probabilities, 
we turn to an experiment which was originally designed to test Fodor’s (1978) 
Lexical Expectation Model of gap-finding in a serial parser. Fodor was 
attempting to model how the processor decided which gaps to fill with a given 
fronted element. For example, the fronted NP the book in (48a) could turn 
out to be the object of want or the object of some embedded verb like buy. 

(48) a. I saw the book you wanted.. . 
b. Book is object of want: I saw the book you wanted. 
c. Book is object of deeper verb: I saw the book you wanted me 

to buy. 

Fodor proposed that the human sentence processor posits gaps only follow- 
ing verbs which are more likely to be transitive. That is, given a fronted 
argument, when the parser reaches a verb it should immediately attach the 
argument as the direct object of the verb if the verb is more likely to be tran- 
sitive, otherwise it should wait. Assuming that ask is preferentially transi- 
tive and race preferentially intransitive, the parser would attach ‘the man’ 
as a direct object in the man you asked, but wait in the book you raced 
(assuming rather that ‘the book’ should be attached as the object of some 
lower predicate as in the book you racedpast). Tanenhaus et al. (1985) tested 
this idea by creating test sentences with fronted arguments which make sense 
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if the whole sentence is seen, but which are semantically anomalous direct 
objects of the verb. Thus, if the parser tries to fit them into the verb right 
away, the reader should have a minor processing breakdown. If Fodor’s 
(1978) model is correct, the parser should suffer an anomaly when trying to 
fit a semantically implausible filler into preferentially transitive verbs like 
ask, but should not break down on preferentially intransitive verbs like 
race. The experiment used sentences like 49-50, testing for an anomaly 
effect at the verb. 

(49) a. The district attorney found out which witness/church the reporter 
asked-about the meeting. (early gap) 

b. The district attorney found out which witness/church the reporter 
asked anxiously about-. (late gap) 

(50) a. The sheriff wasn’t sure which horse/rock the cowboy raced-down 
the hill. (early gap) 

b. The sheriff wasn’t sure which horse/rock the cowboy raced desper- 
ately past-. (lute gap) 

The results of the experiment supported Fodor’s (1978) model; for transi- 
tive-preference verbs, there was an anomaly effect at the verb, while for intrans- 
itive preference verbs, there was no anomaly effect at the verb. Tanenhaus 
et al’s (1985) explanation was based on a serial architecture; for verbs which 
are preferably transitive, the parser hypothesizes a gap; for verbs which are 
preferably intransitive, the parser does not hypothesize a gap. 

We argue that rather than requiring a special gap-hypothesizing mechan- 
ism, that these results can be accounted for with our parallel architecture 
without proposing any special mechanism. First, as with the other valence 
ambiguities we have seen, the parser will activate both possible valence 
interpretations for each verb, one transitive and one intransitive. However, 
in each case the low-probability interpretation will be pruned. Because the 
low-probability intransitive interpretation of ask will be pruned, the parser 
will attempt to bind church as the direct object of ask, causing an anomaly. 
Because the low-probability transitive interpretation of race will be pruned, 
the parser will not attempt to bind rock as the direct object of race, avoiding 
the anomaly. 

Figure 12 and Figure 13 show the disambiguations for race and ask respec- 
tively. The valence probabilities were determined from Connine et al. (1984). 
For race the ratio of the two interpretations is .92/.08= 12/l. For ask the 
ratio is .79/.14= 5.6/l. In both cases this is sufficient to cause pruning of 
the dispreferred interpretation. 

4.4.3 More on Horse-Racing: Combinations of Valence 
and Construction Probabilities 
We have now seen examples of garden-path sentences caused by construction 
probability differences, and by valence probability differences. In this sec- 
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“al 1 opmta tlrme e1> 

thecowboy raced 

/ 
(a) (disprefered) 0.08 (b) (prefered) 0.92 

Figure 12. Access both thematic grids in parallel, transitive is pruned 

(a) (prefered) 0.79 (b) (disprefered) 0.14 

Figure 13. Access both thematic grids in parallel, intransitive is pruned 

tion we argue that Bever’s (1970) familiar garden-path sentence in (51) is 
caused by a combination of both valence and construction probabilities. 

(51) # The horse raced past the barn fell. 

Here the phrase racedpast the barn is ambiguous between a reduced relative 
clause VP and a main-clause VP. Clearly the garden path effect arises because 
the main verb reading of race is somehow preferred by the parser, while the 
reduced-relative clause turns out to be correct one. 

We show first that the preference for the main-verb reading arises from 
our probabilistic model, and second that the difference between the two 
interpretations is sufficient to cause the reduced-relative interpretation to be 
pruned. 

Figure 14 shows the two relevant interpretations of the sentence prefix 
‘the horse raced’. Figure 14(a) shows the main verb interpretation. Note 
that the intransitive valence of race has a probability of .92.9 

The reduced relative interpretation requires the transitive valence of race, 
since it requires the first NP to be bound as an object of the verb. In addi- 
tion, this interpretation has a more complex syntactic structure; note that in 
addition to the syntactic rules used in the trees in (a), the tree in (b) has an 
additional rule: 

(52) [.I41 NP - NP XP 

’ These numbers are from Connine et al. (1984). 



174 JURAFSKY 

[.14] NP-> NP XP S 

the horse raced the horse raced 

(a) main verb interpretation (b) reduced relative intelpretation 

Figure 14. Pruning the reduced relative interpretation 

The combination of the extra (and low-probability) rule and the lower valence 
structure makes this interpretation 82 times less probable than the best- 
ranked main-verb interpretation. Since this places it outside the 5x beam 
width, the reduced-relative interpretation will be pruned. 

Early attempts to explain the garden-path effect of this sentence relied 
solely on its syntactic structure. Bever’s (1970) original proposal relied on a 
heuristic to prefer main verbs over reduced verbs, Marcus’s (1980) relied on 
the fact that a 3-constituent window would not include the final verb, and 
heuristics like Minimal Attachment (Frazier & Fodor, 1978) rely specifically 
on the parse tree. 

However, Pritchett (1988) recently showed that solely constituent-based 
solutions to the problem are insufficient, as sentences like (53) do not cause 
the garden-path effect, despite having exactly the same syntactic structure 
as (51). 

(53) The bird found in the room died. 

The difference between (53) and (5 1) is the valence structure of the verbs. 
Where race is preferably intransitive, found is preferably transitive. Figure 
15 shows the three interpretations of the prefix ‘the bird found’. 

Again, the two main-verb interpretations are too close to each other to 
cause pruning. Significantly, however, the difference between the main and 
reduced-relative interpretations is much less than it was for race, the proba- 
bility ratio being (.62*.48)/(.62*.14*.92) or 3.7/l. This ratio is less than the 
beam width, and so the reduced relative interpretation will not be pruned. 

4.5 Recent Theories of Disamhiguation 
If every theory of disambiguation relies at its core on some metric for com- 
paring interpretations, theories may be classified by the kind of metrics they 
employ. Many models use global metrics, in which each structure is ranked 
by a single global criterion, such as our ranking based on conditional proba- 
bility, or such as a preference for the most semantically plausible interpreta- 
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the bird found 
1.141 NP-> NP XP s 

1 
the bird found the bird found 

(a) two main verb interpretations (b) one reduced relative interpretation 

Figure 15. Not every reduced relative clause Garden Path effects 

tion. Such global metrics are particularly commonly used by the interactive 
or constraint-based models of sentence processing such as the model pre- 
sented here as well as others like MacDonald (1993), McClelland et al. (1989), 
Spivey-Knowlton and Sedivy (1995), and Trueswell and Tanenhaus (1994). 
In contrast, local structural models choose between interpretations by using 
local, domain-specific heuristics based on simple structural patterns, such 
as choosing local attachments, or choosing syntactically simpler structures. 
These local metrics are commonly employed in the two-stage parsing models, 
in which a modular syntactic processor makes initial disambiguation deci- 
sions based only on local syntactic information, without access to lexical 
and semantic knowledge. These decisions may then be reanalyzed by a second, 
knowledge-rich stage of processing. 

This section first surveys two classes of global heuristics, those based on 
semantic plausibility and those based on syntactic or textual coherence. We 
will argue that the semantic plausibility model of Crain and Steedman’s 
(1985) and others cannot account for the full range of experimental results 
on garden-path effects, while Pritchett’s (1993) coherence-based model is 
insufficiently general to account for lexical access effects and frequency ef- 
fects. Finally, we compare our probabilistic algorithm to other parallel 
algorithms (Gibson, 1991; Spivey-Knowlton, 1994). We next consider the 
local heuristics; as $4.3 suggested, a preference for minimal structures, all 
else being equal, falls out of the independence assumptions inherent to 
context-free grammars. We focus in this section, therefore, on the locality 
heuristics, arguing that, although the human parsing clearly displays some 
effects of locality, no previously proposed locality heuristic is sufficient to 
account for the range of data. 
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4.5.1 Global Metrics 
The most well-known global heuristic for modeling human parsing prefer- 
ences and garden-path data, and one that has perhaps the most intuitive 
appeal, is simply to choose the most plausible interpretation. This model 
was expressed most familiarly by Crain and Steedman (1985, p. 330): 

The Principle of A Priori Plausibility. If a reading is more plausible in terms 
either of general knowledge about the world, or of specific knowledge about 
the universe of discourse, then, other things being equal, it will be favored 
over one that is not. 

A number of researchers have proposed models along these lines, including 
Kurtzman (1985), Altmann and Steedrnan (1988), and Chamiak and Goldman 
(1988). One disadvantage of this model is that in most cases it is hard to see 
how to make it operational. For example, what is it about having a discus- 
sion about dogs which are on the beach that makes it more plausible than 
having a discussion on the beach about dogs? The mode1 also has serious 
difficulties in accounting for garden-path sentences. For example, Crain 
and Steedman (1985) argue that the preference for the main clause inter- 
pretation in main-clause/reduced-relative ambiguities is a corollary of 
plausibility. This because the reduced relative clause reading requires more 
presuppositions than the main clause reading (in particular the presupposi- 
tion in ‘the horse raced past the barn fell’ that there are multiple horses). 
However, this model incorrectly predicts the garden path effect for (54): 

(54) The bird found in the room died. 

The problem is that the plausibility mode1 does not take into account verbal 
valance preferences. Finally, the model cannot account for the frequency 
effects summarized previously. This is not to deny the role of plausibility in 
parsing data; as $5 suggests, one advantage of our probabilistic model is 
that in principle it allows the inclusion of plausibility information along with 
any other sources of evidence in ranking interpretations. 

Most other global or global-like models use something like coherence as 
the metric for ranking interpretations. The roots of coherence as a process- 
ing heuristic lie in Wilks’ (1975a, 1975b) rediscovery of the Joos Law (Joos, 
1972), which argued for choosing a meaning which was most reduntant and 
hence most coherent with the context (see also Hill, 1970; Joos, 1958). The 
idea was then taken up by the coherence-based marker-passing algorithms 
(Hirst, 1986; Hirst & Charniak, 1982; Norvig, 1987). More recently, Ford et 
al. (1982) added the insight that verbal valence was the key factor in modeling 
parsing preferences and garden-path sentences, incorporating a preference 
for argument attachments over adjunct attachments, and also proposed 
preference augmentations to valence. 

The modern models which account for the most data are Gibson (1991) 
and Pritchett (1993). Both of these models, like our probabilistic approach, 
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emphasize coherence as a parsing heuristic. Pritchett’s model is based on a 
serial parser which often reanalyzes its previoulsy-produced parse, but 
which garden-paths in certain kinds of reanalyses: 

Theta-Reanalysis Constraint: Syntactic reanalysis that reinterprets a b-marked 
constituent as outside of current &domain is costly. 

When faced with an ambiguity, Pritchett’s parser chooses the most 8- 
coherent parse; i.e., the one in which the most e-grid slots are filled, and the 
most arguments have b-roles. The model accounts for ‘the horse raced past 
the barn fell’, because the horse is originally parsed as the subject of race, 
and hence within race’s B-domain. When the parser sees fell, it will need to 
reanalyze the horse as within the b-domain of fell, causing the garden-path 
effect. 

Although Pritchett’s model accounts for a wide variety of syntactic garden- 
path effects, it is unclear how it would be extended naturally to account for 
the probabilistic effects in (38), or the semantic or context effects in 
(25)-(26). In addition, of course, Pritchett’s model requires disambiguation 
to be completely independent of access and its frequency effects, despite the 
evidence that lexical disambiguation at least is strongly affected by access 
frequencies. 

Gibson (1991) proposed a parallel parsing model in which each parse of 
an ambiguous input was ranked by its processing load. Interpretation pro- 
ceeded by beam search; parses were pruned if their load was significantly 
higher than the best interpretation. Load was defined with three separate 
load parameters: 

1. Property of Thematic Reception: parses have processing load for each 
argument lacking a e-role. 

2. Lexical Requirement: parses have processing loads for each &grid slot 
lacking a filler. 

3. Thematic Transmission: parses have processing load if a d-role is passed 
through a chain (i.e., wh-movement or camp). 

Like Gibson’s model, our probabilistic model will still disprefer interpre- 
tations if they have unfilled slots or unparsed arguments. In a generalization 
over Gibson’s model, however, our model can distinguish between two 
interpretations both of which have valence slots filled, but with different 
probabilities. In addition, our model can explain why the parser will some- 
times prefer not to fill a slot with an argument, as in (55); as we argued in 
Figure 12, in this sentence because ‘race’ is preferably intransitive, the NP 
‘which rock’ does not fill the direct object slot in ‘race’. 

(55) The sheriff wasn’t sure which rock the cowboy raced.. . 

Our explanation of reduced-relative/main-clause ambiguities is also dif- 
ferent from Gibson’s, although both models rely on the valence of the main 
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verb to account for race/found distinctions. Where Gibson appeals to the 
Property of Thematic Transmission to account for part of the difficulty of 
‘The horse raced past the barn fell’, our model appeals to the low prior 
probability of the reduced relative clauses. The advantage of a probabilistic 
account, again, is that it explains the garden-path examples based on fre- 
quency with the same mechanism as the structural garden-paths. Although 
Gibson points out that his parallel model could easily be extended to deal 
with frequency effects, it would presumably require adding another property 
or set of properties; our theory accounts for the data with a single model. 

In our model, as we’ve described it so far, as well as in the Gibson (1991) 
and Pritchett (1993) architectures, processing difficulty is a binary effect of 
parse pruning; sentences are either difficult to process or not. Because of 
this, the model is unable to account for processing difficulty variation 
within garden-path sentences (MacDonald et al., 1994; Tabossi et al., 1994). 
The probabilistic competition model of Spivey-Knowlton (1994) and Spivey- 
Knowlton and Tanenhaus (1995) attempts to address this lack by modeling 
processing difficulty as a continuum, caused by the time-course of competi- 
tion between syntactic alternatives. Spivey-Knowlton and Tanenhaus (1995) 
combine information from discourse (in terms of the discourse context 
probability of a reduced relative), from verb frequency information (the 
probability of a verb appearing in the simple past tense form versus the past 
particle form), and from parafoveal information (the presence of “by” 
after the verb). They estimate probabilities for each of these information 
sources, and then combine them (via recurrent feedback and normalization) 
on a set of sentences with reduced-relative/main-clause ambiguities. They 
show that the durations of competition between the syntactic alternatives 
predicts the processing difficulty in first pass reading times at the verb. 

Since our probabilistic metric already maps each possible interpretation 
of an ambiguous sentence onto a continuous space of probabilities, we hope 
to investigate whether our algorithm could incorporate the insights of com- 
petition-based approaches like that of Spivey-Knowlton and Tanenhaus 
(1995) or Stevenson (1993) in order to model the continuum of processing 
difficulty. 

4.5.2 Structural Heuristics 
Structural heuristics were originally proposed by Kimball (1973) to explain 
the ungrammaticality of certain sentences, or the inability of subjects to get 
some readings of an ambiguous sentence. Since then a number of heuristics 
have been proposed, falling into two classes: heuristics to build the syntac- 
tically simplest structure (minimality heuristics) and those to combine nearby 
structures (locality heuristics). 

However, many authors (Gibson, 1991; Kurtzman, 1985; Norvig, 1988; 
Osterhout & Swinney, 1989; Schubert, 1986) have noted that it is quite easy 
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to choose particular lexical items or particular contexts which reverse any of 
the heuristics, particularly the minimality heuristics. Thus, more recent 
models incorporate local heuristics in a more sophisticated way; as the first 
stage in a two-stage parser. This first stage is an encapsulated module which 
makes a very early, local decision about structure. This decision is reviewed, 
and possibly reanalyzed, by a second stage which has access to richer knowl- 
edge sources. A number of papers have argued that only minimality and 
locality are relevant to the first-stage process, and that garden-path data 
and grammaticality judgements have no access to this early stage of process- 
ing (Clifton, 1993; Clifton, Speer, & Abney, 1991; Ferreira & Clifton, 1986; 
Mitchell, 1989). Trueswell and Tanenhaus (1994), in contrast, have argued 
that results such as those of Ferreira and Clifton (1986) can be reinterpreted 
to argue for a more constraint-based view of processing. 

A resolution of these experimental differences awaits further experimen- 
tal work; however, in the rest of this section we argue that formulating any 
single locality heuristic which explains even the available experimental data 
will be quite difficult. One major weakness of minimality heuristics, for ex- 
ample, is that they are dependent on quite particular assumptions about the 
grammar. As Norvig (1988) points out, for example, a syntactic simplicity 
heuristic like Minimal Attachment makes no sense in a categorial grammar, 
in which every derivation has the same number of nodes. In addition, since 
the local heuristics only account for garden-paths and preferences due to 
syntactic effects, a two-stage theory would require other, presumably un- 
related mechanisms to account for garden paths due to frequency effects or 
to nonlocal and semantic expectations. An interactive or constraint-based 
approach to disambiguation accounts for both syntactic and nonsyntactic 
effects with a single mechanism. 

Another problem with the use of local heuristics and the serial disambig- 
uation strategies that usually accompany them is the well-accepted evidence 
that disambiguation is not always immediate. Frazier and Rayner (1987), 
for example, showed that the parser was able to delay disambiguation in 
(45) above (repeated in (56) below), avoiding the garden path. 

(56) a. The warehouse fires destroyed all the buildings. 
b. The warehouse fires a dozen employees each year. 

The only way to model these effects in a serial parser is to add a complex 
delay function, for which there is no independent motivation. In a beam- 
search parallel parser, on the other hand, delay is simply caused by the fact 
that the two interpretations in (56) have probabilities within the beam. The 
existence of lexical ambiguities like (56) which do not cause the garden-path 
effect also argues against Ford et al.‘s (1982) proposal that it is lexical 
category reanalysis which explains the difficulty of recovering from garden 
paths. 
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In the remainder of this section we present a paradox for locality heuris- 
tics. We show that there are two styles of locality heuristic, and that experi- 
mental results and grammaticality judgements which have been taken as 
evidence for one kind of locality heuristic cannot be modeled by the other. 
We are not arguing that locality plays no role in language processing; it 
clearly does. Besides the experimental results discussed above, for example, 
Gibson and Pearlmutter (1994) found evidence for locality heuristics in a 
statistical analysis of preposition-phrase attachment in the Brown corpus. 
However, we argue that although each version of locality accounts for some 
data, there are principled problems with generalizing any of the locality 
models to handle all the data. Thus, the intuition that locality plays some 
role in processing is very difficult to make operational. 

Locality principles described in the literature include Right Association 
(Kimball, 1973), Local Association (Frazier & Fodor, 1978), Late Closure 
(Frazier, 1978), Final Arguments (Ford et al., 1982), and Graded Distance 
Effect (Schubert, 1984, 1986), Rule B (Wilks, Huang, & Fass, 1985), Attach 
Low and Parallel (Hobbs & Bear, 1990), and Recency Preference (Gibson, 
1991). These models of locality fell into two classes. In the windowing 
models, locality effects are explained by appealing to a limited buffer or 
window on the input sentence, generally assumed to model some sort of 
limited memory. Since the parser is limited to working within this window, 
constituents will necessarily be attached locally if they can be. The window 
may be limited by the number of words (Frazier & Fodor, 1978; Magerman 
& Marcus, 1991) or the number of constituents (Marcus, 1980). 

In the iterative or right-to-left models, when attempting to attach a con- 
stituent, the parser moves right to left until it finds the first appropriate 
head to attach the constituent to. Unlike the windowing models, in these 
models locality does not fall out of the structure of the parser, and must be 
stipulated. Iterative models differ in how they define the notion of appro- 
priate head-this may be semantically appropriate (Wilks et al., 1985; 
Hobbs & Bear, 1990; Whittemore et al., 1990) or syntactically appropriate 
(Gibson, 1991). 

For example, the Local Association principle of Frazier & Fodor (1978), 
is a windowing model. It establishes a fixed-length buffer which can hold 
five or six words, and predicts that locality effects can be explained by the 
limited view imposed by this buffer. While windowing models have the ad- 
vantage of explaining locality rather than stipulating it, it has proven to be 
very difficult to satisfactorily define a window size, as we will see below. 

The Recency Preference principle of Gibson (1991) is an iterative or 
right-to-left model. In this model, whenever there is more than one possible 
attachment point for an adverbial, all but the most recent attachment point 
are removed from consideration. In his case, adverb& can be attached to 
verbs or sentences, so the Recency Preference principle requires that an 
adverb cannot “skip” a local verb and attach to a more distant one. 
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Another model, again an iterative one, assumes what might be called the 
Most Recent Semantically Compatible Attachment principle, first proposed 
by Wilks et al. (1985) (as the Rule B algorithm of the CASSEX program), 
and used also by Hobbs and Bear (1990) and Whittemore et al. (1990). 
These models choose among attachments by attempting to attach an adver- 
bial to each possible head, starting with the most recent, and moving further 
left, and selecting the first one that fits semantically. 

We discuss the performance of these models on three classes of data: 
garden-path sentences, restrictive relative clause attachment, and verb-par- 
ticle attachment. 

A number of parsing models have attempted to use windowing locality to 
explain the garden-path effect (although this has not been proposed with 
iterative models). Consider (57): 

(57) #The horse raced past the barn fell 

All windowing models predict the difficulty of this sentence by arranging 
that only The horse raced past the barn is in the window, In the Marcus 
(1980) parser, the three constituent buffer is filled by the horse, raced, and 
past the barn; in the Local Association model the buffer is exactly six words 
long. 

The problem with the windowing models, as has been noted by Norvig 
(1988), Gibson (1991), Schubert (1986), and Pritchett (1993), is that for any 
given window size, it has been shown possible either to construct a parsable 
sentence which does not fit inside the window, or an unparsable sentence 
which does. For example (58) fits entirely inside the 6-word Local Associa- 
tion buffer, and hence the model incorrectly predicts it to be processable. 
Conversely, Marcus’ 3-constituent window incorrectly predicts that (59) is a 
garden-path sentence. 

(58) #The horse raced yesterday fell 
(59) I know my aunt from Peoria died 

Since these kinds of arguments have been made before, we turn to a new 
analysis of some non-garden path data. It has been argued that locality 
heuristics can account for the three kinds of preferences and grammaticality 
judgements in (61)-(62). First, Kimball (1973), Wanner (1980), and Gibson 
(1991) argue that iterative locality is what cauases the adverb ‘yesterday’ to 
attach to the local verb ‘died’ rather than the distant verb ‘said’ or ‘thought’ 
in (60). Second, Kimball also argued that locality explained why (ala) could 
only mean that the job was attractive, not that the woman was attractive, and 
thus could not have the same sense as (61b). Finally, Kimball and Gibson 
have argued that iterative locality explains why examples like (62) are unac- 
ceptable, since the particle ‘out’ prefers to attach to the nearer predicate 
‘take’ rather than ‘figure’. 
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(60) a. Bill said John died yesterday. 
b. Bill thought John died yesterday. 

(61) a. The woman took the job that was attractive. 
b. The woman that was attractive took the job. 

(62) Joe figured that Susan wanted to take the train to New York out. 

We argue that (61) cannot be explained by locality, and that no single local- 
ity heuristic can explain both (60) and (62). Consider the processing of restric- 
tive relative clauses. Before Kimball’s work, it was generally assumed that 
sentences such as (63a,b) (from Hankamer, 1973) were simply ungrammatical: 

(63) a. *A mani married my sister whoi had castrated himself. 
b. *I gave a kidi a banana whoi was standing there looking hungry. 

Kimball claimed that sentences like (63a,b) must be grammatical, 
because they were created by the same Extraposition from NP transforma- 
tion that created (64b) from (64a). Since (Kimball claimed) (64b) was gram- 
matical, (63a,b) must also be grammatical, and must only be ruled out for 
performance reasons. Thus the principle of Right Association would attach 
the phrase who had castrated himself to the noun sister instead of man in 
(63b), and thus (63) would be grammatical but unparsable. 

(64) a. The woman that was attractive fell down. 
b. The women fell down that was attractive. (grammatical according 

to Kimball’s theory) 

Our informants universally agreed, however, (although with no attempt 
at experimental confirmation) that (64b) is not at all grammatical, and so 
we star it for future reference. 

(65) *The woman fell down that was attractive. 

But (65) cannot be unacceptable because of either windowing locality or 
iterative locality. It cannot be accounted for by windowing locality since 
there are only two words (and only one constituent) between the relative 
clause and the nominal head, and no windowing theories predict such a 
small window. It cannot be unacceptable due to iterative locality, since 
there is no intervening nominal head; indeed there is no other nominal head 
in the sentence at all!“’ 

The next phenomenon which is commonly cited as evidence for locality 
principles is the attachment of verbal particles to their head verbs. Kimball 
(1973) first presented the following examples, arguing that locality explains 

I0 One reviewer pointed out that making the relative clause heavier makes this sentence 
grammatical: “The woman fell down who had just stepped onto the moving platform.” How- 
ever, heavier phrases can often appear in sentence-final position in cases where nonheavy con- 
stituents are disallowed, and thus the acceptability of this sentence does not necessarily argue 
for the acceptability of (65). 
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why (66a) is unacceptable, and why (66b) cannot have an interpretation in 
which the main verb of the sentence is figure out: 

(66) a. Joe figured that Susan wanted to take the train to New York out. 
b. Joe figured that Susan wanted to take the cat out. 

For the windowing approaches like Local Association, the effect is caused 
by the correct head verb (figured) being too far from the particle (out). For 
the iterative approaches like Recency Preference, the effect is caused by the 
alternative head take which is in the way. Iterative or right-to-left locality 
fails as an explanation, however, because there are cases when a particle 
attachment is uninterpretable even if there is no possible intervening attach- 
ment point. For example, iterative models predict that a very long noun 
phrase without an embedded verb phrase should be interpretable, as there 
are no attachment points for verbal particles. However, (67a)-(67c) have no 
embedded verbs and yet are uninterpretable or at least quite difficult. 

(67) a. *He threw the rotten apple from the tree behind our house out. 
b. *I wrote that tedious problem set due Monday up. 
c. *I called my friend, the one from New York, up. 

It is possible that a kind of windowing locality might account for the 
phrasal verb examples in (68)-(67). However, the window cannot be based 
on number of words, as Fraser (1976) argued with the examples in (68). 
Note that (68a) includes a four-word noun phrase between the verb and par- 
ticle and is uninterpretable. But (68b)-(68d), which include interrupting 
noun phrases with five words, are interpretable. Thus, whatever the con- 
straints may be on the placement of verb-particle objects, they are not 
statable in terms of constituent length. 

(68) a. #I called the man who left up 
b. He called all of my best friends up. 
c. Won’t you total some of those larger figures up. 
d. Some charged the adding machine fire-loss off to experience. 

It is possible that a kind of windowing locality might account for the 
phrasal verb examples in (67)-(68); note that in each of (67a)-(67c) a post- 
modified, phonologically heavy NP intervenes between the verb and the 
particle. In current work we are investigating whether a windowing locality 
approach together with the phonological weight criterion proposed by Zec 
and Inkelas (1990) (two phonological phrases) might explain the phrasal 
verb problem. However, significantly, even if this approach succeeds, this 
criterion cannot account for the different effects of the preferences in (60). 
The sentences in (67) are quite unacceptable; the preferences for rightmost 
attachment of the adverb yesterday in (60) are only slight preferences. Ford 
et al. (1982) give the following numbers for adverb attachment: 
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(69) Tom said Bill died yesterday. 
a. Bill died yesterday. (70%) 
b. Tom said it (that Bill died) yesterday. (30%) 

Locality-type effects clearly play some role in a complete parsing model. 
But we have presented a paradox between iterative and windowing models 
of locality, arguing that it will be difficult to model the data with either of 
these approaches. In addition, we have noted that the serial parsing models 
which rely completely on heuristics like locality are unable to account ele- 
gantly for the delayed resolution of ambiguity needed in examples like (56). 

5 SEMANTIC DISAMBIGUATION 
AND A GENERAL MODEL OF INTERPRETATION 

Until now we have ignored the role of semantics in disambiguation. How- 
ever, a number of recent studies have shown that semantic context can 
reduce or eliminate the garden-path effect. Trueswell and Tanenhaus (1991), 
for example, show that garden path effects could be reduced by manipulat- 
ing the tense of the clause. Crain and Steedman (1985) showed the effect of 
the semantic constraints a verb places on its arguments in examples like (70): 

(70) a. #The teachers taught by the Berlitz method passed the test. 
b. ?The children taught by the Berlitz method passed the test. 

In current work with Srini Narayan we are investigating how our coher- 
ence model of disambiguation can be extended to deal with these semantic 
effects. Because we assume a sign-based or constraint-based theory of 
grammar, constructions are annotated with semantic information. One way 
of using semantic knowledge is to generalize the valence probabilities in the 
lexicon. Currently the probabilities refer to a solely syntactic specification 
of arguments. These probabilities could be extended to a function which 
assigns different probabilities to possible fillers of different semantic types, 
of the sort proposed by Resnik (1993). That is, the conceptual system of the 
language would be typed, and each valence slot of each predicate would be 
associated with a probability distribution over types. This would allow the 
valence probabilities for teach, for example, to distinguish teachers from 
children as prospective fillers. Burgess and Lund (1994) showed that com- 
puting psychological norms on similar simple thematic biases and using 
them to weight interpretations helped in modeling the semantic variation in 
garden-path sentences. 

Another advantage of the probabilistic approach is that it could be ex- 
tended from these kinds of ‘grammatical’ disambiguation examples to build 
a more complete theory of disambiguation. As Hirst (1986, p. 111) noted, it 
is impossible to disambiguate sentences like (71a,b) without nonlinguistic 
knowledge about “the relative aesthetics of factories and flora”: 
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(71) a. The view from the window would be improved by the addition of 
a plant out there. 

b. Theview from the window would be destroyed by the addition of 
a plant out there. 

A number of researchers have argued that a probabilistic model of ab- 
duction could be used to account for these sorts of nonlinguistic disambig- 
uation, making use of probabilistic real-world knowledge. (Charniak & 
Goldman, 1988; Ng & Mooney, 1990; Norvig & Wilensky, 1990). Thus, by 
including not only valence and construction probabilities, but also concep- 
tual and non-linguistic probabilities, a broader probabilistic theory of inter- 
pretation could model a wide-range of data on access, sentence processing, 
and inference. 

6 PROBLEMS AND FUTURE WORK 

The model as described suffers from a number of gaps and simplifying 
assumptions. The access algorithm assumes incorrectly that top-down and 
bottom-up evidence are independent. We have not faced the difficult ques- 
tion of morphological processing nor addressed the recently burgeoning 
psycholinguistic literature on morphology, or modeled overload effects like 
center-embedding. 

In addition, the model is currently unable to account for the kind of ef- 
fects that have traditionally been modeled with spreading activation. These 
include intra-lexical semantic effects like the priming in ‘The astronomer 
married the star’ (Reder, 1983). In addition, in an off-line experiment 
Gibbs, Nayak, & Cutting (1989) show effects of semantic priming in idiom 
processing, in which semantically decomposable idioms are processed faster 
than semantically nondecomposable idioms and than nonidiomatic control 
sentences. Our model could be fleshed out to deal with these kind of effects 
by adding a third kind of evidence to the access theory, some kind of seman- 
tic association evidence, in addition to top-down and bottom-up evidence. 

On the other hand, these effects might also be handled on a different ex- 
planatory level of the theory, the level of activation. The model currently 
does not implement the time-course of construction activation. We have 
argued throughout the paper that access and disambiguation can be ac- 
counted for by ranking constructions by their posterior probability given 
the evidence; but we have not addressed implementing our model in the kind 
of activation or connectionist framework that is traditionally used to model 
low-level time-course (Elman, 1989; Feldman & Ballard, 1982; MacDonald, 
1993; McClelland et al., 1989). Producing an implementation in which the 
time-course of activation is proportional to posterior probability (rather 
than frequency) remains future work; it is possible that it is at this as-yet 
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unaddressed level that semantic priming effects are best modeled. In addi- 
tion, the work of J. Henderson (1994) in applying the connectionist para- 
digm of Shastri and Ajjanagadde (1993) to parsing suggests that effects like 
center-embedding which are commonly attributed to memory limitations 
could be modeled by a connectionist parser with certain memory-like limita- 
tions on variable binding. In addition, such an implementation level might 
allow us to incorporate the insights of competition-based approaches like 
that of Spivey-Knowlton and Tanenhaus (1995) or Stevenson (1993) in 
order to model the continuum of garden-path processing difficulty. 

7 CONCLUSION 

Traditional wisdom holds that a difficult problem can often be solved by 
divide-and-conquer methods; thus it has been argued that by dividing 
linguistic processing into modules for lexical, idiomatic, syntactic, and 
semantic processing, and orthogonally into separate models of access and 
disambiguation, we can eventually build a general theory of human lan- 
guage processing. Driven by experimental results, and resonating especially 
with the proposals of MacDonald (1993) and MacDonald et al. (1994), we 
have taken the opposite tack, proposing that a single probabilistic mecha- 
nism underlies the access and disambiguation of linguistic knowledge at every 
level, and demonstrating the model on psycholinguistic results at every level 
of linguistic structure, including lexical, idiomatic, and syntactic access and 
disambiguation, the interpretation of garden-path sentences, parsing pref- 
erences, and studies of gap-filling and other valence ambiguities. 

Our theory makes another strong claim, regarding the use of probabilis- 
tic models in linguistic theory. Generative linguistic theory has shied away 
from the use of probabilistic models since Chomsky’s early arguments against 
Markov models of syntax. But the evidence we have presented here for the 
augmentation of each construction with probabilities, together with recent 
work which argues that probabilistic models are necessary to account for 
language change and learning, argues for a reanalysis of this position. 
Chomsky was correct in arguing against simple Markov models of syntax 
not because they were probabilistic, but because of their simplistic models 
of structure. We see probabilities not as replacements for structure, but as 
enrichments of structure; augmenting constructions with probabilities 
allows us to have the advantages of both structuralist and probabilistic 
models of language. 

We hope this work also argues for holism at a different level, the level of 
academic disciplines. Building a cognitive model of parsing for a linguistic 
theory is necessarily an interdisciplinary enterprise. In particular, we have 
shown that models and metaphors from different disciplines of cognitive 
science can be used to solve problems in other subfields. For example, the 
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psycholinguistic result that human processing of language is on-line was 
used to solve traditional computational complexity problems in parsing. 
Psycholinguistic results on the strong similarities in the processing of lex- 
ical, idiomatic, and syntactic structures were used to argue for sign-based 
models of linguistic structure like construction grammar, cognitive gram- 
mar, or HPSG. And finally, traditional computational algorithms like 
beam search are used to explain psychological results. 
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