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We want to partition a graph into node-sets of approximately 
equal size, while minimizing the number of edges cut.
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This problem has practical application as an imperative 
step for large-scale distributed graph computation.
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The exact solution is infeasible to compute, hence 
we focus on iterative local heuristics.
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Existing algorithms
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Specifically, we explore the role of stream order in (re)streaming 
algorithms and introduce prioritized restreaming algorithms.

Global
Streaming

Prioritized

Multilevel Local

A new class of algorithms
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1. A taxonomy of existing iterative techniques
2. Informative benchmarking that was absent 

from the literature
3. A paradigm shift in restreaming partitioning 

algorithms
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Existing methods

Taxonomy

Prioritized restreaming

Results
• Benchmark existing methods
• Prioritized restreaming results
• Correlation between stream orders

Outline
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Existing methods
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We present three algorithms from the literature – two based on 
label propagation and one restreaming algorithm.



BLP begins from an initial partitioning, iteratively improving 
upon the edge cut objective.

V1 V2 V3
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At each iteration, BLP identifies which nodes desire to 
move and to where,

V1 V2 V3

Balanced label propagation
Ugander and Backstrom. WSDM. 2013.
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places nodes in sorted move queues to their 
target shards by order of decreasing gain,

gu = max
i2[k]

Nu,i �Nu,P (u)
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Neighbors in shard i
Neighbors in current shard 

assignment, P(u)

Balanced label propagation
Ugander and Backstrom. WSDM. 2013.

Gain of node u
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then solves a linear program to determine how 
many top nodes to relocate.

V1 V2 V3

Balanced label propagation
Ugander and Backstrom. WSDM. 2013.
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SHP also starts from an initial partitioning.

V1 V2 V3

Social Hash partitioner
Kabiljo et al. VLDB. 2017.
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At each iteration, we place all nodes in the move queue of 
the shard that maximizes a modified form of gain,

V1 V2 V3

Social Hash partitioner
Kabiljo et al. VLDB. 2017.
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g0u = max
i2[k]\P (u)

Nu,i �Nu,P (u)
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the max gain outside of a node’s current shard 
assignment, and sort move queues by this quantity.

Max over external shards

Social Hash partitioner
Kabiljo et al. VLDB. 2017.
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V1 V2 V3

Balance is maintained by swapping nodes between shard 
pairs, only doing so when the net gain is positive.

Social Hash partitioner
Kabiljo et al. VLDB. 2017.
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V1 V2 V3

Social Hash partitioner
Kabiljo et al. VLDB. 2017.

The SHP algorithm boasts many bells and whistles. We denote this 
version KL-SHP and also study two restricted forms, SHP-I and SHP-II.
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ReLDG is a streaming algorithm, and does not 
require an initial partitioning.

V1 V2 V3

Restreaming linear deterministic greedy
Nishimura and Ugander. KDD. 2013.
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It repeatedly streams nodes one at a time to the 
shard that satisfies the given assignment mechanism.

V1 V2 V3

Restreaming linear deterministic greedy
Nishimura and Ugander. KDD. 2013.
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argmax
i2[k]

|V (t)
i \N(u)| ·

 
1� x(t)

i
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Restreaming linear deterministic greedy
Nishimura and Ugander. KDD. 2013.

It repeatedly streams nodes one at a time to the 
shard that satisfies the given assignment mechanism.
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Restreaming linear deterministic greedy
Nishimura and Ugander. KDD. 2013.

It repeatedly streams nodes one at a time to the 
shard that satisfies the given assignment mechanism.

Multiplicative weight on 
emptiness of shard i
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Share of u’s neighbors 
in shard i, Nu,i



BLP KL-SHP reLDG

Reassignment 
mechanism Synchronous Synchronous Streaming

Constraint handling Flow-based (LP) Pairwise (swaps) Multiplicative weight

Incumbency

Priority
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The order in which we choose to stream nodes is an 
obvious avenue for injecting priority into reLDG.
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So far, only random, BFS and DFS (from a random 
node) orders are discussed in the literature.
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Priority in stream order

Previously studied orders
Random
BFS/DFS (from random node)



In the offline setting, we can choose more 
strategic static and dynamic orderings.
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Priority in stream order

Prioritized orders
BFS (from highest degree)
Local clustering coefficient
Degree
Gain, gu



In the offline setting, we can choose more 
strategic static and dynamic orderings.
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Priority in stream order

Prioritized orders
BFS (from highest degree)
Local clustering coefficient
Degree
Gain, gu
Ambivalence, au
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New metric for sorting order

au = � max
i2[k]\P (u)

|Nu,i �Nu,P (u)|
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Ambivalence of node u

Negative max over 
external shards
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Negative max over 
external shards

Absolute difference in 
co-located neighbor count
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The larger the magnitude of the difference, the more negative 
the value, the less “ambivalent” the node is to relocation.

New metric for sorting order

au = � max
i2[k]\P (u)

|Nu,i �Nu,P (u)|
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First, we plot internal edge fraction of BLP, KL-SHP, and reLDG as a 
function of iteration on 4 datasets.
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Benchmarking base methods
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BLP and KL-SHP display similar performance, with KL-SHP 
winning out on all tested networks.

Benchmarking base methods
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reLDG with random stream order results in higher quality 
partitions in fewer iterations than both synchronous ones.

Benchmarking base methods
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To investigate the assignment behavior of nodes under our three 
base methods, we plot their periodicity.

Periodic reassignment of synchronous class



Awadelkarim and Ugander Prioritized Restreaming Algorithms for Balanced Graph 
Partitioning

49

We find that many nodes get assigned to the shard they were 
assigned to two iterations prior under the synchronous algorithms.

Periodic reassignment of synchronous class



Synchronous:
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The phenomenon is illustrated well by a bipartite network and 
provides intuition for streaming’s superior performance.

Periodic reassignment of synchronous class
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Synchronous:

Periodic reassignment of synchronous class

The phenomenon is illustrated well by a bipartite network and 
provides intuition for streaming’s superior performance.
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Synchronous:

Periodic reassignment of synchronous class

The phenomenon is illustrated well by a bipartite network and 
provides intuition for streaming’s superior performance.
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Synchronous:

Streaming: …

Periodic reassignment of synchronous class

The phenomenon is illustrated well by a bipartite network and 
provides intuition for streaming’s superior performance.



Synchronous vs. streaming performance
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Internal edge fraction of 16-shard partitioning after 10 iterations, averaged over 10 trials.
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Internal edge fraction of 16-shard partitioning after 10 iterations, averaged over 10 trials.

Best



Synchronous vs. streaming performance

Awadelkarim and Ugander Prioritized Restreaming Algorithms for Balanced Graph 
Partitioning

56

Internal edge fraction of 16-shard partitioning after 10 iterations, averaged over 10 trials.

Worst
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Note that the worst performing stream order outperforms the best 
performer of the synchronous class, a truly remarkable result.

Internal edge fraction of 16-shard partitioning after 10 iterations, averaged over 10 trials.

Synchronous vs. streaming performance



Prioritized restreaming

Furthermore, streaming nodes in order of increasing ambivalence 
can significantly improve the quality of the resulting partition.
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Furthermore, streaming nodes in order of increasing ambivalence 
can significantly improve the quality of the resulting partition.

Prioritized restreaming
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Prioritized restreaming

Internal edge fraction of 16-shard partitioning after 10 iterations, averaged over 10 trials.

Prioritized orders

The top performer in each row lies in the prioritized restreaming 
category, showing up to 12% improvement in objective from random.



Correlation between stream orders

To quantify their differences, we plot the weighted Kendall’s tau 
correlation between all tested stream orders.
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Vigna. WWW. 2015.



Decreasing-degree and increasing-ambivalence are 
highly correlated orderings.
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Correlation between stream orders
Vigna. WWW. 2015.



Further, ambivalence is upper and lower bounded by a 
linear function of degree, relative to a random partitioning.
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Ambivalence and degree
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From this talk

Streaming > synchronous.

Prioritized orders show significant 
improvement over random.

Ambivalence and degree are most promising 
orders and are highly correlated.



Takeaways
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From paper

“Less is more” within synchronous.

Incumbency exploration shows that methods 
are good as is regarding the option.

reLDG outperforms previously benchmarked 
methods with increasing k.



Thank you!
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Awadelkarim and Ugander. “Prioritized Restreaming 
Algorithms for Balanced Graph Partitioning”.


