
Prioritized Restreaming
Algorithms for Balanced
Graph Partitioning
Amel Awadelkarim
ameloa@stanford.edu

Johan Ugander
jugander@stanford.edu

We want to partition a graph into node-sets of approximately
equal size, while minimizing the number of edges cut.

Balanced graph partitioning

Awadelkarim and Ugander Prioritized Restreaming Algorithms for Balanced Graph
Partitioning

1

This problem has practical application as an imperative
step for large-scale distributed graph computation.

Balanced graph partitioning

Awadelkarim and Ugander Prioritized Restreaming Algorithms for Balanced Graph
Partitioning

2

The exact solution is infeasible to compute, hence
we focus on iterative local heuristics.

Global Multilevel Local

Existing algorithms

Awadelkarim and Ugander Prioritized Restreaming Algorithms for Balanced Graph
Partitioning

3

The exact solution is infeasible to compute, hence
we focus on iterative local heuristics.

Global Multilevel Local

Existing algorithms

Awadelkarim and Ugander Prioritized Restreaming Algorithms for Balanced Graph
Partitioning

4

Specifically, we explore the role of stream order in (re)streaming
algorithms and introduce prioritized restreaming algorithms.

Global
Streaming

Prioritized

Multilevel Local

A new class of algorithms

Awadelkarim and Ugander Prioritized Restreaming Algorithms for Balanced Graph
Partitioning

5

1. A taxonomy of existing iterative techniques
2. Informative benchmarking that was absent

from the literature
3. A paradigm shift in restreaming partitioning

algorithms

Awadelkarim and Ugander Prioritized Restreaming Algorithms for Balanced Graph
Partitioning

6

Contributions

Existing methods

Taxonomy

Prioritized restreaming

Results
• Benchmark existing methods
• Prioritized restreaming results
• Correlation between stream orders

Outline

Awadelkarim and Ugander Prioritized Restreaming Algorithms for Balanced Graph
Partitioning

7

Existing methods

Taxonomy

Prioritized restreaming

Results
• Benchmark existing methods
• Prioritized restreaming results
• Correlation between stream orders

Outline

Awadelkarim and Ugander Prioritized Restreaming Algorithms for Balanced Graph
Partitioning

8

Existing methods

Taxonomy

Prioritized restreaming

Results
• Benchmark existing methods
• Prioritized restreaming results
• Correlation between stream orders

Outline

Awadelkarim and Ugander Prioritized Restreaming Algorithms for Balanced Graph
Partitioning

9

Existing methods

Taxonomy

Prioritized restreaming

Results
• Benchmark existing methods
• Prioritized restreaming results
• Correlation between stream orders

Outline

Awadelkarim and Ugander Prioritized Restreaming Algorithms for Balanced Graph
Partitioning

10

Existing methods

Awadelkarim and Ugander Prioritized Restreaming Algorithms for Balanced Graph
Partitioning

11

We present three algorithms from the literature – two based on
label propagation and one restreaming algorithm.

BLP begins from an initial partitioning, iteratively improving
upon the edge cut objective.

V1 V2 V3

Awadelkarim and Ugander Prioritized Restreaming Algorithms for Balanced Graph
Partitioning

12

Balanced label propagation
Ugander and Backstrom. WSDM. 2013.

At each iteration, BLP identifies which nodes desire to
move and to where,

V1 V2 V3

Balanced label propagation
Ugander and Backstrom. WSDM. 2013.

Awadelkarim and Ugander Prioritized Restreaming Algorithms for Balanced Graph
Partitioning

13

places nodes in sorted move queues to their
target shards by order of decreasing gain,

gu = max
i2[k]

Nu,i �Nu,P (u)
<latexit sha1_base64="VktvdKHwt3E3Sy2VExU8nKgVHfw=">AAACE3icbZDLSsNAFIYn9V5vUZduBkVQ0ZLUhRcQvGxcSQWrhTSEyXTaDp1M4lzEEvIObnwTceNCEbdu3Pk2ThsX2vrDwMd/zuHM+cOEUakc58sqjIyOjU9MThWnZ2bn5u2FxSsZa4FJFccsFrUQScIoJ1VFFSO1RBAUhYxch53TXv36lghJY36pugnxI9TitEkxUsYK7M1WoOEhrEfoLkhpnXKv42fwPEj1Fs3gdk6wsq43ssBedUpOX3AY3B9YPTrObk73Dx4rgf1Zb8RYR4QrzJCUnuskyk+RUBQzkhXrWpIE4Q5qEc8gRxGRftq/KYNrxmnAZizM4wr23d8TKYqk7Eah6YyQasvBWs/8r+Zp1dzzU8oTrQjH+aKmZlDFsBcQbFBBsGJdAwgLav4KcRsJhJWJsWhCcAdPHoarcsndKZUvTBonINckWAYrYB24YBccgTNQAVWAwT14Ai/g1Xqwnq036z1vLVg/M0vgj6yPbxGwn1A=</latexit>

Neighbors in shard i
Neighbors in current shard

assignment, P(u)

Balanced label propagation
Ugander and Backstrom. WSDM. 2013.

Gain of node u

Awadelkarim and Ugander Prioritized Restreaming Algorithms for Balanced Graph
Partitioning

14

then solves a linear program to determine how
many top nodes to relocate.

V1 V2 V3

Balanced label propagation
Ugander and Backstrom. WSDM. 2013.

Awadelkarim and Ugander Prioritized Restreaming Algorithms for Balanced Graph
Partitioning

15

V1 V2 V3

Balanced label propagation
Ugander and Backstrom. WSDM. 2013.

then solves a linear program to determine how
many top nodes to relocate.

Awadelkarim and Ugander Prioritized Restreaming Algorithms for Balanced Graph
Partitioning

16

V1 V2 V3

Balanced label propagation
Ugander and Backstrom. WSDM. 2013.

then solves a linear program to determine how
many top nodes to relocate.

Awadelkarim and Ugander Prioritized Restreaming Algorithms for Balanced Graph
Partitioning

17

SHP also starts from an initial partitioning.

V1 V2 V3

Social Hash partitioner
Kabiljo et al. VLDB. 2017.

Awadelkarim and Ugander Prioritized Restreaming Algorithms for Balanced Graph
Partitioning

18

Shalita et al. NSDI. 2016.

At each iteration, we place all nodes in the move queue of
the shard that maximizes a modified form of gain,

V1 V2 V3

Social Hash partitioner
Kabiljo et al. VLDB. 2017.

Awadelkarim and Ugander Prioritized Restreaming Algorithms for Balanced Graph
Partitioning

19

Shalita et al. NSDI. 2016.

g0u = max
i2[k]\P (u)

Nu,i �Nu,P (u)
<latexit sha1_base64="S53pKRdZUXcmEJCT5lRYHr+oo24=">AAACInicbZDLSsNAFIYn3q23qEs3gyIqaEnqwgsIXjaupIJVoQlhMp22Q2cmcS5iCXkWNz6Cr+DGhaKuBB/GaePC2w8DH/85hzPnj1NGlfa8d2dgcGh4ZHRsvDQxOTU9487OnavESExqOGGJvIyRIowKUtNUM3KZSoJ4zMhF3Dnq1S+uiVQ0EWe6m5KQo5agTYqRtlbk7rRWIgP3YMDRTZTRgIp6JwwU0ZwKo2B11azl8CTKzDrN4UZBhRu5S17Z6wv+Bf8LlvYP8qujnd37auS+Bo0EG06ExgwpVfe9VIcZkppiRvJSYBRJEe6gFqlbFIgTFWb9E3O4bJ0GbCbSPqFh3/0+kSGuVJfHtpMj3Va/az3zv1rd6OZ2mFGRGk0ELhY1DYM6gb28YINKgjXrWkBYUvtXiNtIIqxtqiUbgv/75L9wXin7m+XKqU3jEBQaAwtgEawCH2yBfXAMqqAGMLgFD+AJPDt3zqPz4rwVrQPO18w8+CHn4xMjnqUX</latexit>

the max gain outside of a node’s current shard
assignment, and sort move queues by this quantity.

Max over external shards

Social Hash partitioner
Kabiljo et al. VLDB. 2017.

Awadelkarim and Ugander Prioritized Restreaming Algorithms for Balanced Graph
Partitioning

20

Shalita et al. NSDI. 2016.

V1 V2 V3

Balance is maintained by swapping nodes between shard
pairs, only doing so when the net gain is positive.

Social Hash partitioner
Kabiljo et al. VLDB. 2017.

Awadelkarim and Ugander Prioritized Restreaming Algorithms for Balanced Graph
Partitioning

21

Shalita et al. NSDI. 2016.

V1 V2 V3

Social Hash partitioner
Kabiljo et al. VLDB. 2017.

Balance is maintained by swapping nodes between shard
pairs, only doing so when the net gain is positive.

Awadelkarim and Ugander Prioritized Restreaming Algorithms for Balanced Graph
Partitioning

22

Shalita et al. NSDI. 2016.

V1 V2 V3

Social Hash partitioner
Kabiljo et al. VLDB. 2017.

Balance is maintained by swapping nodes between shard
pairs, only doing so when the net gain is positive.

Awadelkarim and Ugander Prioritized Restreaming Algorithms for Balanced Graph
Partitioning

23

Shalita et al. NSDI. 2016.

V1 V2 V3

Social Hash partitioner
Kabiljo et al. VLDB. 2017.

The SHP algorithm boasts many bells and whistles. We denote this
version KL-SHP and also study two restricted forms, SHP-I and SHP-II.

Awadelkarim and Ugander Prioritized Restreaming Algorithms for Balanced Graph
Partitioning

24

Shalita et al. NSDI. 2016.

ReLDG is a streaming algorithm, and does not
require an initial partitioning.

V1 V2 V3

Restreaming linear deterministic greedy
Nishimura and Ugander. KDD. 2013.

Awadelkarim and Ugander Prioritized Restreaming Algorithms for Balanced Graph
Partitioning

25

Stanton and Kliot. KDD. 2012.

It repeatedly streams nodes one at a time to the
shard that satisfies the given assignment mechanism.

V1 V2 V3

Restreaming linear deterministic greedy
Nishimura and Ugander. KDD. 2013.

Awadelkarim and Ugander Prioritized Restreaming Algorithms for Balanced Graph
Partitioning

26

Stanton and Kliot. KDD. 2012.

It repeatedly streams nodes one at a time to the
shard that satisfies the given assignment mechanism.

V1 V2 V3

Restreaming linear deterministic greedy
Nishimura and Ugander. KDD. 2013.

Awadelkarim and Ugander Prioritized Restreaming Algorithms for Balanced Graph
Partitioning

27

Stanton and Kliot. KDD. 2012.

argmax
i2[k]

|V (t)
i \N(u)| ·

1� x(t)

i

C

!

<latexit sha1_base64="vkqNJM75D5iuHXH2/jeh+gMRBGw=">AAACOHicbVBdSxtBFJ31qzZaTe1jQQalkDw07OpD+ygNSJ9aBROFzHa5O5lNhszOLjN3i2Hd3+Ev8aU/o2+lL6Uo4qu/wEmi0KoHBg7nnMude+JcSYu+/8ubm19YXHqx/LK2svpqbb3+eqNrs8Jw0eGZysxJDFYoqUUHJSpxkhsBaazEcTxqT/zj78JYmekjHOciTGGgZSI5oJOi+lcGZsBSOI1KyaTujcKKnnUj+a1sYLOijENOvzSK5hnj/QyZEgk2gvcsMcDL04dYVbYrZuRgiM2ovu23/CnoUxLck+29/fPNv+3u+UFU/8n6GS9SoZErsLYX+DmGJRiUXImqxgorcuAjGIieoxpSYcNyenhF3zmlT5PMuKeRTtV/J0pIrR2nsUumgEP72JuIz3m9ApOPYSl1XqDQfLYoKRTFjE5apH1pBEc1dgS4ke6vlA/BlYKu65orIXh88lPS3WkFu62dQ9fGJzLDMnlLtkiDBOQD2SOfyQHpEE4uyG9ySa68H94f79q7mUXnvPuZN+Q/eLd3Q4awTQ==</latexit>

Restreaming linear deterministic greedy
Nishimura and Ugander. KDD. 2013.

It repeatedly streams nodes one at a time to the
shard that satisfies the given assignment mechanism.

Awadelkarim and Ugander Prioritized Restreaming Algorithms for Balanced Graph
Partitioning

28

Stanton and Kliot. KDD. 2012.

argmax
i2[k]

|V (t)
i \N(u)| ·

1� x(t)

i

C

!

<latexit sha1_base64="vkqNJM75D5iuHXH2/jeh+gMRBGw=">AAACOHicbVBdSxtBFJ31qzZaTe1jQQalkDw07OpD+ygNSJ9aBROFzHa5O5lNhszOLjN3i2Hd3+Ev8aU/o2+lL6Uo4qu/wEmi0KoHBg7nnMude+JcSYu+/8ubm19YXHqx/LK2svpqbb3+eqNrs8Jw0eGZysxJDFYoqUUHJSpxkhsBaazEcTxqT/zj78JYmekjHOciTGGgZSI5oJOi+lcGZsBSOI1KyaTujcKKnnUj+a1sYLOijENOvzSK5hnj/QyZEgk2gvcsMcDL04dYVbYrZuRgiM2ovu23/CnoUxLck+29/fPNv+3u+UFU/8n6GS9SoZErsLYX+DmGJRiUXImqxgorcuAjGIieoxpSYcNyenhF3zmlT5PMuKeRTtV/J0pIrR2nsUumgEP72JuIz3m9ApOPYSl1XqDQfLYoKRTFjE5apH1pBEc1dgS4ke6vlA/BlYKu65orIXh88lPS3WkFu62dQ9fGJzLDMnlLtkiDBOQD2SOfyQHpEE4uyG9ySa68H94f79q7mUXnvPuZN+Q/eLd3Q4awTQ==</latexit> Share of u’s neighbors
in shard i, Nu,i

Restreaming linear deterministic greedy
Nishimura and Ugander. KDD. 2013.

It repeatedly streams nodes one at a time to the
shard that satisfies the given assignment mechanism.

Awadelkarim and Ugander Prioritized Restreaming Algorithms for Balanced Graph
Partitioning

29

Stanton and Kliot. KDD. 2012.

argmax
i2[k]

|V (t)
i \N(u)| ·

1� x(t)

i

C

!

<latexit sha1_base64="vkqNJM75D5iuHXH2/jeh+gMRBGw=">AAACOHicbVBdSxtBFJ31qzZaTe1jQQalkDw07OpD+ygNSJ9aBROFzHa5O5lNhszOLjN3i2Hd3+Ev8aU/o2+lL6Uo4qu/wEmi0KoHBg7nnMude+JcSYu+/8ubm19YXHqx/LK2svpqbb3+eqNrs8Jw0eGZysxJDFYoqUUHJSpxkhsBaazEcTxqT/zj78JYmekjHOciTGGgZSI5oJOi+lcGZsBSOI1KyaTujcKKnnUj+a1sYLOijENOvzSK5hnj/QyZEgk2gvcsMcDL04dYVbYrZuRgiM2ovu23/CnoUxLck+29/fPNv+3u+UFU/8n6GS9SoZErsLYX+DmGJRiUXImqxgorcuAjGIieoxpSYcNyenhF3zmlT5PMuKeRTtV/J0pIrR2nsUumgEP72JuIz3m9ApOPYSl1XqDQfLYoKRTFjE5apH1pBEc1dgS4ke6vlA/BlYKu65orIXh88lPS3WkFu62dQ9fGJzLDMnlLtkiDBOQD2SOfyQHpEE4uyG9ySa68H94f79q7mUXnvPuZN+Q/eLd3Q4awTQ==</latexit>

Restreaming linear deterministic greedy
Nishimura and Ugander. KDD. 2013.

It repeatedly streams nodes one at a time to the
shard that satisfies the given assignment mechanism.

Multiplicative weight on
emptiness of shard i

Awadelkarim and Ugander Prioritized Restreaming Algorithms for Balanced Graph
Partitioning

30

Stanton and Kliot. KDD. 2012.

Share of u’s neighbors
in shard i, Nu,i

BLP KL-SHP reLDG

Reassignment
mechanism Synchronous Synchronous Streaming

Constraint handling Flow-based (LP) Pairwise (swaps) Multiplicative weight

Incumbency

Priority

Awadelkarim and Ugander Prioritized Restreaming Algorithms for Balanced Graph Partitioning 31

Algorithmic taxonomy

BLP KL-SHP reLDG

Reassignment
mechanism Synchronous Synchronous Streaming

Constraint handling Flow-based (LP) Pairwise (swaps) Multiplicative weight

Incumbency

Priority

Awadelkarim and Ugander Prioritized Restreaming Algorithms for Balanced Graph Partitioning 32

Algorithmic taxonomy

BLP KL-SHP reLDG

Reassignment
mechanism Synchronous Synchronous Streaming

Constraint handling Flow-based (LP) Pairwise (swaps) Multiplicative weight

Incumbency

Priority

Awadelkarim and Ugander Prioritized Restreaming Algorithms for Balanced Graph Partitioning 33

Algorithmic taxonomy

BLP KL-SHP reLDG

Reassignment
mechanism Synchronous Synchronous Streaming

Constraint handling Flow-based (LP) Pairwise (swaps) Multiplicative weight

Incumbency

Priority

Awadelkarim and Ugander Prioritized Restreaming Algorithms for Balanced Graph Partitioning 34

Algorithmic taxonomy

BLP KL-SHP reLDG

Reassignment
mechanism Synchronous Synchronous Streaming

Constraint handling Flow-based (LP) Pairwise (swaps) Multiplicative weight

Incumbency

Priority

Awadelkarim and Ugander Prioritized Restreaming Algorithms for Balanced Graph Partitioning 35

Algorithmic taxonomy

BLP KL-SHP reLDG

Reassignment
mechanism Synchronous Synchronous Streaming

Constraint handling Flow-based (LP) Pairwise (swaps) Multiplicative weight

Incumbency

Priority

Awadelkarim and Ugander Prioritized Restreaming Algorithms for Balanced Graph Partitioning 36

Algorithmic taxonomy

The order in which we choose to stream nodes is an
obvious avenue for injecting priority into reLDG.

Awadelkarim and Ugander Prioritized Restreaming Algorithms for Balanced Graph
Partitioning

37

Priority in stream order

So far, only random, BFS and DFS (from a random
node) orders are discussed in the literature.

Awadelkarim and Ugander Prioritized Restreaming Algorithms for Balanced Graph
Partitioning

38

Priority in stream order

Previously studied orders
Random
BFS/DFS (from random node)

In the offline setting, we can choose more
strategic static and dynamic orderings.

Awadelkarim and Ugander Prioritized Restreaming Algorithms for Balanced Graph
Partitioning

39

Priority in stream order

Prioritized orders
BFS (from highest degree)
Local clustering coefficient
Degree
Gain, gu

In the offline setting, we can choose more
strategic static and dynamic orderings.

Awadelkarim and Ugander Prioritized Restreaming Algorithms for Balanced Graph
Partitioning

40

Priority in stream order

Prioritized orders
BFS (from highest degree)
Local clustering coefficient
Degree
Gain, gu
Ambivalence, au

Awadelkarim and Ugander Prioritized Restreaming Algorithms for Balanced Graph
Partitioning

41

New metric for sorting order

au = � max
i2[k]\P (u)

|Nu,i �Nu,P (u)|
<latexit sha1_base64="L3X7W0PfYMSJ9j/JM2sVK6mPC64=">AAACJHicbZDLSgMxFIYz3q23qks3QREqaJnRhTeEqhtXUsFaoTMMmTTV0CQz5iKW6TyMG5/Ad3Djwgsu3Pgspq0Lbf0h8PGfczg5f5QwqrTrfjpDwyOjY+MTk7mp6ZnZufz8woWKjcSkgmMWy8sIKcKoIBVNNSOXiSSIR4xUo+Zxp169JVLRWJzrVkICjq4EbVCMtLXC/D4KDTyAGz5Hd2FKfSpqzcBXRHMqjILlglnLYPs0TM06zeAG7FLPbof5FbfodgUHwfuBldJhdnO8u/dYDvNvfj3GhhOhMUNK1Tw30UGKpKaYkSznG0UShJvoitQsCsSJCtLukRlctU4dNmJpn9Cw6/6eSBFXqsUj28mRvlb9tY75X61mdGMnSKlIjCYC9xY1DIM6hp3EYJ1KgjVrWUBYUvtXiK+RRFjbXHM2BK//5EG42Cx6W8XNM5vGEehpAiyBZVAAHtgGJXACyqACMLgHT+AFvDoPzrPz7nz0Woecn5lF8EfO1zcRsKYj</latexit>

Ambivalence of node u

Awadelkarim and Ugander Prioritized Restreaming Algorithms for Balanced Graph
Partitioning

42

New metric for sorting order

au = � max
i2[k]\P (u)

|Nu,i �Nu,P (u)|
<latexit sha1_base64="L3X7W0PfYMSJ9j/JM2sVK6mPC64=">AAACJHicbZDLSgMxFIYz3q23qks3QREqaJnRhTeEqhtXUsFaoTMMmTTV0CQz5iKW6TyMG5/Ad3Djwgsu3Pgspq0Lbf0h8PGfczg5f5QwqrTrfjpDwyOjY+MTk7mp6ZnZufz8woWKjcSkgmMWy8sIKcKoIBVNNSOXiSSIR4xUo+Zxp169JVLRWJzrVkICjq4EbVCMtLXC/D4KDTyAGz5Hd2FKfSpqzcBXRHMqjILlglnLYPs0TM06zeAG7FLPbof5FbfodgUHwfuBldJhdnO8u/dYDvNvfj3GhhOhMUNK1Tw30UGKpKaYkSznG0UShJvoitQsCsSJCtLukRlctU4dNmJpn9Cw6/6eSBFXqsUj28mRvlb9tY75X61mdGMnSKlIjCYC9xY1DIM6hp3EYJ1KgjVrWUBYUvtXiK+RRFjbXHM2BK//5EG42Cx6W8XNM5vGEehpAiyBZVAAHtgGJXACyqACMLgHT+AFvDoPzrPz7nz0Woecn5lF8EfO1zcRsKYj</latexit>

Ambivalence of node u

Negative max over
external shards

Awadelkarim and Ugander Prioritized Restreaming Algorithms for Balanced Graph
Partitioning

43

New metric for sorting order

au = � max
i2[k]\P (u)

|Nu,i �Nu,P (u)|
<latexit sha1_base64="L3X7W0PfYMSJ9j/JM2sVK6mPC64=">AAACJHicbZDLSgMxFIYz3q23qks3QREqaJnRhTeEqhtXUsFaoTMMmTTV0CQz5iKW6TyMG5/Ad3Djwgsu3Pgspq0Lbf0h8PGfczg5f5QwqrTrfjpDwyOjY+MTk7mp6ZnZufz8woWKjcSkgmMWy8sIKcKoIBVNNSOXiSSIR4xUo+Zxp169JVLRWJzrVkICjq4EbVCMtLXC/D4KDTyAGz5Hd2FKfSpqzcBXRHMqjILlglnLYPs0TM06zeAG7FLPbof5FbfodgUHwfuBldJhdnO8u/dYDvNvfj3GhhOhMUNK1Tw30UGKpKaYkSznG0UShJvoitQsCsSJCtLukRlctU4dNmJpn9Cw6/6eSBFXqsUj28mRvlb9tY75X61mdGMnSKlIjCYC9xY1DIM6hp3EYJ1KgjVrWUBYUvtXiK+RRFjbXHM2BK//5EG42Cx6W8XNM5vGEehpAiyBZVAAHtgGJXACyqACMLgHT+AFvDoPzrPz7nz0Woecn5lF8EfO1zcRsKYj</latexit>

Ambivalence of node u

Negative max over
external shards

Absolute difference in
co-located neighbor count

Awadelkarim and Ugander Prioritized Restreaming Algorithms for Balanced Graph
Partitioning

44

The larger the magnitude of the difference, the more negative
the value, the less “ambivalent” the node is to relocation.

New metric for sorting order

au = � max
i2[k]\P (u)

|Nu,i �Nu,P (u)|
<latexit sha1_base64="L3X7W0PfYMSJ9j/JM2sVK6mPC64=">AAACJHicbZDLSgMxFIYz3q23qks3QREqaJnRhTeEqhtXUsFaoTMMmTTV0CQz5iKW6TyMG5/Ad3Djwgsu3Pgspq0Lbf0h8PGfczg5f5QwqrTrfjpDwyOjY+MTk7mp6ZnZufz8woWKjcSkgmMWy8sIKcKoIBVNNSOXiSSIR4xUo+Zxp169JVLRWJzrVkICjq4EbVCMtLXC/D4KDTyAGz5Hd2FKfSpqzcBXRHMqjILlglnLYPs0TM06zeAG7FLPbof5FbfodgUHwfuBldJhdnO8u/dYDvNvfj3GhhOhMUNK1Tw30UGKpKaYkSznG0UShJvoitQsCsSJCtLukRlctU4dNmJpn9Cw6/6eSBFXqsUj28mRvlb9tY75X61mdGMnSKlIjCYC9xY1DIM6hp3EYJ1KgjVrWUBYUvtXiK+RRFjbXHM2BK//5EG42Cx6W8XNM5vGEehpAiyBZVAAHtgGJXACyqACMLgHT+AFvDoPzrPz7nz0Woecn5lF8EfO1zcRsKYj</latexit>

Ambivalence of node u

Negative max over
external shards

Absolute difference in
co-located neighbor count

First, we plot internal edge fraction of BLP, KL-SHP, and reLDG as a
function of iteration on 4 datasets.

Awadelkarim and Ugander Prioritized Restreaming Algorithms for Balanced Graph
Partitioning

45

Benchmarking base methods

Awadelkarim and Ugander Prioritized Restreaming Algorithms for Balanced Graph
Partitioning

46

BLP and KL-SHP display similar performance, with KL-SHP
winning out on all tested networks.

Benchmarking base methods

Awadelkarim and Ugander Prioritized Restreaming Algorithms for Balanced Graph
Partitioning

47

reLDG with random stream order results in higher quality
partitions in fewer iterations than both synchronous ones.

Benchmarking base methods

Awadelkarim and Ugander Prioritized Restreaming Algorithms for Balanced Graph
Partitioning

48

To investigate the assignment behavior of nodes under our three
base methods, we plot their periodicity.

Periodic reassignment of synchronous class

Awadelkarim and Ugander Prioritized Restreaming Algorithms for Balanced Graph
Partitioning

49

We find that many nodes get assigned to the shard they were
assigned to two iterations prior under the synchronous algorithms.

Periodic reassignment of synchronous class

Synchronous:

Awadelkarim and Ugander Prioritized Restreaming Algorithms for Balanced Graph
Partitioning

50

The phenomenon is illustrated well by a bipartite network and
provides intuition for streaming’s superior performance.

Periodic reassignment of synchronous class

Awadelkarim and Ugander Prioritized Restreaming Algorithms for Balanced Graph
Partitioning

51

Synchronous:

Periodic reassignment of synchronous class

The phenomenon is illustrated well by a bipartite network and
provides intuition for streaming’s superior performance.

Awadelkarim and Ugander Prioritized Restreaming Algorithms for Balanced Graph
Partitioning

52

Synchronous:

Periodic reassignment of synchronous class

The phenomenon is illustrated well by a bipartite network and
provides intuition for streaming’s superior performance.

Awadelkarim and Ugander Prioritized Restreaming Algorithms for Balanced Graph
Partitioning

53

Synchronous:

Streaming: …

Periodic reassignment of synchronous class

The phenomenon is illustrated well by a bipartite network and
provides intuition for streaming’s superior performance.

Synchronous vs. streaming performance

Awadelkarim and Ugander Prioritized Restreaming Algorithms for Balanced Graph
Partitioning

54

Internal edge fraction of 16-shard partitioning after 10 iterations, averaged over 10 trials.

Synchronous vs. streaming performance

Awadelkarim and Ugander Prioritized Restreaming Algorithms for Balanced Graph
Partitioning

55

Internal edge fraction of 16-shard partitioning after 10 iterations, averaged over 10 trials.

Best

Synchronous vs. streaming performance

Awadelkarim and Ugander Prioritized Restreaming Algorithms for Balanced Graph
Partitioning

56

Internal edge fraction of 16-shard partitioning after 10 iterations, averaged over 10 trials.

Worst

Awadelkarim and Ugander Prioritized Restreaming Algorithms for Balanced Graph
Partitioning

57

Note that the worst performing stream order outperforms the best
performer of the synchronous class, a truly remarkable result.

Internal edge fraction of 16-shard partitioning after 10 iterations, averaged over 10 trials.

Synchronous vs. streaming performance

Prioritized restreaming

Furthermore, streaming nodes in order of increasing ambivalence
can significantly improve the quality of the resulting partition.

Awadelkarim and Ugander Prioritized Restreaming Algorithms for Balanced Graph
Partitioning

58

Awadelkarim and Ugander Prioritized Restreaming Algorithms for Balanced Graph
Partitioning

59

Furthermore, streaming nodes in order of increasing ambivalence
can significantly improve the quality of the resulting partition.

Prioritized restreaming

Awadelkarim and Ugander Prioritized Restreaming Algorithms for Balanced Graph
Partitioning

60

Prioritized restreaming

Internal edge fraction of 16-shard partitioning after 10 iterations, averaged over 10 trials.

Prioritized orders

The top performer in each row lies in the prioritized restreaming
category, showing up to 12% improvement in objective from random.

Correlation between stream orders

To quantify their differences, we plot the weighted Kendall’s tau
correlation between all tested stream orders.

Awadelkarim and Ugander Prioritized Restreaming Algorithms for Balanced Graph
Partitioning

61

Vigna. WWW. 2015.

Decreasing-degree and increasing-ambivalence are
highly correlated orderings.

Awadelkarim and Ugander Prioritized Restreaming Algorithms for Balanced Graph
Partitioning

62

Correlation between stream orders
Vigna. WWW. 2015.

Further, ambivalence is upper and lower bounded by a
linear function of degree, relative to a random partitioning.

Awadelkarim and Ugander Prioritized Restreaming Algorithms for Balanced Graph
Partitioning

63

2

k
· du E[ãu]

2(k � 1)

k
· du

<latexit sha1_base64="Ur9c9nzs64Yv1YoQVxWfPsHgcGU=">AAACOXicbVDJSsRAFOy4O26jHkS8NIqgB4dEBPUmiuBxBEeFSQidzos201nsfhGGkN/y4k+IN0UQD4p49QfsWQ5uBQ1F1StevwoyKTTa9oM1MDg0PDI6Nl6ZmJyanqnOzp3qNFccGjyVqToPmAYpEmigQAnnmQIWBxLOgtZBxz+7BqVFmpxgOwMvZheJiARnaCS/WncjxXixWRat0uVhijT0c+pKuKJuzPAyCIrDsumikCEUrPRzr2/2YmutDWf9R9avrtg1uwv6lzh9srK383y38Pi+WPer926Y8jyGBLlkWjcdO0OvYAoFl1BW3FxDxniLXUDT0ITFoL2ie3lJV40S0ihV5iVIu+r3RMFirdtxYCY71+jfXkf8z2vmGO14hUiyHCHhvUVRLimmtFMjDYUCjrJtCONKmL9SfslMJ2jKrpgSnN8n/yWnmzVnq7Z7bNrYJz2MkSWyTNaIQ7bJHjkiddIgnNyQJ/JK3qxb68V6tz56owNWPzNPfsD6/ALPzbHi</latexit>

Ambivalence and degree

Takeaways

Awadelkarim and Ugander Prioritized Restreaming Algorithms for Balanced Graph
Partitioning

64

From this talk

Streaming > synchronous.

Prioritized orders show significant
improvement over random.

Ambivalence and degree are most promising
orders and are highly correlated.

Takeaways

Awadelkarim and Ugander Prioritized Restreaming Algorithms for Balanced Graph
Partitioning

65

From paper

“Less is more” within synchronous.

Incumbency exploration shows that methods
are good as is regarding the option.

reLDG outperforms previously benchmarked
methods with increasing k.

Thank you!

Awadelkarim and Ugander Prioritized Restreaming Algorithms for Balanced Graph
Partitioning

66

Awadelkarim and Ugander. “Prioritized Restreaming
Algorithms for Balanced Graph Partitioning”.

