
Comparison-based Choices

Johan Ugander
Management Science & Engineering

Stanford University

Joint work with:
Jon Kleinberg (Cornell)  

Sendhil Mullainathan (Harvard)

EC’17 Boston
June 28, 2017

Predicting discrete choices

• Classic problem: consumer preferences [Thurstone ’27, Luce ’59],
commuting [McFadden ’78], school choice [Kohn-Manski-Mundel ’76]

Predicting online discrete choices

Predicting online discrete choices

How well can we learn/predict “choice set effects”? 
a.k.a. violations of the “independence of irrelevant alternatives” (IIA)

• [Sheffet-Mishra-Ieong ICML 2012, Yin et al. WSDM 2014]

• Bias towards moderation, compromise effect

Choice set effects

• [Simonson 1989, Simonson-Tversky 1992,  
 Kamenica 2008, Trueblood 2013]

• Bias towards moderation, compromise effect

Choice set effects

weight

m
eg

ap
ix

el
s

• [Simonson 1989, Simonson-Tversky 1992,  
 Kamenica 2008, Trueblood 2013]

• Bias towards moderation, compromise effect

Choice set effects

weight

m
eg

ap
ix

el
s

• [Simonson 1989, Simonson-Tversky 1992,  
 Kamenica 2008, Trueblood 2013]

• Bias towards moderation, compromise effect

• Similarity aversion

Choice set effects

weight

m
eg

ap
ix

el
s

weight

m
eg

ap
ix

el
s

• [Simonson 1989, Simonson-Tversky 1992,  
 Kamenica 2008, Trueblood 2013]

• Bias towards moderation, compromise effect

• Similarity aversion

Choice set effects

weight

m
eg

ap
ix

el
s

weight

m
eg

ap
ix

el
s

• [Simonson 1989, Simonson-Tversky 1992,  
 Kamenica 2008, Trueblood 2013]

Choice set effects

weight

m
eg

ap
ix

el
s

Similarity
requires

“distance”

Ordinal
comparisons

weight

m
eg

ap
ix

el
s

• [Simonson 1989, Simonson-Tversky 1992,  
 Kamenica 2008, Trueblood 2013]

• Bias towards moderation, compromise effect

• Similarity aversion

The present work
• Focused on comparison-based functions.

• Investigate asymptotic query complexity: if an agent makes
comparison-based choices, how hard to learn their choice function?

• Assume population is not learning, meaning choice set effects  
are not “transient irrationality”.

• Several query frameworks:
• Active queries vs. passive stream of queries
• Fixed choice function vs. mixture of choice functions

The present work
• Focused on comparison-based functions.

• Investigate asymptotic query complexity: if an agent makes
comparison-based choices, how hard to learn their choice function?

• Assume population is not learning, meaning choice set effects  
are not “transient irrationality”.

• Several query frameworks:
• Active queries vs. passive stream of queries
• Fixed choice function vs. mixture of choice functions

• Basic takeaway: comparison-based functions in one dimension  
(still rich!) are no harder to learn than binary comparisons (sorting).

Comparison-based choice functions
• Definition: Given a set of alternatives U, a choice function f maps  

every non-empty S⊆U to an element u∈S.
• Example: 
 
 
U: f() =

S u

Comparison-based choice functions
• Definition: Given a set of alternatives U, a choice function f maps  

every non-empty S⊆U to an element u∈S.
• Example: 
 
 
U: f() =

• Embedding items:
• Consider U as embedded in attribute space, h:U->X
• For X = ℝ1, h(ui) are utilities:

S u

ba dc e

https://en.wikipedia.org/wiki/%E2%84%9D

Comparison-based choice functions
• Definition: Given a set of alternatives U, a choice function f maps  

every non-empty S⊆U to an element u∈S.
• Example: 
 
 
U: f() =

• Embedding items:
• Consider U as embedded in attribute space, h:U->X
• For X = ℝ1, h(ui) are utilities:

• Comparison-based functions:
• Definition: Choice functions that can be written as comparisons

(<,>,=) over {h(ui): ui∈S}.

S u

ba dc e

https://en.wikipedia.org/wiki/%E2%84%9D

• In one dimension, comparison-based functions are all  
position-selection functions: select ℓ-of-k.

• Example: k=4, ℓ=2

Comparison-based choice functions

b

a
c

d

a dc

b
f(S) = b

• In one dimension, comparison-based functions are all  
position-selection functions: select ℓ-of-k.

• Example: k=4, ℓ=2

• Selecting 1-of-2 is sorting.
• Focus on k-sets S with fixed k.

Comparison-based choice functions

b

a
c

d

a dc

b
f(S) = b

Comparison-based choice functions

b

a
c

d

a dc

b c
d

f(S) = c
b

e

e
f(S) = b

• In one dimension, comparison-based functions are all  
position-selection functions: select ℓ-of-k.

• Example: k=4, ℓ=2

• Selecting 1-of-2 is sorting.
• Focus on k-sets S with fixed k.
• Position-selection functions exhibit choice set effects.

Query complexity
• Observe sequence of (choice set, choice) pairs (S, f(S)).
• How many do we need to observe to report f(S) for (almost) all S?

Query complexity
• Observe sequence of (choice set, choice) pairs (S, f(S)).
• How many do we need to observe to report f(S) for (almost) all S?

• Active vs. passive queries
• Active: can choose what k-set S to query next, sequentially.
• Passive: Stream of random k-sets S.

• Fixed vs. mixed choice functions
• Fixed: all queries of same -of-k function.
• Mixed: mixture of different positions selected.

`

(⇡1, ...,⇡k)

Query complexity, binary choices
• How does sorting (1-of-2) fit in this query complexity framework?
• Mixed binary choice functions map to (p,1-p) noisy sorting.

Fixed Mixed

Active
Sorting from
comparisons

O(n log n)

Sorting with  
noisy comparisons 
(Feige et al. 1994)  

O(n log n) 

Passive

Sorting in one round  
(Alon-Azar 1988)  

O(n log n loglog n)   ?

Query complexity, k-set choices
• Sorting results translated to position-selection functions:

Fixed Mixed

Active Two-phase algorithm 
O(n log n)

 
Adaptation of two-phase

algorithm 
O(n log n) 

Passive Streaming model 
O(nk-1 log n loglog n) ?

• Phase 1: find “ineligible alternatives” via a discard algorithm

Query complexity: active, fixed

`� 1 item(s)k � ` item(s)

b

a
c

d

= ineligible alternatives

S⇤ =

S�2 =

{ }
{ }

f(S) = b

a dc

b

• Phase 1: find “ineligible alternatives” via a discard algorithm

• Phase 2: Pad a choice set with ineligible alternatives, do binary sort.

Query complexity: active, fixed

`� 1 item(s)k � ` item(s)

b

a
c

d

= ineligible alternatives

S⇤ =

S�2 =

{ }
{ }

f(S) = b

a dc

b

• Phase 1: find “ineligible alternatives” via a discard algorithm

• Phase 2: Pad a choice set with ineligible alternatives, do binary sort.

• O(n) queries in discard algorithm, O(n log n) queries to sort.
• Only recovers order, not orientation: don’t know if “padded sort” is a

“max” or a “min”, but not needed to recover f(S) for ever S.
• Algorithm doesn’t depend on what position is being selected for.

Query complexity: active, fixed

`� 1 item(s)k � ` item(s)

b

a
c

d

= ineligible alternatives

S⇤ =

S�2 =

{ }
{ }

f(S) = b

a dc

b

Query complexity: active, mixed
• Instead of -of-k, mixture of positions with probabilities , 

constant separation.

• 0: Estimate probabilities of each position by studying a k+1-set closely.
• 1: Run discard phase O(log n) times, find “max-ineligible alternatives”
• 2: Can then pad choice set and run a “noisy max” with (max, min, fail)

outcomes instead of (max, min) outcomes as in (Feige et al. 1994).

(⇡1, ...,⇡k)`

b

a
c

d

a dc

b
f(S) = b

Query complexity: active, mixed
• Instead of -of-k, mixture of positions with probabilities , 

constant separation.

• 0: Estimate probabilities of each position by studying a k+1-set closely.
• 1: Run discard phase O(log n) times, find “max-ineligible alternatives”
• 2: Can then pad choice set and run a “noisy max” with (max, min, fail)

outcomes instead of (max, min) outcomes as in (Feige et al. 1994).

• O(1) queries estimate probabilities, O(n log n) queries in discard
algorithm, O(n log n) queries to sort.

• Need to book-keep many failure probabilities, but straight forward.

(⇡1, ...,⇡k)`

b

a
c

d

a dc

b
f(S) = b

Query complexity: passive, fixed
• Passive query model: Poisson process where each k-set enters 

the stream with equal rate α.
• See a given k-set in interval [0,T] with probability pT.
• How long an interval [0,T] do we need to observe stream?

• Phase 1: use queries in [0,T1], with T1 large enough so that  
all items except ineligible alternatives are chosen.

• Phase 2: Simulate pairwise comparisons using queries where k-2 of
the elements are ineligible.

Query complexity: passive, fixed
• Passive query model: Poisson process where each k-set enters 

the stream with equal rate α.
• See a given k-set in interval [0,T] with probability pT.
• How long an interval [0,T] do we need to observe stream?

• Phase 1: use queries in [0,T1], with T1 large enough so that  
all items except ineligible alternatives are chosen.

• Phase 2: Simulate pairwise comparisons using queries where k-2 of
the elements are ineligible.

• For Phase 2 to work, need pT to be O(log n loglog n / n). End up  
seeing ~log(n)/n fraction of all (n choose k) choice sets.

• For k≥3, proof only works for positions 1<ℓ<k, not ℓ=1 or ℓ=k, 
which breaks our analysis (pT ↛ 0).

https://en.wikipedia.org/wiki/%E2%86%9B

Fixed Mixed

Active Two-phase algorithm 
O(n log n)

 
No new difficulties  

O(n log n) 

Passive Streaming model  
O(nk-1 log n loglog n) ?

Query complexity, k-set choices
• Sorting results translated to position-selection functions:

• Immediate questions:
• Better algo for passive stream; “sorting in one noisy round”;  

higher-dim comparison functions; distance-comparison.  
 

Distance-comparison-based choice
• Distance-comparison-based functions  

are comparison functions on the  
set of pairwise distances. a

b

c

Distance-comparison-based choice
• Distance-comparison-based functions  

are comparison functions on the  
set of pairwise distances.

• Distance-comparison vs. comparison functions are quite different.

comparisondistance  
comparison

a

b

c

Distance-comparison-based choice
• Distance-comparison-based functions  

are comparison functions on the  
set of pairwise distances.

• Distance-comparison vs. comparison functions are quite different.

• Comparison functions:
• Can not express similarity (only order)

• Distance-comparison functions:
• Can not maximize or minimize (distances are all internal to set)

comparisondistance  
comparison

a

b

c

1D median

Distance-comparison-based choice
• Distance-comparison-based functions  

are comparison functions on the  
set of pairwise distances.

• Paper poses many questions about distance-comparison,  
few answers.

• Related to open learning questions for:
• Crowd median algorithm [Heikinheimo-Ukkonen 2013]
• Stochastic triplet embedding [Van Der Maaten-Weinberger 2012]
• Crowdsourced clustering [Vinayak-Hassibi 2016]
• Metric embedding [Schultz-Joachims 2004].

a

b

c

Summary
• Inference for comparison-based functions generally not more difficult  

than sorting.
• Active vs. passive, fixed vs. mixed query complexity frameworks.

• Open questions:
• Results for high-dim (EBA?), distance-comparison, RUMs.
• Learning/non-static agents?

• Other recent work:
• [Benson et al. WWW’16] “On the relevance of irrelevant alternatives”
• [Ugander-Ragain, NIPS’16] Markov chain model generalizing BTL/MNL, can violate IIA.
• [Maystre-Grossglauser ICML’17] For BTL with ~uniform quality, log5(n) independent

Quicksorts recover exact rank for almost all items.
• [Peysakhovich-Ugander NetEcon’17] Machine learning adaptation of the Simonson-

Tversky model for contextual utility.

