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ECONOMIC THEORY OF DEPLETABLE RESOURCES: 
AN INTRODUCTION

I. BACKGROUND

A. A Classification of Resources
One can think of a two-way classification of natural resources, based on 1) physical properties of the
resource and 2) the time scale of the relevant adjustment processes.  

Based on physical characteristics, we can divide resources into biological, non-energy mineral, energy,
and environmental resources.   Each of these categories could be broken down further if useful for
purposes of analysis or information collection.  As examples, biological resources would include fish,

wild animals, flowers, whales, insects, and most agricultural products.  Non-energy minerals could
include gold, iron ore, salt, or soil.  Energy would include solar radiation, wood used for burning, and
natural gas.  Environmental resources could include air, water, forests, the ozone layer, or a virgin
wilderness.

Based on the time scale of the relevant adjustment processes, we can also classify resources as
expendable, renewable, or depletable.  Depletable resources are those whose adjustment speed is so
slow that we can meaningfully model them as made available once and only once by nature.  Crude oil
or natural gas deposits provide prototypical examples, but a virgin wilderness, an endangered species,
or top soil also can well be viewed as depletable resources.  Renewable resources adjust more rapidly
so that they are self renewing within a time scale important for economic decisionmaking.  But actions in
one time period which alter the stock of the resource can be expected to have consequences in

subsequent time periods.   For example, populations of fish or wild animals can well be viewed as
renewable as can be water in reservoirs or in many ground water deposits.  Expendable resources are
those whose adjustment speed is so fast that impacts on the resource in one time period have little or no
effects in subsequent periods.  For example, noise pollution and particulates in the air, solar radiation,
as well as much agricultural production can be thought of as expendable.  

Although there is a correlation between the physical properties and the time scale of adjustment, the
correlation is far from perfect.  Table 1 illustrates the two-way categorization, giving examples of
resources based on both classifications. Each physical class of resources includes examples of each
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adjustment speed.  For example, while most non-energy mineral resources can be viewed as
depletable, salt evaporated from the San Francisco Bay can be viewed as expendable since the
cordoning off of an area of seawater has no perceptible impact on the total availability of seawater in
the Bay.  Energy resources include solar radiation (expendable), hydropower and wood (renewable),
and petroleum (depletable).

Volumes I and II of the Handbook of Energy and Natural Resource Economics deal with the
economics of renewable and environmental resources, including biological resources.  Volume III
focuses attention on depletable resources and energy resources.  While particular attention is given to
desirable, depletable, energy resources in Volume III, we focus attention on the bottom row --
depletable resources -- and on the third column -- energy resources.

This chapter focuses on the bottom row, providing an introduction to the economic theory of depletable
resources.  The introduction is designed to make accessible fundamental theoretical models of
depletable resource supply and of market equilibrium and to provide the reader with an understanding
of basic methods underlying the theory.  It is meant to present theoretical economic models in a self
contained document and to provide a background useful for the papers that follow.  
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Table 1
Natural Resource Examples

BIOLOGICAL NON-ENERGY 

MINERAL  

ENERGY ENVIRONMENTAL

EXPENDABLE Most Agricultural

Products

   Corn 

   Grains

Salt Solar Radiation

Hydropower 

Ethanol

Noise Pollution

Non-Persistent: 

   Air Pollution

        (NOx, SOx,

        Particulates)

   Water Pollution      

RENEWABLE Forest Products

Fish

Livestock

Harvested Wild

   Animals

Wood

Whales

Flowers

Insects

Wood for burning

Hydropower

Geothermal

Ground Water

Air

Persistent:

   Air Pollution 

   Water Pollution:

      Carbon Dioxide

      Toxics

Animal Populations

Forests

DEPLETABLE Endangered Species Most Minerals   

   Gold   

   Iron Ore   

   Bauxite  

   Salt

Top Soil

Petroleum

Natural Gas

Coal

Uranium

Oil Shale

Virgin Wilderness 

Ozone Layer

Water in Some

     Aquifers
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(1)
(2)
(3)
(4)

B. The Depletability Concept

The depletable resources indicated in Table 1 all have adjustment speeds so slow that we can think of
them as made available once and only once by nature.  Their consumptive2 use can be allocated over
time, but once they are used up, they are gone forever, or for such a long time that the possibility of

their eventual renewal has no current economic significance.  In particular, there initially exists some
stock (or stocks) of the resource in various deposits.  As the resource in a given deposit is used, stock
declines.  The greater the consumptive use, the more rapid the decline in remaining resource stock.  No
processes increase the stock in any deposit, although the number of deposits available for use could
increase.  If stock ever declines to zero, then no further use is possible and for some positive stock
level, further use may be uneconomic.  These characteristics will be taken to define depletable
resources.

Definition:  Depletable Resource.  A resource is depletable if 1) its stock decreases over time
whenever the resource is being used,  2) the stock never increases over time,  3) the rate of
stock decrease is a monotonically increasing function of the rate of resource use, and 4) no
use is possible without a positive stock.

Let St denote stock at the end of time period t for the particular deposit and let Et denote the quantity of
the resource extracted from that deposit during time period t.  Et  is generally be referred to as the
"extraction rate", but its units are physical quantities, such as tons or barrels, and not physical quantities
per unit of time.  Then the depletable resource definition implies the following relationships in a discrete
time model:

Several examples can illustrate the underlying concept.   A deposit of natural gas or oil many remain

under the ground with its stock unchanged until the resource is discovered.  Then as it is extracted, the
stock declines at the rate of one Btu3 for every Btu of natural gas or oil extracted from the deposit.  In
this case, h(Et) = Et.  However, if oil is extracted very rapidly, some is left trapped in the mineral media
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and that oil cannot be extracted.  Thus the resource available for extraction may decline by more than
one Btu for each Btu extracted.  In this case, h(Et) > Et.  If extraction stops, the stock will remain
constant, unless there is some leakage from the deposit, in which case the stock will continue to decline. 
Once there is nothing left in the deposit, no more can be extracted.  However, it may become virtually
impossible to extract any more of the stock once the pressure driving the resource to the well declines
enough, that is, once stock is below some critical level.  

A virgin wilderness can remain unspoiled forever, absent human intervention, although its precise
composition will change over time.  We can consider many different uses of the resource, only some of
which would be the consumptive use envisioned under the definition above.  At one extreme of non-
consumptive use, small groups can backpack through the wilderness, having no more impact than that
of grazing deer.  At the other extreme of consumptive use, the forest can be clear cut for timber.  It is

the latter type of activity -- consumptive use -- that would be considered "use" under the depletable
resource definition.  The greater the area that was used by clear cutting in each decade, the less the
remaining stock of virgin wilderness, and the more rapid the rate of stock decrease.  

Top soil may be eroded as a result of agricultural activity and differing crops may lead to differing rates
of top soil erosion from cultivated lands.  In this case we may have a vector of agricultural activities, Et,
with the amount of annual erosion as a complex function of this vector of activities.  The function h(Et)
would indicate the amount of top soil eroded away as a function of this vector of agricultural activities. 
The variable St would measure the remaining quantity of top soil remaining at the end of time t.

Note that none of these examples, in fact, none of the resources characterized as depletable in Table 1,
perfectly meets the definition, but that each approximately meets it.  Oil and natural gas are derived
from the transformation of organic material underground.  This process continues today, so that strictly,

the stock of oil in some locations is increasing, although at an infinitesimally small rate.  Leakage from a
deposit may involve migration to another deposit, which then may be increasing over time.  If we were
to harvest a virgin forest but then allowed the land to remain undisturbed for 10,000 years, the forest
would revert to a virgin state.  We can reinject natural gas back into a well and thereby increase stock
of natural gas in that deposit.  Thus the definition must be viewed as a mathematical abstraction, but an
abstraction that approximates many situations so closely that it is a useful analytical construct.4

For most analysis, we will not require as much generality as allowed in (2) and (3).  In particular, it will
normally be appropriate to assume that every unit of the resource extracted reduces the remaining stock
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(5)

(6)

by a single unit.   We will refer to such an assumption as "linear stock dynamics".  Although the
assumption of linear stock dynamics is not always valid, most insights from depletable resource theory
can be developed without requiring the greater generality allowed in (2) and (3).  

Assumption:  Linear Stock Dynamics:
The stock is reduced by one unit for every unit of the resource extracted.  This reduction is
independent of the rate of extraction and of the remaining stock:

Under the assumption of linear stock dynamics, equations (1), (2) and (3) translate to:

Equations (1) through (4) describe the most fundamental constraints underlying a theory of depletable
resources.  In addition, linear stock dynamics will be assumed, so that equation (5) will be used as a
more specific form of relationships (1) through (3).  Therefore, equations  (4) and (5) will provide the
fundamental mathematical constraints underlying depletable resource theory in this chapter.

Under the assumption of linear dynamics, equations (4) and (5) can be combined to imply a simple
form of the depletability condition.  Equation (6) will always hold, but includes less information than
obtainable from equations  (4) and (5).

The total extraction of the resource over all time can be no larger than the initial stock of that resource,
or more generally, the total extraction of that resource over all time beginning from an arbitrary starting

point can be no greater than the stock remaining at that starting point.  

Each equation presented above has assumed a  discrete time representation.  We will use such discrete
time representations throughout this chapter, although a continuous time formulation could be utilized, as
in most published theoretical literature.  Continuous time formulations can be seen as discrete time
formulations in which the length of each time interval converges to zero.  As such all equations
presented in this chapter can be readily translated to their continuous time counterparts.  Our discrete
time models can have arbitrarily short intervals, so no loss of generality is entailed by using discrete time
representations.  And whenever empirical work is conducted or computational models are constructed,
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discrete time formulations are the only ones possible.  In addition, discrete time models allow the
analyst to avoid some mathematical subtleties of infinite dimensional spaces at points required by
continuous time market models.   For these reason we have chosen to use discrete time
representations.

Even though a discrete time representation is used, we can envision an underlying continuous time
model such that the discrete time variables are equal to integrals of the corresponding continuous time
variables.  Let the continuous time extraction rate be denoted by g(t) and let the length of each time
interval be denoted by L. Then the discrete time extraction rate, Et and the g(t) would be related:

Et will be roughly proportional to L, in the sense that if each interval were partioned into smaller
intervals, the sum of the Et over these smaller intervals would equal the original Et.

For the underlying continuous time model, let stock be denoted by S or by S(t).  Then equation (5)
would become:
Other variables and functions to be presented can be related to underlying continuous time models in a
like manner.  At a later point we will show that the existence of an underlying continuous time model
imposes constraints on the functions in the discrete time model.

For depletable resources such as energy and other mineral resources, there is a typical sequence of

activities, each governed by economic considerations.  Initially there may be preliminary exploration of
a broad geological area and later of specific tracts.  At some point  the land may be offered for leasing,
perhaps through a competitive bidding process.  After a period of more focused exploration the deposit
may be discovered.  Only then can extraction begin.  Further activities may be devoted to delineating
the extent of the resource and these activities may lead to further discoveries.  The resource, once
extracted, is then transported to some location for further processing and then to final users.   Some
resources might be recycled for further rounds of processing and consumption.
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The timing and magnitude of each process is governed by human decisions and typically by economic
forces.   But the amount and quality of the deposit discovered and ultimately extracted are constrained
by the natural endowment. Thus the basic patterns of depletable resource use are governed by an
interplay of economic forces and natural constraints.

The combination of processes can be very complex.  Yet economic models of depletable resources --
including those discussed in this chapter -- typically abstract away from most processes and focus
attention on the elements in the definition:  the rate of use (extraction) of the resource and the resultant
change in the quantity of the resource stock.  This abstraction allows insights about the economic
forces, insights which may not be available from more detailed analyses.  But the abstraction does
present a fairly bare bones image of a complex set of processes, an image which could well be usefully
expanded.  For example, Harris, in this volume, brings in a richer understanding of the interplay

between physical constraints and human choices.

Depletable resource theory typically addresses several broad classes of questions, either in a normative
manner ("should") or in a positive manner ("would") for a particular set of economic conditions:

Should a specific resource ever be extracted?  Would it under competitive markets?
How much of that resource should or would ultimately be extracted?
What would be the timing of extraction with competitive markets?
What would be market price pattern over time under competitive forces?
What timing of extraction should be best for society as a whole?
How do market determined and socially optimal rates compare?

Can we expect overuse, underuse, or correct use with competitive markets?  Under
monopolistic conditions?

How would various market changes -- higher interest rates, changed expectations, varying

market structures, taxes -- change patterns of extraction?
What is the nature of the supply function for depletable resources?

This chapter will address positive questions in the context of a sequence of depletable resource models. 
Heal addresses normative questions in a separate chapter.  

Section II presents a sequences of models of extraction from one resource stock when prices are
exogenously determined.  Section III presents intertemporal market equilibrium conditions and analyzes
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(7)

markets in which prices are determined endogenously from the interplay of supply and demand. 
Finally, Section IV provides concluding thoughts.

II. EXTRACTION WITH PRICES DETERMINED EXOGENOUSLY

The simplest depletable resource models are those applicable to the competitive owner of a resource
stock as that owner chooses the time path of its extraction.  We address such models in this section. 
We assume that the firm takes selling prices of the extracted commodity as fixed in the marketplace, not
influenced by his or her actions.  These prices may be varying over time but their future path is assumed
to be known with certainty.   Although the assumption of uncertainty is very strong, particularly when
we consider the long term future evolution of economic parameters, we will not address uncertainty per
se within this chapter.

A. General Problem Formulation

1. Objective and Constraints

If Pt and Et represent price and extraction rate at time t, the revenue at time t (Rt) obtained from selling
the extracted commodity is a linear function of extraction rate:

Total cost incurred by the resource owner during a time period will depend upon total extraction during
that period, perhaps upon the stock remaining from the last period, and on time:  Ct(Et,St-1).  We will
assume that this time dependant cost function will be known to the resource owner with perfect

certainty.

Given revenue and cost functions plus constraints defined by resource depletability, the resource owner
will be assumed to choose a time path of extraction so as to maximize present value of profit. 
Equivalently, the owner is assumed to select an extraction path so as to maximize the deposit value,
where value is determined as a discounted present value of revenues minus costs.  For our analysis we
will assume a finite time horizon of T, where T is arbitrarily long5.  If A denotes discounted present
value of profit, the firm faces the following maximization problem, where r represents the instantaneous
interest rate facing the owner of the resource deposit:
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(9)

2. Characteristics of the Discrete Time Cost Function

The cost function in such a discrete time model should in principle be derivable as the integral of cost in
an underlying continuous time representation.  Let g(g((),S(()) be the underlying continuous time cost
function.  Then the discrete time cost function will be the minimum feasible integral of cost6 over the

interval from t to t+L, given that total extraction is Et and stock at t is St-1:

The discrete time cost function depends on properties of g(g((), S(()), and on L, St-1, and Et.  

Properties of Ct(Et,St-1) must derive from the optimization problem (9).  First, Ct(Et,St-1) must be

roughly proportional to L in the sense that if the interval L were partitioned into N intervals, the N costs
must add to the value of the original Ct(Et,St-1).

The existence of an underlying continuous time representation implies restrictions on the partial
derivatives of allowable discrete time cost functions.  Consider first the partial derivative of cost with
respect to initial stock7:

(8)



11
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(11)

where Mg/MS is evaluated at some point between t and t+L.  The partial derivative of cost with respect
to initial stock must be approximately proportional to the length of the underlying time interval and must
have the same sign as does Mg/MS.

The existence of an underlying continuous time representation imposes more rigid restrictions on the
marginal extraction cost, MCt/MEt.  As Et varies, the instantaneous extraction rates, g((), must vary so
that their sum remains equal to Et.  MCt/MEt then is the integral of the changes in costs associated with
the changes in the g((), accounting for the changes in S(() induced by the changes in g(().  Because
Ct(Et,St-1) is defined as the result of an optimization, the impact on total cost for a small increase in g(()
will be the same for all (.  Thus, in order to assess the integral, we can evaluate the marginal cost of a
change in instantaneous extraction rates at any time, including at ( = t.  Evaluating at ( = t, the partial
derivative MCt/MEt is thus:

Equation (10) is derived more rigorously in the Appendix.  

By equation (10), marginal cost of extraction during a discrete interval consists of two components. 
The first, Mg/Mg, is simply the additional cost directly associated with additional extraction at t.  The
second term captures the incremental cost of lower stock for the rest of the interval, associated with
more extraction at the beginning of the period.

The second term in equation (10) is identically equal to the derivative of cost with respect to initial
stock.  Thus equation (10) can be combined with the previous equation to show:

where where   Mg/ Mg   is evaluated at   (  =  t.

Equation (11) imposes an important restriction on the specification of a discrete time cost function.  The
restriction must hold even if no analogous restrictions exist for the underlying continuous cost function. 

Thus in using discrete time models, it is important to recognize that continuous time underlying cost
functions do not translate precisely to discrete time cost functions having the same functional form, and
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that not all cost functions appropriate for a continuous time model are also appropriate for a discrete
time model.

Equation (11) can be differentiated with respect to Et in order to derive an expression relating second
partial derivatives:

Expression (12) implies that the derivative of marginal cost with respect to extraction rate will be the
sum of two effects.  Increasing total extraction during the interval (Et) increases the instantaneous
extraction rate for all time, including at t, and an increase in instantaneous extraction rate increases

marginal cost (the right hand side of equation (12)).  Thus the right hand side of equation is positive.  In
addition, increasing extraction rate at the beginning of the time period reduces stock during the
remainder of the period.  This stock reduction further increases marginal cost if M2C/MSME is negative
(on the left hand side of equation (12)).

Many discrete time models improperly start with a discrete time cost function without so restricting its
properties.  For this chapter, however, we will always assume that the discrete cost function is
consistent with the existence of an underlying continuous cost function and will thus always assume that
equations (11) and (12) will be valid8.

Assumption:  Dominance of extraction rate on marginal cost.
Marginal cost is more sensitive to extraction rate than to stock level:

M2Ct /MEt
2   >  - M2Ct/MEtMSt-1   

Even meeting the necessary restrictions, the cost function in problem (8) could have many different

characteristics.   The marginal cost of extraction (MCt/ MEt) could be decreasing, constant, or increasing

in extraction rate.  Similarly, the marginal extraction cost and the total cost could be increasing or
decreasing in remaining stock or it could be independent of stock remaining from the last period.  The
characteristics of the optimal solution will depend upon which of these combinations is appropriate for a
given problem.



13

Much depletable resource literature assumes that the cost function at each time is independent of the
remaining stock of the resource.  The initial works by Hotelling and by Grey assumed, in addition, that
marginal extraction cost was independent of extraction rate.  And this set of assumptions has been
followed by many researchers.   Other work maintains the assumption that the extraction cost function
is independent of the remaining stock but assumes that the marginal extraction cost is an increasing
function of extraction rate.  

Alternatively, one might assume that marginal extraction costs do vary with remaining stock.  Typically
one might expect marginal extraction cost to increase as the resource is depleted.  This relationship
could hold for physical reasons.  For example, as oil or natural gas deposits are depleted, the driving
pressure in the deposit declines and extraction rates decline.  Reestablishing the previous extraction rate
could be very costly.  In addition,  it will typically be optimal to extract high quality low cost portions of

deposits before low quality, higher cost grades9.  In that case, the smaller the remaining stock, the
higher the unit extraction costs.  

But the reverse situation can occur, at least in early stages of extraction.  The extraction process itself
can lead to technological improvements which reduce extraction costs.  This "learning by doing"
phenomenon would imply that for a range of stock levels, the lower the stock, the lower the marginal
cost. 

Another common approach reflects these possibilities in a simple way.  Marginal extraction cost of the
underlying continuous time cost function might be assumed to depend on remaining stock, but not on
extraction rate.   Total cost would be linear in extraction rate for the underlying continuous time model. 
However, these linearity assumptions for a continuous time model lead to a discrete time model in
which marginal extraction cost is an increasing function of extraction rate and a decreasing function of

the remaining stock. 

Total extraction cost could be an increasing or decreasing function of remaining stock independent of
whether marginal cost increased or decreased with stock.  For example, subsidence of land overlying
an aquifer may be a function of the stock of water in the aquifer and not a function of the extraction
rate.  Total environmental costs associated with clear cutting a virgin forest depend upon the amount of
the forest which has been clear cut although the marginal costs of additional harvest may be virtually
independent of the remaining stock.  The costs of global climate change may depend upon the
cumulative extraction of fossil fuels and thus upon the remaining stock.  
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In this chapter, we do not seek full generality.  Although we will examine several different derivatives of
total cost with respect to stock and several different derivatives of marginal costs with respect to stock,
we will always assume that the cost function is weakly convex in its arguments.  Therefore the second
order conditions for optimality will be satisfied, the set of optimal choices must be convex, and multiple
local unconnected optima cannot exist10. 

Assumption: Weak convexity.  We assume that the cost function is weakly convex.

A function is weakly convex if and only if  the Hessian matrix  -- the matrix of second partial derivatives
-- is positive semidefinite at every point.  A matrix is positive semidefinite if and only if its principal
minor determinants are all positive or zero.   The principal minor determinants of the Hessian matrix 
from the cost function are: M2Ct/MEt

2, M2Ct/MSt-1
2, and [M2Ct/MEt

2   M2Ct/MSt-1
2] - [M2Ct/MEtMSt-1]2, all of

which must be non-negative everywhere, given the convexity assumption.

With this background, we can now turn to simplified versions of these models, versions useful for
deriving insight into the behavior of optimizing suppliers of depletable resources.  We will examine
various cost assumptions in turn, starting with models in which extraction rate is independent of
remaining stock.  We will discuss the Hotelling assumption that marginal cost is independent of both
stock and extraction rate as a special case of the more general model in which marginal cost in non-
decreasing in extraction rate.  We will only then turn to models in which remaining stock influences
marginal extraction cost.

B. Optimizing Models Without Stock Effects

A fundamental distinction among depletable resource models is whether the remaining stock influences
cost of extraction from a given deposit.  The initial stock may typically influence the cost structure. 
However, the distinction is whether current extraction decisions influence future costs through their
impacts on stock remaining at those future times.  We will refer to such impacts as "stock effects".

In this section we deal with models in which there are no stock effects:  in which the remaining stock
has no influence on extraction costs.  

Assumption:  No Stock Effects
The remaining stock does not appear as an argument in the cost function.
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(13)

(M)

(KT)

Under the assumption that total (and marginal) extraction cost is independent of the remaining stock of
the resource, problem (8) reduces to problem (13):

Several different optimization methods can be used to solve problem (13).  In what follows we use the
Kuhn-Tucker conditions to develop first order necessary conditions for optimality.  In addition, we
show that the same conditions can be obtained in a more insightful manner by examining feasible
variations from the optimal path.

1. Necessary Conditions for Optimality: Kuhn-Tucker Conditions
a. Kuhn-Tucker Theorem
The Kuhn-Tucker theorem aids solution of constrained optimization problems by providing first order
necessary conditions for optimality11.  Consider the optimization problem:

where x is a vector of variables to be selected, f(x) is the objective function, and Gi(x) is one of k

inequality constraints on the components of x.  Let x* denote the optimum value of the x vector and let
LGi(x*) denote the gradient of Gi(x) evaluated at x*.  Number the constraints so that constraints 1
through n are binding, where n #  k.  The constraint qualification will be said to hold if the set of
gradients LGi(x*), for i = 1,....,n is linearly independent.

Kuhn-Tucker Theorem.  Assume that the constraint qualification holds at x*.  If x* solves
problem (M) then there exists a set of dual variables 8 i for i = 1,...,k, such that:
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(CS)

and the complementary slackness conditions hold for every i:

The Kuhn-Tucker condition is necessary for optimality.  In one special case, corresponding to the
weak convexity assumption, the condition is necessary and sufficient:

Kuhn-Tucker Sufficiency Condition:  Suppose that f(x) is a concave function and Gi(x) is a
convex function for all i.  If x* is a feasible point and if we can find dual variables which satisfy
(KT) and (CS), then x* solves the maximization problem (M).

Lagrange multipliers can be thought of as a convenient mnemonic for using the Kuhn-Tucker theorem. 
Define the Lagrangian as:

Necessary conditions for interior optimality can be obtained by finding the stationary point of the
Lagrangian, the point at which the gradient of the Lagrangian, with respect to the vector x, is equal to
zero.

At the optimal point, x*, condition (KT) is satisfied.  Then as long as condition (CS) is satisfied as well,
the necessary conditions for optimality are met.  Thus Lagrange multipliers can be seen as providing a

convenient method for using the Kuhn-Tucker theorem. 

b. Optimality Conditions for Depletable Resources without Stock Effects

Necessary conditions for interior point optimality can be obtained by finding the stationary point of the
Lagrangian formed from problem (13).  A dual variable is defined for each constraint in the optimization
problem.  The depletability condition, equation (5), defines one constraint for and thus requires one dual
variable for each t.  The dual variable for the constraint at time t will be denoted by  8t.  We will use
standard economic interpretations of dual variables;  as such we will often refer to 8t as the present
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(14)

value shadow price or as present value opportunity cost.  In addition, the constraint that ST $ 0  leads
to a dual variable, to be denoted as :.

In order to use the Kuhn-Tucker theorem we must assure that the constraint qualification holds:  that
the set of gradients L[St - St-1 - Et] is linearly independent.  Linear independence in this system is easily
established, since the derivative with respect to Et is equal to 1 for the tth constraint and 0 for all other
constraints.  Thus no gradient can be expressed as a linear combination of the other gradients12.  Since
the constraint qualification is satisfied, the Kuhn-Tucker theorem can be used.

Denoting the Lagrangian by ‹ we can convert problem (13) to the following unconstrained optimization
problem. 

The Kuhn-Tucker theorem shows that at the optimal point, the Lagrangian must be a stationary point
with respect to each St and each Et.  Differentiating ‹ with respect to each variable gives the first order
necessary conditions:

These equations show that the present value shadow price is time independent for models in which
extraction cost does not depend on the remaining stock.  Therefore we can drop the time index from 8t



18

(19)

(15)

(16)

and denote 8 as the present value shadow price.   Combining these equations gives the fundamental
first order necessary conditions for optimality:

The right-hand-side of equation (15) consist of two terms:  the marginal extraction cost plus the current
value opportunity cost.  Thus extraction rate in a competitive depletable resource market is chosen so
that marginal cost plus the current value opportunity cost equals the price; price exceeds marginal

extraction cost. 

At some points it will be convenient to denote the current value opportunity cost as Nt, where:

Since present value opportunity cost is independent of time, current value opportunity cost grows at the
interest rate for models without stock effects.

Equation (16) shows that unless the entire stock is depleted within the time horizon, the opportunity cost
is zero for models with no stock effects.   In that case, price equals marginal cost, the identical condition
to that for a competitive producer of a conventional commodity.   
The Kuhn-Tucker conditions in this case are sufficient as well as necessary for optimality.  If Ct(Et) is a

convex function, then -Ct(Et) is a concave function and the objective function in problem (13) is a
concave function.  The constraints are linear and therefore define a convex feasible set.  Thus the Kuhn-
Tucker sufficiency condition is satisfied and the extraction path that satisfies equations (15) and (16) is
the optimal path.  

Since we assume no stock effects, the cost function is convex as long as the following second order
condition holds for all extraction rates:
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Figure 1
Optimal Extraction Rate for 8  Fixed

As long as marginal cost is a non-decreasing function of extraction rate at the optimal point, first order
necessary conditions for optimality are sufficient conditions as well. 

The optimal choice of extraction rate for opportunity cost fixed, based on equation (15),  is
diagrammed in Figure 1.  Optimal extraction rate occurs where marginal cost plus opportunity cost
equals price of the extracted commodity.   

In Figure 1, because marginal cost is an increasing function of extraction rate, the higher the opportunity
cost or the marginal cost function, the lower the optimal extraction rate.  The higher the price, all else
equal, the higher the optimal extraction rate.
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Figure 2
Choice of 8 for Optimal Extraction Path

Figure 2 diagrams the choice of 8 as determined by equation (16).  The upward sloping line is the

stock of the resource remaining at the time horizon if equation (15) alone governed the extraction rate
and if the non-negativity condition of problem (13) could be violated.  The higher the opportunity cost,
the lower the extraction rate at every time period, as illustrated in Figure 1.  Thus the higher the
opportunity cost, the greater the resource stock remaining at the time horizon (ST).  For a high enough
8, there would be no extraction at any time and the final stock would be identical to the initial stock, as
illustrated in Figure 2.  For a low enough 8, the non-negativity condition would be violated:  ST would
be negative.  The value of  8 at the optimal extraction trajectory is that value which just equates ST to
zero (unless for all positive values of 8,  ST remains positive, in which case 8 is reduced to zero.)  Note
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that the optimal value of 8 depends on the initial stock of the resource, the prices over time of the
extracted commodity, and the marginal cost functions at each time period.

Figures 1 and 2, taken together, provide the key diagrammatic tools for analyzing the optimal extraction
trajectories for depletable resources absent stock effects.  These tools illustrate the fundamental ideas
from depletable resource theory:

! Optimal extraction at any time requires the inclusion of an opportunity cost in addition to the

out-of-pocket marginal extraction costs.
! Opportunity cost may be influenced by past, present, and future conditions and reflects the

incremental revenue or cost implications of additional extraction.

The concept of opportunity cost here is perhaps the most fundamental organizing concept for
depletable resource economics, a concept which will pervade this chapter as it has much of depletable
resource literature.
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(18)

2. Necessary Conditions for Optimality: Feasible Variations

The identical necessary conditions can be derived from a calculus of variations approach by recognizing
that at an optimal solution, no feasible variation can increase the value of A.   Infinitesimally small
feasible variations around the optimal solution can be postulated and these variations must lead to non-
positive changes in A.  That exercise will provide a set of necessary conditions that characterize the
optimal choice, conditions which will be identical to equations (15) and (16).

Under problem (13), from any feasible solution, including the optimal one, it is possible to increase
extraction at some t.  Iif the deposit would ultimately be fully depleted, it would be necessary to
compensate by decreasing extraction by an identical amount at some other time, J, at which extraction

is positive.  Let these variations be denoted as *Et and *EJ, where:

By totally differentiating the objective function in problem (13), we can examine impacts on A of the
extraction changes.  If the trajectory is optimal, this combination of feasible variations must not increase
A. 

The inequality must hold no matter what the sign of *Et and *EJ, as long as *Et = -*EJ.  Therefore, it
follows that equation (18) must hold for any values of t and J as long as extraction rate is positive at
both times:

Equation (18) shows that a necessary condition for optimality is that the present value of price minus
marginal cost must be identical at each moment in time.  If this were not true, a feasible variation which
increased extraction at one period and decreased it equivalently at another could increase the present
value of profits13.  We will interpret the right-hand side of equation (18) as the present value
opportunity cost of extracting a unit of the resource at any other time, and we will denote this present
value opportunity cost as 8.
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(19)

(20)

If both sides of equation (18) are multiplied by ert, we obtain an equation equivalent to equation (15).

The opportunity cost in equation (19) reflects the complete depletion of the resource:  if the resource
ultimately would be totally depleted, then a decision to extract more of the resource at some time
implies the absolute necessity to reduce extraction by an equivalent amount at some other time, either
earlier or later.  That necessity gives rise to an opportunity cost for additional extraction, equal to the
discounted present value of the price minus the marginal cost of extracting resources at that other time.  
   

If the resource would ultimately not be totally depleted, then opportunity cost would be zero.  This
result can be seen by postulating an increase or decrease in extraction at one time period, say t, but not
at any other time.  Without total depletion, either variation would be feasible.  If the original trajectory
were optimal, neither variation could increase present value of profit and the right hand side of equation
(18) would equal zero:  there would be no opportunity cost.  Equation (20), which is equivalent to
equation (16), expresses this result:

Either Lagrange multipliers or direct application of feasible variations gives identical necessary
conditions for optimality.  The first method is mathematically more efficient, but the second more fully
shows the role of 8 the opportunity cost.  In subsequent sections of this chapter the Kuhn-Tucker
conditions are used.  However, in general, analysis of feasible variations will remain possible

throughout.

The basic necessary conditions for optimality and the properties of optimal trajectories can be analyzed
more once we more fully postulate properties of the cost function.  We do so in what follows.

3. Solutions for the Hotelling case of Fixed Marginal Costs

We now turn to the simplest of the cases, that underlying the original works by Gray and by Hotelling. 
The assumption here is that the marginal extraction cost depends neither on extraction rate nor on
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(21)

remaining stock.  While that assumption will greatly simplify the optimal choices, it should be recognized
that this Hotelling assumption is very restrictive.

Assumption:  Hotelling Cost:
Extraction costs are independent of remaining stock; marginal extraction costs are
independent of the extraction rate.  

We will denote the marginal cost of extraction under the Hotelling cost assumption as ct, a parameter
which may vary with time.  Then equation (21) reduces to:
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Figure 3
Optimal Extraction:  Hotelling Cost Assumption

Equation (21) defines an optimal extraction rate that is zero if price is smaller than or equal to the
marginal cost plus opportunity cost and is indeterminate for price equal to the fixed marginal cost plus

opportunity cost.  Price never exceeds marginal cost plus opportunity cost. This relationship is
diagrammed in Figure 3.

Present value opportunity cost, 8, is determined using equation (16), which implies that price can never
exceed ct +  8 ert.  If price ever were to exceed ct +  8 ert, extraction would be infinite at that time and
ST would become minus infinity, a violation of equation (16).  Thus 8 must equal the maximum value
(over time) of  [Pt - ct ] e-rt, as long as that maximum value is non-negative.  If the maximum value of 
[Pt - ct ] e-rt is negative, then 8 = 0 and no extraction ever occurs.  
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Under the Hotelling cost assumption, extraction can occur only when price is rising on a path denoted
by the Hotelling rule:  Pt =  ct +  8 ert, at which time extraction rate is indeterminate.  If price were to
rise more rapidly during a time interval, it would be less profitable to extract during the interval than to
wait until its end.  If price were to rise more slowly, it would be more profitable to extract everything at
the beginning of that interval than during it.  

The Hotelling cost assumption leads naturally to a capital theory interpretation of the optimal extraction
rule.  By equation (21), present value (to time 0) of per unit revenue net of costs is just 8, independent
of the extraction timing.  Therefore the market value at time 0 of the entire resource deposit must be just
equal to 8 S0.  If the optimal extraction rate is zero, then the value of the resource must be growing at
the interest rate:  the owner is earning returns from the investment through its capital gains, rather than
through cash flows.  In addition, the cash flows from extraction would be smaller than the value of the

resource left in place.  
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Figure 4
Supply as a Function of Pt - Nt:  Two Cases

When price is following the Hotelling rule (Pt = Ct +  8 ert ), the value per unit of the resource is just
equal to per unit revenue net of extraction cost:  Pt -  ct.  The resource owner is indifferent between
extracting the resource and still holding it.  Capital gains would equal the normal rate of return on
investment so that the value of the entire resource stock continues to grow at the interest rate.

Once the commodity price permanently stops following the Hotelling rule, and future prices promise to
be below the Hotelling rule prices, the value of the resource at future times (t) will be less than  8 ert S0. 
Therefore, if he or she kept the unextracted resource, the owner would no longer receive a normal rate
of return on invested capital and it would be optimal to extract any remaining quantities of the resource.
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Although the Hotelling case is analytically very tractible, its rigid cost assumptions make this case less
useful than more general cases for explaining of predicting depletable resource markets.  We now turn
to characteristics of supply functions for more general cost functions.

4. Depletable Resource Supply Functions

In much microeconomic theory, the supply function for a commodity can be written as a static function
of price, with higher current prices implying higher optimal output.  Although, in principle, future prices
might influence current decisions, typically future prices are not seen as important arguments of the
supply function.

For depletable resources, however, the quantity supplied at any time must be a function of prices at that
time and prices and costs at all future times.  Thus static supply functions, so typical in most economic

analysis, are inconsistent with optimal extraction of depletable resources.

Although extraction at any time depends on future, as well as present, prices and costs, all information
about the role of future prices and costs is embodied in a single unobservable variable:  the opportunity
cost, Nt.  Opportunity cost itself is dependent on the remaining stock and all future prices, or
equivalently, on initial stock and on all past, present, and future prices.  Therefore we can specify a
supply function analogous to conventional supply functions, with the argument of the function Pt - Nt,
rather than Pt. In principle this supply function is similar to a supply functions for conventional
commodities except that Nt is unobservable and is itself a function of other prices.

Such a supply function is plotted in Figure 4 for Hotelling costs and more normal, increasing marginal
cost cases.  For either cost assumption optimal extraction is an increasing function of  Pt - Nt, but the
character of the supply curves differs greatly between these situations.  For the Hotelling case, small

variations in  Pt - Nt can change optimal extraction from zero to an arbitrarily large rate.  With
increasing marginal cost of extraction, the optimal extraction rate increases continuously with increases
in  Pt - Nt, and can converge to some maximum level with capacity constraints or other factors limiting
supply.

5. An Example

The analysis can be illustrated with a specific example of quadratic costs, an example which is easily
solvable:
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This cost function gives optimal extraction rate as a function of price and opportunity cost:

For our analysis we will adopt the time invariance assumption: price remains constant over time and the
terminal time is very far in the future.  We drop the t subscript on price.

Let J be the last time that 8 ert  <  P.  Then we can calculate SJ as a function of 8:

If 8 > 0, then SJ = 0.  We obtain one equation and a pair of inequalities that can be solved
simultaneously to determine J, and 8:

For very short L, we can approximate these equations to find a single equation for J:

This set of conditions makes 8 an increasing function and J a decreasing function of price.  Increases in

M or in S0 lead to decreases in 8 and increases in J.  

 We turn now to more general properties of solutions for more general cases.

6. Optimal Trajectories: Characteristics and Comparative Dynamics

The models can be used to examine characteristics of the optimal extraction path for a depletable
resource governed by problem (13).  We will present several examples to illustrate methods of analysis
and conclusions that can be derived from use of these models.   All of the examples maintain the no-
stock-effects and the linear stock dynamics assumptions.
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a. Extraction path under time invariant conditions.

Over a long history, many depletable resource prices have remained roughly constant or have fluctuated
randomly.  Thus it may be rational for the purposes of planning for the owner of a depletable resource
stock to assume that future conditions will remain the same as current conditions.  

Since both cost and prices remain constant, prices never follow a Hotelling path.  Therefore, under the
Hotelling cost assumption, the entire deposit will be extracted as soon as possible:  equations (21) and
(16) imply that extraction can only occur at the first moment. 

With increasing marginal costs, the resource deposit will be extracted over time, with the greatest
extraction in the first period and with extraction rates that decline from one period to the next.  This
conclusion stems directly from equation (15) and can be illustrated using Figure 4.  Optimal extraction is

an increasing function of Pt - 8 ert, for a given cost function.  Since price remains constant, Pt - 8 ert

must decline from one time period to the next.  With an unchanging cost function, extraction rate must
decline over time.

b. The role of technological progress
Technological progress can lead over time to reductions in the cost function.  If the firm anticipates
reductions, that anticipation can influence extraction rates, including at times before the cost reduction
occurs.  It is possible for extraction to be small and increase over time, before it ultimately declined. 
This conclusion follows directly from equation (15).   Although Pt - 8 ert must decline over time,
because the cost function itself decreases, the extraction rate could either increase or decrease,
depending upon the relative rates of change of the cost function and of its argument.

c. The role of price expectations

Expectations about future conditions may not remain stationary.  Changes in technologies which
substitute for depletable resources or which are complementary to their use can change market demand
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Figure 5
Impact of Expected Future Price Increases on 8

functions and thus can change prices facing an individual resource owner.  Changes in the tax regime or
in the international political situation can likewise influence prices.  Here we examine the case in which

current prices remain unchanged currently but in which beliefs about future prices do change.  Such
changes in expectations will lead to changes in current extraction patterns.  Here we assume that those
expectations turn out to be accurate, although the predicted alterations in current actions do not depend
upon whether the changed beliefs are ultimately found to be correct or mistaken.  

For this analysis, we assume that after some future time, J, in the new situation all prices will be higher
than they were in the old situation:
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Figure 6
Impact of Increased 8 on Early Year Extraction Rate

We can analyze this case in three steps.  First we examine how changed price expectations would

change ST, for 8 unchanged.  Based on this impact, we examine changes in 8.  Finally, based on

changes in 8, we examine impacts on current extraction decisions.

Equation (15) shows that if 8 were to remain unchanged, extraction would increase for all time greater
than J but would remain unchanged for all earlier time.  If extraction increases, stock remaining at time
T would decrease.  But either final stock or opportunity cost must be equal to zero (Equation (16)); an

increase in 8 is needed to bring ST down to zero.  This set of changes is illustrated by the downward 

shift in the curve in Figure 5.
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For times before J, the change in price expectations increases opportunity cost but impacts no other
elements of equation (16).  For these early times optimal extraction must decline as a result of the
changed expectations.  This impact is illustrated in Figure 6.

For t > J, both opportunity cost and price increase.  Therefore whether optimal extraction increases or

decreases depends upon the sign of net changes in Pt - 8 ert.  However, 8 must increase just enough

that the reductions in extraction before J must just equal (in total) the net increases in extraction after J.

d. Impacts of excise taxes

Natural resource taxation is used a source of revenue by governments around the world.  Such taxes
have many forms, including ad valorem taxes and fixed magnitude excise taxes.  Here we assume that
a local taxing authority imposes an excise tax on the producer of a depletable resource.  

We first assume that a tax of X per unit of extraction is rationally believed to be time invariant once it is
imposed.  This tax is assumed to have no impact on the pre-tax sales price so that the net price
obtained by the resource owner for the extracted commodity is reduced by exactly the amount of the
tax.

The tax would necessarily reduce the opportunity cost of extracting the resource.  Thus by equation

(15), extraction at time t will increase, decrease, or remain constant, depending on whether X +  8N ert

is smaller than, greater than, or equal to 8 ert, where  8N  and 8 are the present value opportunity costs

after and before the tax, respectively.  

Since X is time invariant, in early years X +  8N ert will be larger than 8 ert and the extraction rate will

decrease.  (Remember that 8N  <  8.)  However, in later years the decline in the opportunity cost will be

the dominant factor ( X +  8N ert <  8 ert) and extraction will increase14.
  
The net result of a time invariant excise tax is to move extraction of depletable resources from the

present, to the future and to promote greater conservation of natural resources. 

We next assume that the excise tax is not time invariant.  In particular, we assume that it is rationally
expected to grow over time at just the interest rate, r, so that the present value of the tax is equal to X
at each time.  If the tax is not too large, it will have no effect on the pattern of extraction over time.  The
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same analysis will show that if the tax grows at a rate faster than r, the tax will cause resource owners to
extract more rapidly than they would absent the tax.

As in the previous excise tax example, this tax will lead to a reduction in the present value opportunity

cost.  At time t extraction will increase, decrease, or remain constant, depending on whether X ert +  8N

ert is smaller than, greater than, or equal to 8 ert.   This relationship implies that extraction will increase,

decrease, or remain constant if  [X +  8N - 8] ert  is smaller than, greater than, or equal to zero. 

Although the magnitude of  [X +  8N - 8]  ert changes over time, its sign does not, so that extraction

must increase for all t, decrease for all t, or stay unchanged for all t.  The first two possibilities would

lead to a violation of equation (16);  the third, which would occur if  [X +  8N - 8] =  0, would not lead

to a violation.  Therefore, if the current value opportunity cost would decrease by an amount exactly

equal to the excise tax, (- [ 8N - 8] = X), all equations would be satisfied.  Therefore extraction would
be the same with and without the excise tax.

For large enough X, the tax will reduce extraction at all times.  If the tax rate were greater than the initial

opportunity cost (X > 8), then  - [ 8N - 8] < X.  The decline in the opportunity cost would be smaller

than the tax because 8N could not become negative.  If the tax rate were larger than the pre-tax
opportunity cost, then extraction would decline for each time and the resource would not be fully
extracted within the time horizon.

A similar analysis for more rapidly growing taxes shows that the opportunity cost would decline as a
result of the tax and would decline by more than the tax in earlier years.  Because the tax would grow
faster than the current value opportunity cost (more precisely, than the difference between the pre-tax
and post-tax current value opportunity cost), in later years the relative magnitudes would be reversed. 

Therefore in early years, extraction would increase;  in later years extraction would decline as a result of
the rapidly growing excise tax.

e. The role of environmental externalities

In their chapter within this Handbook, Krautkraemer and Kolstadt discuss environmental externalities
associated with depletable resource extraction and use and examine biases of market determined
resource extraction patterns from the socially optimal rates.  Among the externalities they examine are
those whose costs depend upon the rate of extraction of depletable resources.  Here we analyze an
optimizing resource owner to examine the impact on extraction rates of motivating owners to internalize
externalities.
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Assume that the marginal environmental damage per unit of resource extraction is Dt and that the policy
environment is changed so that while originally the resource deposit owner could ignore the
environmental externality, now the owner now must bear the entire environmental cost.  In the changed
situation the net price received by the owner would be decreased by Dt.  
Since internalization of the externality influences the net price in exactly the same manner as would a
time dependent tax equal to Dt,  results of the previous section can be used directly.  If the present
value of Dt declines over time, a internalization leads to less extraction in early years and more in later
years.  As a result of this intertemporal shift, the discounted present value of the environmental damages
over the deposit life would be reduced.  The individual resource owner who internalizes environmental
consequences shifts those consequences, along with resource extraction, to a later time.  

The converse is true if the present value of Dt grows.  Then internalization of the externalities leads the

resource owner to extract more rapidly than would otherwise be the case.  This shift moves the
externalities to an earlier time but also decreases their discounted present value. 

f. The role of national security externalities
The final example is motivated by energy policy issues, although it could be applicable to imports of
other strategic materials.  Often raised in energy policy debates is the idea that energy security can be
improved by extracting more resources domestically and importing fewer extracted commodities.  For
more background, see the chapter by Toman in this  Handbook.  Here we assume that there is a
national benefit Bt per unit of additional resource extracted at time t.  If all prices are otherwise correct,
would the individually optimizing owner extract too rapidly or too slowly from a socially optimal
perspective?

The result, is identical to those discussed above.  If  the present value of Bt declines over time,  the

socially optimal extraction rate will exceed the privately optimal rate.  The optimizing owner will extract
less in early years and more in later years than socially optimal.  Conversely,  if the present value of Bt is
expected to grow, then social optimality would require a reduction in the extraction rate.  
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g. The role of the interest rate

A long standing concern in the depletable resources literature relates to biases in the interest rate.  It
seems generally agreed that if the interest rate used by the owners of depletable resources is higher than
the social discount rate, resource owners will extract more rapidly than is socially optimal, and will
therefore leave smaller stocks of depletable resources for the future (See, for example, Solow, 1974). 
Although the debate about the appropriate social rate of discount continues (See Lind for a discussion),
generally interest rates used by corporations can be expected to exceed the socially optimal rates, if for
no other reason, because of taxation of corporate profits.  Thus the standard analysis concludes that
high interest rates do provide an impetus for extracting depletable resources more rapidly than
otherwise.  Here we examine implications of high interest rates for extraction from a given deposit.  We
argue that the standard conclusion is correct if costs are unchanged by interest rates.  However, if the
cost function is increased by the higher interest rates, then high interest rates can well be expected to

reduce extraction rates.

This analysis proceeds similarly to previous discussions for costs unchanged by the interest rate. 
Assume that in the new situation the interest rate (rN) is higher than the interest rate in the old one (r) but
that all prices and costs remain the same between the two cases.

Higher interest rates increase the current value opportunity cost for all future time if 8  were to remain

constant.  Therefore, with 8 unchanged, by equation (15), higher interest rates would lead to lower

extraction rates at every time and would thereby decrease ST.  But for equation (16) to remain valid,8 

would necessarily decrease: 8N < 8 .  

By equation (15), the net effects on the extraction path would depend upon the net changes in the

current value opportunity cost, since no other factors would be altered.   For early times, 8N erNt  <  8 ert

and ENt  > Et:  the extraction rate would increase as a result of the higher interest rate.  At some point

the more rapidly growing exponential factor would lead to a reversal of the inequalities:  8N erNt  >   8 ert. 
From that point on, extraction would be lower, reflecting the reduced size of the remaining resource
stock. 

For fixed cost functions, higher interest rates lead to more extraction in earlier years.  This can be
understood in terms of the capital theory discussion.  The resource left in the ground is analogous to a
capital investment, in that preserving the deposit involves forgoing current income in the expectation of
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earning greater future income.  Higher interest rates imply that less investment is economically attractive
and more of the resource is extracted in early years.

But there is a second impact of higher interest rates.  For many depletable resources, capital costs are a
large portion of the total and marginal costs.  And the rental cost of capital increases with the interest
rate.  Thus high interest rates imply higher extraction costs.  We have just shown that increases in unit
cost (e.g. taxes or internalized externalities) reduce the depletion rate, as long as the magnitude of the
cost increase declines in present value.  

Increases in the interest rate therefore lead to two countervailing forces.  By increasing the growth rate
of the opportunity cost, such interest rate increases move extraction forward in time;  by increasing the
extraction cost, they move extraction backward in time.  In principle either effect could dominate and

one could have a non-monotonic relationship between interest rate and the extraction rate, as has been
demonstrated by Jacobsen.  

Which force dominates will depend upon the relative changes in the marginal cost function and in the
opportunity cost.  If the marginal cost function (evaluated at the initial extraction rate) is increased by
more than the initial opportunity cost is decreased, increases in the interest rate will lead to reductions in
the initial extraction rate, and vice versa.  Thus if the initial opportunity cost is smaller than the increase
in marginal cost, changes in marginal cost must always dominate; higher interest rates will imply lower
initial extraction rates.  This may well be the situation for U.S. oil and gas extraction.  Only when the
opportunity cost is a large fraction of price, as may well be the case for much Middle Eastern oil
production, or when interest rates have very little impact on marginal costs, will higher interest rates
imply more rapid extraction.   

h. In summary

In summary, environmental, national security, or other externalities of depletable resource extraction can
be expected to alter the extraction patterns over time.  Similarly changes in expected prices or
variations in the interest rate can impact these patterns.  The directional impacts of interest rate
variations will depend upon the magnitude of change in the cost function relative to change in the initial
opportunity cost.  The direction of impacts of the other variations will depend both on the sign of the
externality or other variation and on the growth or decline of the present value of that change.  For
depletable resources, information about changing current conditions is not sufficient in itself to predict
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(22)

alterations in supply patterns.  Rather changes in current conditions relative to changes in future
circumstances must be examined in order to analyze changes in optimal current actions.

The need for a future information and the central role of the opportunity cost will remain relevant for
more general models of depletable resource extraction.  We turn now in our sequence of depletable
resource models to the more general models in which the extraction costs may depend on the remaining
stock of the resource. 

C. Optimizing Models With Stock Effects

Extraction costs could depend upon remaining stock in several possible ways.  When most of the
original stock becomes depleted, total and marginal extraction costs will increase based upon physical
difficulties of extracting remaining quantities.  In addition, lower stock may increase costs independent
of the extraction rate, as when reductions in remaining stock of water in an aquifer or intense mining
leads to subsidence of overlying land.  In addition, in earlier phases of resource extraction "learning by
doing" could decrease costs as experience with a deposit is gained.  If that experience is comes about
through extracting the resource, then costs can be modeled as declining endogenously with reductions in
remaining stock.

The general formulation has been presented as problem (8),  which we will use in what follows.  We
will use the Kuhn-Tucker conditions to derive necessary conditions for optimal extraction paths and will
discuss properties of the optimal extraction trajectories.  Under our maintained assumption that the cost
function is convex, the objective function for this problem is concave and the feasible set remains
convex.  Thus the first order necessary conditions for optimality will be sufficient conditions for
optimality as well.

1. Necessary Conditions for Optimality: Kuhn-Tucker Conditions

Denoting the Lagrangian by ‹ problem (8) can be converted to an unconstrained optimization: The
mathematics can be simplified by substituting Nt into the Lagrangian:
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(23)

(24)

(25)

(26)

The Lagrangian then becomes:

By the Kuhn-Tucker theorem, the first-order necessary conditions require that at the optimal point, the
Lagrangian must be a maximum point with respect to each St and each Et.  Differentiating ‹ with
respect to each variable gives first order necessary conditions:

These equations provide the fundamental first order necessary conditions for optimality:

Equations (5), (24), (25), and (26) collectively define the time paths of the current value opportunity

cost, extraction, and remaining stock.  Equation (24) determines extraction, given Nt.  Equations (5)

and (25) are difference equations governing the evolution of St and of Nt, respectively.  Equation (26)

provides one boundary condition (for stock or opportunity cost) at the final time period, while the
known value of S0 provides the boundary condition for stock at the initial time.  In principle these
equations can be solved to determine the trajectories of each variable over all time.
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(27)

(25')

Equation (24) is identical to equation (15).  The optimal extraction rate is the one at which the marginal
extraction cost plus the current value opportunity cost is equated to the price of the extracted
commodity.  The opportunity cost at any time is dependent on the prices and costs at all time, as

without stock effects.  Nt is evaluated at the optimal values of the extraction rates, as in the absence of
stock effects.  The solution to equation (24) has been illustrated graphically in Figure 1. 

The opportunity cost remains a central organizing concept even when stock effects are introduced. 

However, in contrast to models without stock effects, the present value shadow price is time dependent
for models in which extraction cost depends on remaining stock. The role of the opportunity cost does
not change here, although its dynamics does vary.

For ease of notation, it is valuable to define a one time period interest rate D, such that:

Then equation (25) can be written as:

Equation (25), which governs the dynamics of the current value opportunity cost,  generalizes the

relationships underlying the models without stock effects.  If MCt+1/MSt  =  0, equation (25) would
become:

The solution to this dynamic equation is:

where 8 is a constant. If MCt/MSt-1 = 0,  current value opportunity cost would grow at the interest rate
and these equations would be identical to those for models without stock effects.

When  MCt/MSt-1 <  0, the normal case, the current value opportunity cost may grow or shrink.  But if it

grows, its growth rate will be lower than r so that the present value opportunity cost must shrink.  If  
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MCt/MSt-1  >  0 (for example, with learning by doing), then the current value opportunity cost growth rate
is faster than r and the present value will increase over time.

Equation (26), which provides a boundary condition for the difference equation, is identical to equation
(16).  Both show that the current value opportunity cost is equal to zero at time T unless the stock is
totally depleted by the time horizon.  Positive final stock may well be the norm, not the exception for
depletable resources with stock effects.  In those situations in which final opportunity cost is zero, the

current value of opportunity cost must be shrinking, not growing, as the time horizon is reached. 

Although these equations can be solved in principle, in practice their solution typically involves
numerical simulations based upon explicit cost functions and price trajectories.  Such solutions generally
involve iterative procedures to guess the initial value of  the opportunity cost, to calculate the
adjustments of stock and opportunity cost to the time horizon, and to compare the final opportunity cost
and stock to the conditions required by equation (26).  If the final opportunity cost is too high, the initial
opportunity cost can be decreased for the next iteration and conversely if the final opportunity cost is
too low.  In this way iterative procedures can find explicit solutions, given explicit cost functions and
price trajectories.
 
For this chapter, however, we are more concerned with properties of the equations and solutions. 

Interpretation of the opportunity cost for depletable resources with stock effects will be the focus of the
following section.

2. Interpretations of Opportunity Costs

When stock effects exist, the concept of opportunity cost is no longer dependent upon absolute limits to
resource availability.  An opportunity cost will exist even if the resource is not ultimately depleted.  This
conclusion is in sharp contrast to results from models without stock effects.  In particular, the
opportunity cost can be interpreted as the present value (discounted to time t) of future cost increases
due to additional extraction at time t.   

To examine this interpretation of opportunity cost, consider a resource deposit that will not ultimately be

totally depleted.  For such a resource NT = 0, by equation (26), where T is the time horizon.  For such

a resource there is no absolute limit on availability;  the owner could extract more of the resource
without extracting less at another time. 
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(28)

(29)

(30)

To calculate the opportunity cost, we rearrange equation (25) and solve it recursively, beginning from t
= T-1 and working backward.  Rearranging gives:

The boundary condition NT = 0 allows equation (28) to be solved, at least conceptually.  The general

solution to this recursive equation gives the current value opportunity cost and the present value
opportunity cost as follows:

Equation (29) shows that the opportunity cost at time t is simply the present value, discounted to time t,
of future incremental costs accruing as a result of extracting one more unit of the resource at time t.  An

additional unit extraction at time t requires no compensating extraction reduction.  Yet it does lead to
one unit stock reduction for all subsequent times.  At time J, that stock reduction causes a cost change

of -  MCt/MSt-1.  The cost change is discounted by a factor e-r(J-t) to time t and by a factor e-rJ to time
zero.  Summing terms over all subsequent time gives the opportunity cost as being equal to the present
value of future costs stemming from additional current extraction, as shown in equations (29) and (30).

Equations (25) and (26) do provide for an opportunity cost component which derives from absolute

limits to resource extraction if the deposit ultimately is totally depleted.  This component rises at the
interest rate, just as in models without stock effects.  If the resource ultimately is totally depleted, the

final value of the opportunity cost can be positive, say equal to NT.  By equation (28), the opportunity

cost at time t will include a term equal to NT e-r(T-t).  If we choose a constant 8 equal to  NT e-rT, this

opportunity cost component would equal 8 ert, the same form as obtained in models without stock
effects15.



43

(31)

Because (25) is a linear equation, opportunity cost can be determined as the sum of the two separately
derived and conceptually separate components.  Therefore the total opportunity cost will be the present
value of incremental future costs [equation (29)] plus an exponentially rising term deriving from resource
limits.

Equations (29) or (31) may well give opportunity costs which are small initially, which rise over time as
the deposit is depleted, but then which ultimately decrease if the time horizon is ever approached.  This
pattern occurs if extraction costs are relatively insensitive to remaining stock when St is large but are
very sensitive to St as the deposit approaches an economic shutdown.  A limiting case would occur if

MCt/MSt = 0 for large stock.  Then during early years when stock is large, all non-zero terms on the

right-hand side of equation (29) would remain from one year to the next, and the discount factor would
be multiplied by er each year.  During this time, opportunity cost would grow annually at the interest

rate.  But once   MCt/MSt = 0 varied from zero, opportunity cost would stop growing at the interest rate

because the number of non-zero terms in the summation would decrease from year to year while those
that remained would grow at exactly the interest rate.  

In summary, opportunity cost for depletable resource deposits stems from two conceptually separate
phenomena.  Pure depletion leads to an opportunity cost which rises at the rate of interest.  But if
resource deposits are not fully depleted, but rather shut down due to economic conditions, then this
component is always zero.  The second component stems directly from stock effects.  If current
extraction leads to future costs through reduced future stock levels, then the discounted present value of
these additional costs is a component, and perhaps the only component of the opportunity cost.

3. Steady State Conditions

Without stock effects, steady state conditions were straight forward:  extraction stops when stock is
reduced to zero.  From that time onward there would be no further extraction.   For depletable
resources with stock effects, extraction likewise ceases in steady state, but the deposit need not be
totally depleted.  We explore here the steady stock level at which extraction permanently ceases.  To
so do we make the further assumption that the external conditions -- price, cost functions, interest rate,
are time invariant.  Furthermore, we assume that the time horizon T is so far in the distant future that it is
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(32)

(33)

irrelevant for current decisions.  Under these assumptions we can examine depletable resource steady
state conditions.

Assumption:  Time Invariance:
Prices, interest rate, and cost functions are independent of time.  The time horizon is so long
that its existence has virtually no impact on the optimal choices.    

Under the time invariance assumption, equations (24) and (25) or (25') can define a steady state stock
level at which opportunity cost remains constant, extraction stops, and stock remains constant.  Steady
state stock will depend upon prices, possibly the interest rate, and upon the cost function.  

In steady state, opportunity cost remains constant from one time period to the next.  Denoting steady

state opportunity cost as N̂:   N̂ = Nt = Nt+1.   By equation (25'):

where costs are evaluated at E=0, since in steady state all extraction ceases16.  Steady state opportunity

cost is the present value of a perpetual stream of incremental costs -MC/MS.  

This interpretation can make the time horizon condition in the assumption clear.  A stream of -MC/MS

for (T-t) years would have a discounted present value of N̂ [1 - e-r(T-t)].  However, for large enough
values of (T-t), this discounted present value can be made arbitrarily close to N̂.  The time horizon is
assumed to be distant enough that e-r(T-t) is virtually zero.
  
Combining equations (24) and (32) in steady state gives a condition defining steady state stock:
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Figure 7
Steady State and Final Equilibrium Stocks

Each term on the right hand side of equation (33) is evaluated at E = 0.  Since extraction rate is not a
variable for that equation,  steady state stock, Ŝ, is the only variable, and thus Ŝ can be determined

from equation (33).  Figure 7 illustrates equation (33).  The right hand side of equation (33) consists of
two terms, both typically decreasing functions of stock.  Ŝ is determined as that stock level at which
price is just equal to the marginal extraction cost plus the steady state opportunity cost, both evaluated
at zero extraction rate.

Equation (33) implies that the higher the price, the lower the steady state stock and the greater the
quantity extracted before steady state is reached, as easily seen in Figure 7.  
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Figure 7 identifies SM as that stock level for which marginal cost, evaluated at E=0, equals price.  If
stock exceed SM when time reaches T, then extraction will occur at the time horizon.  However, if total
cost is a decreasing function of stock at zero extraction, and hence N̂ > 0, then the steady state stock
exceeds SM.  In this case, a deposit may converge to steady state before the time horizon but may then
be reopened for extraction as time approaches the horizon.  Extraction may terminate and then be
reinitiated even with no change of price or cost function. 

In many circumstances, if there is no extraction, there will be zero cost or some fixed shutdown cost,
independent of the remaining stock.  For example, the costs to plug and abandon an oil or natural gas
well will typically not depend upon the amount of the resource remaining at the time of abandonment. 
In this situation N̂ = 0 and the two curves in Figure 7 would be identical.  Once extraction is halted, it
will remain stopped forever, unless prices or costs were to change over time.

But there are many situations in which N̂ > 0 because there remains a stock-dependent cost after all
extraction ceases.  These situations seem to be related to environmental consequences of resource
extraction or use.  For example, if a virgin forest is harvested, even after all harvesting has ceased, there
will be long-term environmental consequences.  The less forested area remaining, the higher the
environmental cost.  Similarly, the more coal is strip mined in a region, the higher the environmental
costs or the one-time restoration costs.  Subsidence of overlying land may occur as resources are
extracted and the amount of subsidence may depend upon the total stock of the resource ultimately
depleted.  The greater the cumulative use of carbon-based resources, the greater the accumulation of
CO2 in the atmosphere even after use of such fuels stops.  In such situations, MC/MS < 0 at E=0 and N̂
> 0.

In summary, the total resource quantity ultimately extracted will be less than the initial stock if marginal

extraction cost increases enough as stock declines toward zero.  If price does not correspondingly rise,
then economic shutdown will occur.  Stock remaining at economic shutdown will depend on the
marginal extraction cost (at E=0), the price of the extracted commodity, the magnitude of the stock
dependent environmental or other costs, and the interest rate.

We turn now to analysis of trajectories toward the steady state.
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(34)

(35)

4. Phase Diagrams for Dynamic Analysis

Under the time invariance assumption, phase diagrams provide convenient tools for comparative
dynamic analysis of adjustment toward the steady state as well as for comparative static analysis of the
steady state.  Phase diagrams can also be used to gain insights into analysis of markets with time varying
parameters.

A phase diagram is a graph in a space of S vs N, divided into four regions, based upon the directions of
movement of N and S.  Boundaries are defined by two loci:  (1) the locus of points at which E is just
reduced to zero and at which stock remains constant (the S-constant locus), and (2) the locus of points
at which N remains constant over time (the N-constant locus).   

The S-constant locus is defined by: 

Along or above the S-constant locus, S remains constant over time, while for lower values of N, E > 0
and stock declines over time17.  To the right of the N-constant locus (higher values of S), opportunity

cost increases over time, while to the left of that locus, opportunity cost decreases over time18.  Figure
8 illustrates such a phase diagram for depletable resources with stock effects.  The arrows indicate the
direction of movement of opportunity cost and stock.

In Figure 8, the S-constant locus slopes upward as long as MC/ME is a decreasing function of  S, as
normally be case absent learning by doing.  The S-constant locus slopes downward for those stock

levels at which MC2/MEMS < 0 as may be the case with learning by doing.

The N-constant locus is defined by:

where MC/MS is evaluated at the extraction rate consistent with the N defined in equation (35).  This

locus is downward sloping, as has been drawn in Figure 8, if MC2/MEMS < 0 (or not much greater than

zero)19.  This expression can be totally differentiated, recognizing that MC /MS depends on S and E,
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which itself depends on S and N, to calculate MN/MS as non-positive20 as long as M2C/MS ME  < D 
M2C/ME2.

Steady state of the system can be illustrated as that portion of the N-constant locus on which stock
remains constant.  The S-constant and the N-constant loci intersect at N̂, Ŝ.  Steady state of the system
can occur at any portion of the N-constant locus for which S # Ŝ.  At any such combinations of S and
N, extraction rate is zero, stock remains constant, as does opportunity cost.  For the time horizon

extremely far in the future (or infinite), the system either starts at one of these points (for S0 # Ŝ) or
converges to  N̂, Ŝ.  For S0 #  Ŝ, the resource is never extracted at all. 

Figure 8 has been drawn with steady state opportunity cost positive, under the assumption that there
exist environmental or other costs that lead to a positive incremental costs of reduced stock even after
extraction ceases.   Conversely, if MC/MS = 0 when E = 0, then the steady state would occur along the
horizontal axis, with N = 0.

The difference equations determining changes of N and S can be solved to give a unique optimal path of
stock and opportunity cost from any initial stock to the final state.  In the time invariant case, this unique
optimal path must converge to the steady state.  Under the time invariance assumption, the optimal
extraction rate and opportunity cost given stock must be independent of time and must be independent

of the initial stock.  This implies that for every S there is a unique N on its optimal extraction path,
independent of the history of  extraction.  Such a mapping from S to N defines a third locus of points in
the phase diagram:  the "convergent trajectory."  The convergent trajectory provides a closed loop
feedback control under the time invariance assumption in which:   (1)  N is a function of S,  (2)  E is a



49

Figure 8
Phase Diagram with Convergent Locus

function of N and S, and thus (3)  E is a function of S.  Figure 9 adds the convergent trajectory to the
phase diagram of Figure 8.  The convergent trajectory is indicated by the line with arrowheads

indicating the direction of convergence toward the steady state.  

For a finite time horizon problem, equation (26) determines conditions at the final time horizon.  At time
T, the final state of the system must be along either the horizontal or the vertical axis.  Figure 8 has been
drawn under the normal case in which the S-constant locus intersects the horizontal axis at some
positive stock, SM, the same SM as in Figure 7.  For a finite time horizon problem ST $ SM and NT =  0
(unless  the system starts with initial stock below SM.)  For the system to terminate on the horizontal
axis, the entire path of opportunity cost must lie below the convergent trajectory.  For any given stock,
opportunity cost will be smaller, extraction will be larger, and stock will decline more rapidly than in the
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Figure 9
Finite Time vs Infinite Time Trajectories

convergent trajectory.  This finite time horizon trajectory is illustrated in Figure 10.  For very long time
horizon, the actual path lies very close to the convergent trajectory and the system state remains very

near the steady state for many time periods.  Only as the time horizon is approached does the system
trajectory diverge from the convergent trajectory.

The preceding discussion and graphs assumed that marginal cost and total cost were both decreasing
functions of remaining stock at all stock levels.  However, in early phases of development of a deposit,
stock reductions may lead to reductions in costs rather than cost increases.  In this case the S-constant
locus may bend downward for high stock levels.  In addition, as S increases in the region in which
MC2/MEMS > 0, the slope of the S-constant locus approaches minus infinity.  This locus cuts through the
S axis to give negative values of N along the N-constant locus.  The locus  never slopes upward. 
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Figure 10
Phase Diagram with "Learning-by-Doing" 

Rather N gets negative enough and extraction rate gets positive enough that either M2C/ME2 increases so
that M2C/MSME  < D  M2C/ME2 everywhere on the N-constant locus or the locus does not exist for some

values of S.  A phase diagram for such "learning-by-doing" cost functions appears in Figure 11.

Figure 11 shows that the initial opportunity cost may be negative if learning-by doing is significant for
high stock levels.  In this case, the anticipation of future cost reductions would cause the firm to extract
more rapidly than it would absent the incentive to reduce future costs.

Phase diagrams are particularly valuable for examining comparative dynamics of the optimal
trajectories.  It is such analyses to which we now move, utilizing phase diagrams whenever the system is
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time invariant or can be treated as such.  Whenever the time invariance assumption is inappropriate, we
will use equations (24) through (26) directly.

5. An Example

The analysis can be illustrated with a specific numerical example, in which extraction costs are quadratic
in extraction rate and are inversely proportional to the remaining stock and that there is an
environmental cost that is zero if stock equals the initial level but which increases as stock is depleted:

The constant K is positive and the constant M is non-negative21.  The first term of the cost function is

homogeneous of degree 1 and thus is only weakly convex but the second term makes the cost function
strongly convex when M is positive.  It can be easily seen that the second derivatives with respect to
extraction rate and with respect to stock are both positive.  The determinant of the Hessian matrix is
always positive when M is positive and zero when M is zero.  The second cross partial derivatives are
negative.  When M is zero, this is a limiting case of a weakly convex cost function and in that case the
slopes of the S-constant locus and the N-constant locus will be also limiting cases of the slopes
discussed above.

Equation (24) can be solved to calculate the optimal extraction rate as a function of price and
opportunity cost:

This equation allows us to calculate the S-constant locus easily.  The S-constant locus is exactly equal

to price, independent of the remaining stock.  Stock remains constant if the opportunity cost is greater
than or equal to price and stock declines for lower values of the opportunity cost.  

Equation (25) can be rewritten based upon the optimal extraction rates:

Note that for this example, the evolution of the opportunity cost depends on the interest rate, price, cost
function, and remaining stock.  
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If we know the final time and the final value of the opportunity cost, these equations can always be
solved (at least numerically) starting from the last time period and working backward in time to
calculate the opportunity cost over time.  This calculation can be made even if prices vary over time.

For this part of our analysis we will adopt the time invariance assumption and treat the terminal time as
arbitrarily far in the future and assume that the price remains constant over time.  Therefore we can
drop the t subscript on price and focus attention on the convergent trajectory.  At a later point we will
return to this model in a time varying case.

The steady state opportunity cost can be calculated from the above equation by asking the value of N

that would make  Nt equal to Nt-1.  The resulting quadratic equation has a closed form solution:  

The N-constant locus is decreasing function of remaining stock and lies below the S-constant locus for
S  >  (M/DP)1/2.   In steady-state, extraction rate will be zero and stock will equal to (M/DP)1/2,  but it
would take infinite time to reach steady state.  In steady state,  N̂ = P.

Optimal extraction along the convergent trajectory can be calculated:

Along the convergent trajectory for very large stock or small value of M, both the stock and the
extraction rate decline approximately geometrically, with extraction rate a virtually fixed proportion of
remaining stock.  However, for smaller values of stock and/or larger values of M, the fraction of the
remaining stock extracted each period shrinks as S declines. The rate of extraction, and thus the rate of
geometric decline is an increasing function of both price and interest rate and a decreasing function of
the extraction cost.  For a finite but long distant time horizon, opportunity cost is slightly below that
calculated above and extraction rate is slightly above the rate calculated here. 

We turn now to more general properties of solutions for more general cases.
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6. Optimal Trajectories and Comparative Dynamics

The models can be used to examine characteristics of the optimal extraction path for a depletable
resource with stock effects.  We will present many of the same examples as examined previously to
illustrate methods of analysis and conclusions that can be derived.  In all the discussions that follow, we
assume that the initial stock exceeds Ŝ so that some extraction will occur.

a. Extraction path under time invariant conditions

The phase diagrams of Figure 9 or 11 can be used to illustrate the optimal trajectory.  In the optimal
trajectory, if the N-constant locus is downward sloping everywhere, the opportunity cost must begin in
the region in which N is increasing and S is decreasing over time and must converge to the crossing
point of these two loci22.  If the system began in any other region it could never converge to the steady

state.    

Characteristics of the time pattern of extraction are influenced by the derivative of marginal cost with
respect to stock.  In the absence of learning by doing or other phenomena which lead to positive values
of M2C/MEMS, extraction rate must decline over time; opportunity cost grows and as stock decreases,
marginal cost for any extraction rate must increase.  The basic pattern of extraction rates declining over
time is similar to the pattern absent stock effects.  

With learning by doing, two effects work in opposite directions: the rapid increase in the opportunity
cost implies declining extraction but the decline in the marginal extraction cost as stock declines would
have the opposite effect.  Either effect could dominate and the extraction rate could increase or
decrease over time.

b. Extraction path for prices varying: very long time horizon

When price varies over time, phase diagrams do not provide as decisive a conclusion as that outlined in
the previous section, even when M2C/MEMS < 0.   

If price is increasing over time, extraction rate may grow or decline, depending upon the increase of
price relative to the change in the opportunity cost.  For rapidly increasing price, extraction rate will
grow from one period to the next while for slowly increasing price, extraction rate will decline.
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If price declines from t-1 to t, the S-constant locus will shift upward and the N-constant locus
downward from t-1 to t.  Thus a decline in price could move the N-constant locus from above the
current value of N to below the current value, allowing a convergence to the steady state.  Thus an
essential part of the previous section's argument is not valid if prices ever decline.

However, if we add an assumption that -MC/MS is itself convex in extraction rate, maintaining
assumptions that any time horizon is far in the future, that M2C/MEMS < 0 for all stock levels, and that the
cost function is time invariant, we can establish that if Pt # Pt-t then Et < Et-1.  The maintained
assumption that the cost function is convex does not imply that -MC/MS is itself convex in E, unless
additional structure is imposed on the cost function.  For example, if the cost function is separable into
two multiplicative or additive factors, one dependant only on S and the other only on E, then cost
function convexity implies23 that -MC/MS is convex in E. With such additional assumptions declining

price implies a declining extraction rate. 

Assume then that -MC/MS is convex in E, that Pt # Pt-1, but that Et $ Et-1.  We will show that this leads
to a contradiction, thus implying that Et < Et-1.  By equation (24) if Pt #  Pt-1:

where the marginal costs on the right hand side are evaluated at St-2 and St-1 respectively.  The right-
hand side can be expanded, recognizing that St-2 - St-1  =  Et-1 and incorporating the dominance of
extraction rate on marginal cost assumption:

The derivative on the right hand side is evaluated at stock between St-2 and St-1 and extraction rate
between Et and Et-1.

A second limit can be placed on the change in the opportunity cost using equation (29) under the
assumption that the time horizon is very far in the future:
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The first derivative on the right hand side is evaluated at St-1 and Et while the second term is evaluated
at St-1 and at E = 0.  Under the assumption that -MC/MS is convex in E, this inequality becomes:

The two inequalities for the change in opportunity cost are inconsistent with one another.  Thus the
contradiction implies that whenever Pt # Pt-1, then Et < Et-1 for very long time horizon situations under
the assumptions outlined here.

c. Extraction path as time approaches the horizon

Results from the previous section cannot be generalized as time approaches teh horizon.  If the cost
function is time invariant, MC2/MSME < 0, and -MC/MS is convex in E, extraction rate can increase over
time even while prices are declining.  As time approaches the horizon, opportunity cost must decline

and may decline faster than price.  As stock declines, marginal cost of extraction from a given rate
increases.  If this marginal cost increase is not sufficient to compensate for the drop in opportunity cost,
extraction will grow over time.

This possibility is illustrated with calculations based upon the numeric example presented above.  We
use the cost function of our example, with S0 = 105 units, M =  1010, K = 103, and D = 0.1.   Price
begins at $10 per unit and declines by $0.1 per unit each year over 21 years.  Price and resulting



57

Figure 11Price, Opportunity Cost, and Extraction Rate Approaching Time Horizon

opportunity cost and extraction rate are plotted in Figure 12.  

Figure 12 shows that for this particular example, extraction rate increases over time, starting at the

lowest level and ending at its highest level, even in with price declining from one year to the next. 
Opportunity cost declines more rapidly than does the price, beginning at $8.75 per unit and ending in
year 21 at $0.  The rapid decline of the opportunity cost is the result of the large partial derivative of
cost with respect to stock, even with low extraction rates.

For this example, had prices been constant at P and had the time horizon been sufficiently far distant,
then extraction rate would have decreased over time, converging to zero as opportunity cost increased
towards P.  For the time horizon far in the future, Nt converges to P, while as time approaches the
horizon, the opportunity cost converges to zero.  
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Hence we see that it is quite possible for price movements and extraction rate movements to be
inversely related when the system approaches a time horizon:  declining prices may well be linked to
increasing outputs, a situation which makes empirical research very difficult.

d. The role of price

Assume that in the first case price was always P and in the second, was PN, where PN >  P.  Let *P =
PN -  P.  We examine here the comparative dynamics of the optimal extraction path.

First consider impacts on the steady state.  We can totally differentiate equations (24) and (32) in order
to determine impacts on the steady state stock and opportunity cost.  The extraction rate is zero in
steady state so that extraction rate is not treated as a variable in differentiating equations (24) and (32). 
We examine infinitesimal changes in P in order to determine the impacts on steady state stock and

opportunity costs.  For discrete changes, impacts can be integrated and properties of the infinitesimal
change will be preserved .

Totally differentiating equations (24) and (32) gives:

Combining these equations gives the impacts on steady state stock and opportunity cost:

The numerators of the right-hand side expressions are both positive and the first term in the
denominators is also positive.  We expect no learning by doing in steady state and therefore the second
term is also positive.  Thus we can determine the signs of the changes and can bound the magnitude of
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Figure 12
Phase Diagram with Increase in Price

the opportunity cost change.  These equations show that the steady state opportunity cost must be an
increasing function of price24.  This increase must be less than the price change.  The steady state stock,

Ŝ, must be smaller in the higher price case and a greater total amount of the resource must be extracted
before steady state is reached.

These changes can also be examined through analysis of the changes in the phase diagram. Equation
(24) implies that the S-constant locus would be shifted upward by the amount of the price increase. 
The form of equation (32) would be unchanged:  for any fixed value of stock and extraction rate, steady
state opportunity cost would be unchanged between the two cases.  Differentiating equations (24) and
(32) shows that N-constant locus must rise by an amount smaller than *P as long as marginal cost is a
decreasing function of remaining stock, a condition we expect at steady state.  The changes in
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(36)

opportunity cost and in steady state stock are those indicated in the equations above.  These shifts are
shown in Figure 13.

We now examine the impacts of higher prices on the convergent trajectory.  For those stock levels at
which marginal cost is a decreasing function of remaining stock, higher price leads to a higher
opportunity cost.  However for levels at which marginal cost is an increasing function of remaining
stock, we cannot assure that opportunity cost will decline with increases in price25.  However, as long
as the "dominance of extraction rate on marginal cost" assumption holds, the change in opportunity cost
must always be smaller than  *P.  These variations in the opportunity cost imply that the optimal
extraction for any given stock along the convergent trajectory is higher, the higher is the price of the
extracted commodity.

These results can be established by examining infinitesimally small changes.  Assume the converse:  that
for some S (at time t-1) the convergent trajectory is shifted upwards so that *Nt-1  $  *P.  Totally
differentiating equation (25) with respect to Nt and Et, for S fixed gives:

We can similarly differentiate equation (24) to obtain an expression for *Et:

These two equations can be combined to eliminate *Et:

By equation (36), if *Nt-1  $  *P, then *Nt  >  *P since the "dominance of extraction rate on marginal
cost" assumption (equation (12)) implies that the factor multiplying *Nt  -  *P must be positive.  In
addition, since *Nt  >  *P, stock must decline less (*St > 0).  Along the original convergent trajectory,
stock is declining and opportunity cost is increasing.  Therefore *St > 0 and *Nt  >  *P implies that the
new convergent trajectory would be shifted up beyond the initial trajectory by an amount greater than
*P at stock equal to St.  For the next period the same logic can be repeated.  Hence if the new
convergent trajectory is shifted above the initial one by an amount greater than *P at any stock level,
then it must be shifted up by an amount greater than *P for all lower stock levels.  However, in the
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steady state, the change in opportunity cost must be smaller than *P, a contradiction.  Thus the
trajectory cannot be shifted by greater than *P at any stock level.

Assume now that  *Nt-1 # 0 at some stock level.  We can rearrange terms in equation (36):

Equation (37) shows that if *Nt-1  # 0  and M2C/MSME < 0, then *Nt  < 0, under the "dominance of
extraction rate on marginal cost" assumption.  In addition, since *Nt  < 0 and *P > 0, stock must
decline more (*St < 0).  Along the original convergent trajectory, stock was declining and opportunity
cost was increasing.  Therefore *St < 0 and *Nt < 0 implies that the new convergent trajectory would
be shifted down below the initial trajectory at stock equal to St. For the next period the same logic can

be repeated if M2C/MSME < 0.  Hence if the new convergent trajectory is below the initial trajectory at
any stock level, then it must be shifted below for all lower stock levels, under the assumption that
M2C/MSME < 0 for all lower stock levels.  But since the convergent trajectory must shift upward at the
steady state, it can not be so shifted at any such stock level unless M2C/MSME  >  0 for some lower
stock level26.

In summary, the net result of a constant increase in price for all time is an increase in the extraction rate
from any stock level, to extract a greater total quantity, and to increase the steady state opportunity
cost.  Opportunity cost increases at all levels along the new convergent trajectory unless marginal cost
is an increasing function of remaining stock over some range of stock.

e. The role of price expectations
As we did for resources without stock effects, we here again examine the case in which the prices do

not change currently but in which beliefs about future prices do change.  Again we assume that after
some future time, J, in the new situation all prices will be higher than they were in the old situation.  We
identify three cases:

Low Price Case:



62

Figure 13
Optimal Trajectories for High, Low, and Changing Price Cases

 High Price Case: 

Changing Price Case:
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Both the low and the high price cases satisfy the time invariance assumption and the changing price case
maintains the time invariance assumption after time J.  The high and low price cases will provide upper
and lower bounds for the opportunity cost (as a function of remaining stock) for the changing price
case.  We will show that at times before J, the changing price case will exhibit lower extraction rates
than will either of the other cases.  Here again, expectations of changing prices will influence current
behavior.

Figure 14 displays the phase diagram.  In the low price case, steady state would be  N̂, Ŝ and the
convergent trajectory is the lower of the three in Figure 14.  In the high price case and in the changing
price case steady state is N̂', Ŝ'.

Before time J the changing price case convergent trajectory is always strictly above the low price case

convergent trajectory and is never as much as *P below the convergent trajectory in the high price
case.  This conclusion will be established in subsequent paragraphs. From time J and after, the
convergent trajectories in the high price case and in the changing price case are identical since all
conditions are identical after time J.

Equation (24) and the lower bounds on the opportunity cost imply that for times before J, extraction
will be lower in the changing price case than in either of the other cases.  Price in the changing price
case is the same as in the lower price case but the opportunity cost is strictly higher.  Price in the high
price case is *P larger than in the changing price case but the opportunity cost is increased by less than
*P;  hence extraction rate is higher in the high price case.  The net result is that extraction is reduced in
anticipation of the higher prices to come.  Stock declines less rapidly in the changing price case than in
either of the other two.

Equation (36) or (37) provides the basis for showing that the convergent trajectory for the changing
price case can never be below that for the low price case.  For times before J, equation (36) or (37)
show the evolution of *Nt, where *Nt is based on the variation from the low price to the changing price
case, recognizing that the variation in price before J between these two cases is zero.  These equations
become:
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Under the "dominance of extraction rate on marginal cost" assumption (equation (12)), the bracketed
factor on the left side of the equation is positive, as is (1+D).  Thus the sign of *Nt is the same that of
*Nt-1: if *Nt-1 # 0, then *Nt # 0.  But *Nt # 0 implies that *Et $ 0, so that *St # 0.  Along the original
convergent trajectory, stock was declining and opportunity cost was increasing.  Therefore *St # 0 and
*Nt  #  0 imply that the changing price case convergent trajectory could not be above the low price
trajectory at stock St either. The logic can be repeated for all lower stocks on the convergent trajectory
until time J. At time J opportunity cost could not lie above on the low price convergent trajectory and
therefore must lie below the high price convergent trajectory.  But at time J the convergent trajectory of
the changing price case must be identical to the convergent trajectory for the high price case, a
contradiction.  This contradiction implies that the changing price case convergent trajectory must always
lie above the low price case convergent trajectory. 

Similarly, we can use the same approach to show that the high price case convergent trajectory can
never be above the changing price case convergent trajectory by *P or more.  In equation (36) let *Nt

now refer to the difference in opportunity cost between the high price case convergent trajectory and
that for the changing price case.  This equation implies that if at any time t-1, *Nt-1 $ *P, then *Nt >
*P.  This implies that *Et < 0 and *St  > 0.  The combination of *Nt > *P and *St > 0 implies that at
St the high price convergent trajectory will also exceed the changing price convergent trajectory by
more than *P.  The logic applies for all future times and corresponding stock levels.  But we know that
at time J the convergent trajectory of the changing price case must be identical to the convergent
trajectory for the high price case, a contradiction.  Hence the opportunity cost on the convergent
trajectory for the high price case can never exceed the equivalent opportunity cost for the changing
price case by *P or more.

The results are similar to those obtained for models without stock effects.  For  times before J, the

change in expectations leads to an increase in opportunity cost but impacts no other elements of
equation (24).  Thus for these early times, optimal extraction for the given level of stock must decline as
a result of the changed expectations about future prices.  The effect would be very small for times long
before the anticipated price increase, since the opportunity cost would be raised only slightly. 
However, as the date of price increase becomes imminent, the effect would get larger and extraction
rates would be significantly reduced.  

f. The role of the price trajectory 
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(38)

(39)

This section relaxes the time invariance assumption, allowing prices and costs to vary over time, and
expands the questions addressed in the previous two sections.  We assume an increase in price both
now and in the future and examine the impact of such changes on extraction from a given stock.  We
will focus attention only on those price changes whose present value remains constant or declines over
time:  *Pt # (1+D) *Pt-1.  This restriction is in contrast to the previous analysis in which the expectation
of a very rapid price increase motivated extraction reductions in anticipation of the increase.  

Under these fairly general conditions, the optimizing trajectory for the high price case will lead to greater
extraction from a given stock than would occur with the lower price case.  These results will not
necessarily hold if the present value of price rises over time.

Equations (24) and (25) can be differentiated totally to give the relationships between changes in the

variables.  Differentiating equations (24) and (25) plus the depletability constraint of problem (8) gives:

These equations can be solved by eliminating *Et so as to show the evolution of *Nt - *Pt  and of *St

over time:

Equations (38) and (39) hold for any trajectory of price changes.  However, if we include the restriction
on the rate of price growth  --  *Pt #  (1+D) *Pt-1  --  equation (38) becomes:
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Under the "dominance of extraction rate on marginal cost" assumption, the factor multiplying [*Nt -
*Pt] is positive.  Cost function convexity implies the factors multiplying [*Nt-1 - *Pt-1] and *St must be
non-negative.  In equation (39), the factor multiplying *St-1 is positive and smaller than 1 and that
multiplying *Nt - *Pt is positive. Thus equations (38) and (39) imply:

These inequalities imply that if at any time in the high price situation (1) stock is increased or unchanged
and (2) the opportunity cost increase exceeds the price increase, then stock would always afterward be
increased and the change in opportunity cost would always exceed the price change.  At the initial time
S0 is unchanged by definition. Therefore by equation (24), both  [*N1 - *P1] and *S1 must be positive
or both must be negative.  Therefore if *N1 > *P1, then *S1 > 0, *Nt  >  *Pt, and *St  >  0 for all
subsequent time.

But if at the time horizon (no matter how far distant) stock and opportunity cost were both to increase
as a result of the price increase, equation (26) could not hold: both opportunity cost and stock would
be positive.  This contradiction shows that *N1 # *P1.  Furthermore, if the deposit were not ultimately
to be fully depleted, then the final opportunity cost would be zero:  it cannot increase, as would be
required if *N1 = *P1.  Therefore *N1 is strictly smaller than *P1 and the initial extraction rate must be

higher in the higher price case27.

As a result of the price increase, from any stock level, the firm would extract at a higher rate and would,
over time, have smaller stocks.  Smaller stocks would reduce optimal extraction rate from that which
would be optimal had past prices been lower and had more stock been left for future use.  Higher
prices would therefore move extraction toward the present from the future and would increase the total
amount of the resource ultimately extracted.  
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Figure 14
Impacts of Interest Rates on the Optimal Trajectory

g. The role of the interest rate

Under the time invariance assumption, the model implies that the higher the interest rate, the more rapid
the extraction from a given stock, again under the assumption that interest rates have no impact on
extraction costs. A demonstration follows.  It must be remembered, however, that interest rate
increases may also increase marginal extraction costs and that such cost increases can imply that the
higher the interest rate, the less rapid the extraction from a given stock. 

Equation (24) remains unchanged by the interest rate difference;  only equation (25) is altered.  This
variation shifts the N-constant trajectory downward in the high interest rate case and therefore leads to
lower steady state opportunity cost and lower steady state stock (unless the steady state opportunity
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(40)

(41)

cost is zero and then there is no change in these steady state variables).  These differences are
illustrated in the phase diagram of Figure 15. 

Mathematically, we can examine changes in the steady state by totally differentiating equations (24) and
(32) to give impacts on steady state stock and opportunity cost:

We turn now to the examination of the convergent trajectory, as illustrated in Figure 15 and show that
the convergent trajectory with high interest rates is always lower than the trajectory with low interest
rates.  The basic idea is that by equation (25), for a given stock and opportunity cost, with low interest
rates, opportunity cost will grow less rapidly than with higher interest rates.  Growing less rapidly, but
ending at a higher level, implies that the opportunity cost must always be higher in the low interest rate
case. 

Equations (24) and (25) plus the depletability constraint of problem (8) can be differentiated totally and
combined to give the relationships between changes in the variables from the initial situation.  We use
the same procedure as in the previous section to show:

Each of the factors multiplying *Nt, *Nt-1, and *St-1 must be positive.  If Nt-1 is positive (which will
always be the case absent learning by doing) the factor multiplying *D is also strictly positive.   This
leads to the condition:
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These inequalities imply that if at any time in the high interest rate situation both stock and opportunity
cost are increased or unchanged, then stock and opportunity cost would always afterward be
increased.  S0 is unchanged by definition. Therefore by equation (24), both *N1 and *S1 must be
positive or both must be negative.  Therefore if *N1 > 0, then *S1 > 0, and hence *Nt  > 0, and *St  > 
0 for all subsequent time.

But if at the final time (no matter how far distant) both stock and opportunity cost were both to be
increased as a result of the price increase, then equation (26) could not hold: both opportunity cost and
stock would be positive.  This contradiction shows that *N1 is strictly negative and the initial extraction

rate must be higher in the higher interest rate case28.

The net result of the interest rate increase then is that from any stock level, the firm would extract that
stock at a higher rate and would, as time goes on, be left with smaller stocks.  Over time, these smaller
stocks would reduce the optimal extraction rate from that which would be optimal had the interest been
lower and had more stock been left for future use.  Higher interest rates would therefore move
extraction toward the present from the future and would increase the total amount of the resource
ultimately extracted.  This result is similar to that obtained in the absence of stock effects.

h. The role of externalities
As discussed above, some environmental or national security externalities associated with depletable
resource extraction or use imply costs which depend upon the rate of depletable resource extraction. 
Since externalities imply a divergence between the price and the social value of the output, then the

results derived in previous sections for price changes can be used directly to analyze such externalities.

Other externalities, however, may be related to the stock of the resource extracted to date. 
Subsidence of land, the amount of carbon dioxide accumulation in the atmosphere, and some local
environmental impacts are more related to the total quantity of the resource extracted to date.   Here
we assume there are some environmental damages whose costs increase with the amount of the
resource extracted (and hence decrease with the amount of the resource remaining).  We will adopt the
assumption of time invariance in order to illustrate the results but the general conclusions can be
obtained for a more general case.
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This formulation implies that MC/MS is more negative when the externalities are internalized.  Such
impacts can be analyzed by use of equations (24) and (25), in which the only change is that for a given
value of N and S, the right hand side of equation (25) is reduced when externalities are incorporated. 

Figure 15 can be used to illustrate this situation as well as that of changed interest rates, modifying the
"Low r" label to "Internalize Externalities" and the "High r" label to "Ignore Externalities".  The N-
constant locus is increased when the stock related externality is internalized and therefore in steady state
the opportunity cost and the final stock are both increased.  Less of the resource is extracted
cumulatively over time.

The convergent trajectory is higher for all stock levels when externalities are internalized, as illustrated in
Figure 15.  This result can be established by assuming the opposite, that for some stock at some time

the opportunity cost is less when externalities are incorporated.  Then the opportunity cost will always
be less, contradicting the conclusion that in steady state the opportunity cost will be increased.  The
formal mathematical equations would be analogous to equations (40) and (41), except that the
externality (the change in  MC/MS) would appear in equation (40) in place of Nt-1 *D.

Higher opportunity costs imply lower extraction rates for a given stock level.  The net result of
internalizing stock related externalities is a reduction in the depletable resource extraction rate and a
decrease in the amount ultimately extracted.  This result is different from that obtained for flow-related
externalities.  When the externality depends on extraction rate rather than on stock, then the direction of
bias depends on whether the present value of the marginal external cost grows or declines.  If flow-
related externalities are small now but are expected to be large at a later time, then an incorporation of
external costs into decisionmaking would lead to more extraction in early years, avoiding those times in
which the marginal externality cost were large.  However, for stock related externalities this is not true. 

Internalization of any stock related externalities (for which marginal external costs are positive) will
result less rapid extraction of the depletable resource with smaller quantities ultimately extracted.

We turn now from analysis of individual deposits to analysis of depletable resources in a market
environment.

III. EXTRACTION WITH PRICES DETERMINED ENDOGENOUSLY
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The theory presented so far is directed toward the profit maximizing extraction trajectories of a single
resource or a group of resources operating in a competitive market.  In particular, each decisionmaker
correctly believes that his or her actions alone have no effect on the overall market price.  In the theory
presented in the previous sections we did not address the issue of the price determination and in
particular, the impact of resource extraction patterns on the prevailing prices.  

In this section, we address joint determination of prices and quantities in markets.   We first address
purely competitive markets and then turn to monopolistic markets.  More complex market structures
are not addressed here but are examined in the chapters by Newbery and Karp and by Teece and
Sunding. 

A. Competitive Equilibrium

The concept of competitive equilibrium for depletable resource markets is fundamentally identical to the
competitive equilibrium concept for conventional commodities.  Each firm and consumer is so small that
its input and output decisions can have no significant impact on the prices prevailing in the market. 
Market clearing occurs when the quantity supplied equals the quantity demanded in each market.  

In addition, however, markets are explicitly linked over time in that firms can substitute extraction

among time periods.  It is not meaningful to address a static concept of competitive equilibrium which
fails to recognize the essential intertemporal linkage through depletable resource supply.  Thus
competitive equilibrium for a depletable resource requires market clearing in each time period.  

Definition:  Competitive Equilibrium.  Competitive equilibrium is said to occur if each agent is
so small as to have no individual impact on prevailing prices and if for each time period the
quantity of the commodity extracted by all firms together is equal to the quantity of the
commodity demanded.

We define Ei
t as the quantity of the commodity extracted by the ith firm at time t.  Then the market

supply at time t, Qt, is equal to the summation of extraction quantities over all firms: 
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(44)

(45)

This market supply will be a function of all current and future commodity prices, current stocks
remaining in each resource deposit, cost functions for each deposit, and the interest rate.  The impacts
of these factors on the market supply function derives directly from the impacts discussed above for
individual deposits.

The market demand for the commodity will be represented by a conventional static demand function. 
Although demand can be analyzed more fully, as shown in the chapter authored by Jorgenson and
Wilcoxen and that authored by Slade, Kolstadt, and Weiner, we will adopt this fairly simple static
formulation in the remainder of this chapter.  We will denote QD(Pt,t) as the demand function at time t.
We will assume that QD(Pt,t) is a continuous decreasing function of price.

Competitive equilibrium is characterized by a sequence of prices over all time such that supply equals

demand at each t:

In most of our analysis it will be more convenient to use the inverse demand function P(Qt,t) to
determine market clearing price as a function of the market quantity supplied:

The inverse demand function is defined so that QD(P(Qt,t),t) = Qt for all values of Qt.  If market
demand is finite for Pt = 0, the inverse demand function is defined to be zero for all market quantities
greater than or equal to the market demand at zero price29.  

In competitive equilibrium, then, equations (15) and (16) or (24) through (26) must hold for each firm,

and equations (42) and (44) must link the firms to one another through a market.

Depletability of the resource immediately implies than in a competitive equilibrium there is an upper limit
on the cumulative quantity of the resource demanded over all time.  Summing equation (43) over time
gives:
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The right hand side of equation (45), SA, is the initial aggregate resource base.  Depletability of the
resource implies that the cumulative demand can be no larger than the initial aggregate resource base. 
For T arbitrarily large, the cumulative demand remains bounded above by the natural endowment of the
resource.  At some time as the resource is depleted, prices must increase enough to drive demand to
zero or demand functions must shift so as to reduce or eliminate demand without large price increases.  
For an infinite time horizon, price must ultimately increase enough for demand to converge to zero.

There may exist some price which reduces demand to zero.  In that case, there will always exist some
price trajectory for which inequality (45) holds.  We will refer to the price which just reduces demand
to zero as the "choke price", and denote it as PC

t.  Note that the choke price may itself be a function of
time.

The existence of a choke price can be related either to the demand function for the extracted
commodity or to the supply function for a perfect substitute.  On the demand side of the market,
consumers may be willing to forgo all use of a particular commodity or class of commodities if price
rises enough.  Dasgupta discusses such possibilities in his chapter within this volume.  Commodities can
be described as "essential" or "non-essential", depending upon whether demand can be driven to zero
at finite prices.  If a commodity is "non-essential", it will have a finite choke price.  

On the supply side, there may be technologies which allow large or unlimited quantities of a perfect or
virtually perfect substitute to be produced at some price.  Such "backstop technologies", as they have
been dubbed by Nordhaus, can assure the existence of a choke price, with choke price equal to the
average or marginal cost of the backstop technology.  Even essential commodities may have a choke
price if a backstop technology exists.

If no choke price exists, inequality (45) could still be satisfied, even for arbitrarily long time horizons, as
long as demand converges towards zero for high enough prices.  For this chapter, however, we will
assume that a choke price always exists, since such an assumption allows us to avoid mathematical
difficulties.  We will not differentiate between the two reasons for the existence of a choke price, but
will simply assume that the commodity is non-essential.  

Assumption:  Non-essential, static, continuous demand.  Market demand in each time will be
a continuous function of price at that time and will be independent of price at other times.  A
finite choke price will exist at each time. 
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1. Existence of Competitive Equilibrium

The first question is whether a competitive equilibrium exists at all.  Under our assumptions that cost
functions are convex and that a choke price exists, we can establish existence of a competitive
equilibrium.   

We start with markets for which all cost functions are strictly convex.  With strict convexity, each price
trajectory leads to a unique optimal extraction path for each deposit.  This extraction path is a
continuous function of the price trajectory.  For this situation we can use the Brouwer fixed point
theorem to establish the existence of a competitive equilibrium.  

A fixed point of a function f is a point x such that x = f(x).  The simplest fixed point theorem, due to

Brouwer, is applicable to functions which map an m-dimensional real number, denoted by x, back to
m-dimensional real numbers.  In particular, if X is a subset of the space of m-dimensional real numbers,
Rm, the Brouwer fixed point theorem provides conditions under which one can assure that a fixed point
exists for a function which maps X into itself30.

Brouwer Fixed Point Theorem:  If X is a compact convex subset of Rm and f is a continuous
function mapping X into X, then there exists a fixed point of f.

To establish existence of a competitive equilibrium, we will define f to be a mapping from market
quantity trajectories back to market quantity trajectories.  A market quantity trajectory is an m-
dimensional vector, with m corresponding to the number of time periods before the time horizon.  Let X
be the set of market quantity trajectories such that 0 # Qt # SA for each t, limiting the possible market
clearing quantity trajectories to a set for which market quantity in any time period is no greater than the

aggregate total resource base, SA.  Then X is a compact convex subset of Rm.  For every market
quantity trajectory in X, the inverse demand functions, Pt(Qt,t), as defined in equation (44), map that
quantity trajectory to a unique trajectory of prices.  For every price trajectory, there is a unique optimal
extraction trajectory for each deposit (under the strict convexity assumption).  Those individual
extraction trajectories define a trajectory of market supply, Qt, as indicated by equation (42), thus
completing the mapping.  The physical constraints facing each firm assure that the trajectory of market
supply is a member of set X.  The demand function is a continuous downward sloping curve, and thus
the inverse demand function is a continuous function;  the mapping from the market quantity trajectory
to the price trajectory is a continuous function.  Strict convexity of cost functions implies that the
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mapping from the price trajectory back to the market supply trajectory is also a continuous function. 
Thus the mapping from the market quantity trajectory to the price  trajectory back to a market quantity
trajectory is a continuous mapping from set X into set X.

All of the premises of the Brouwer fixed point theorem are met.  Thus its conclusion holds:  there exists
a fixed point of the mapping we have constructed.  That fixed point is a market demand quantity
trajectory which leads to a market price trajectory, which in turn leads back to the same market
quantity trajectory.  Alternatively, it can be envisioned as a price trajectory which leads to a market
supply and a market demand trajectory which are identical to one another.  A competitive equilibrium
exists.

The role of the choke price should be noted in particular.  With finite choke prices, it is possible to

define a price trajectory for any market quantity trajectory in X, since for each possible market supply
trajectory, the inverse demand functions imply that 0 # Pt # PC

t for each t.  If choke prices do not exist,
then price trajectories do not exist for some market quantity trajectories in X and thus the mapping
needed for the Brouwer fixed point theorem cannot be defined.

To illustrate possible non-existence of a competitive equilibrium, assume that the commodity were
essential and that market demand always exceeded the quantity QM for all finite prices until the time
horizon of T.  Then cumulative market demand must exceed QM T for all finite prices.  If QA  <  QM T,
then no competitive equilibrium will exist.  Prices would be driven to infinity and markets would still not
clear.

We now turn to markets for which cost functions for some deposits are weakly, but not strictly, convex. 
For example, Hotelling costs are in this class.  In this situation market supply for a given price trajectory

is not unique.  Rather a range of extraction rates may be consistent with profit maximizing for each firm. 
Thus we can define only a correspondence -- a set valued mapping -- from the price trajectory to the
market supply trajectory.  

For our analysis we will follow the same approach as above, using inverse demand functions to provide
a mapping from the same set X of possible market quantity trajectories.  Optimizing choices of firms
will define a correspondence back to a set of market quantity trajectories. The existence of a fixed
point will be established.  The fixed point will describe a trajectory of market clearing prices and



76

resulting trajectory of market demands.  This demand trajectory will equal one of the (possibly many)
optimal supply trajectories for the market clearing price trajectory. 

The Kakutani fixed point theorem provides the necessary mathematical tool to establish the existence of
a competitive equilibrium under the weak convexity assumption31:  

Kakutani fixed point theorem.  Let X be a compact convex subset of Rm, and let ( be a closed
correspondence from X into subsets of X.  If ((x) is a convex set for every x 0 X, then there
is a fixed point.

To establish existence of a competitive equilibrium, again let X be the set of market quantity trajectories
such that 0 # Qt # SA for each t.  X is a compact convex subset of Rm.  For every market quantity

trajectory in X, the inverse demand functions, Pt(Qt,t), as defined in equation (44), map to a unique
trajectory of prices.  Optimizing responses of firms to the price trajectory complete the mapping back
to market quantities.  The physical constraints facing the firm assure that all trajectories of market
supply belong to set X.  

The set of optimal extraction trajectories for each deposit must be convex.  To see this, consider a
convex combination of two optimal trajectories, with the first trajectory given a weight of $ and the
second given a weight of 1-$, where 0 < $ < 1.  The convex combination would remain feasible since it
would have no more cumulative extraction than would the maximum of the two optimal trajectories. 
The present value of the revenue from the convex combination would be a weighted average of the
present values of the two revenues, with weights corresponding to $ and 1-$.  The present value of the
costs would be no greater than the weighted average of the two optimal present values of costs (with
weights of $ and 1-$), under the assumption that the cost function is convex.  Therefore the present

value of profit from the convex combination could be no smaller than the weighted average of present
values of profits for the two optimal trajectories.  But if the two trajectories are optimal, they must give
the same present value of profit and no feasible trajectory could give strictly greater present value of
profits.  Thus the convex combination must give identical present value of profits as either of these two
optimal trajectories:  the set of individual optimal trajectories is convex.

The market demand is a summation of individual demands and thus the set of market supply trajectories
is the set summation of optimal supply trajectories from individual firms.  Because the set summation of
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convex sets is itself a convex set, the set of market supply quantity trajectories must be convex for
every price trajectory and thus for every initial market demand quantity trajectory.  

We need only to show that the correspondence so constructed is closed.  However, every upper hemi-
continuous mapping must be closed, so we need only show that the mapping is upper hemi-continuous.
Finally, to establish the upper hemi-continuity of the correspondence we must invoke the theory of the
maximum32:   

Theorem of the Maximum:  Let f(x,a) be the objective function of the constrained
maximization problem:  Maximize f(x,a) such that x is in G(a).  Assume that f(x,a) is a
continuous function with a compact range and that  the constraint set G(a) is a nonempty,
compact-valued continuous correspondence of a.  Then x(a) is an upper-hemicontinuous

correspondence.

For our problem, the constraint set for each firm is fixed, nonempty, and compact.  The objective
function is continuous in both prices and in extraction trajectories.  The market demand function is a
continuous downward sloping curve, and thus the inverse demand function is a continuous function of
market demand.  Therefore the objective function is continuous in the market quantity trajectory as
well.  For each firm, the feasible set of extraction quantities is a compact set.  Thus the set of optimal
extraction trajectories must be a compact set for any given price trajectory.  The set of market supply
trajectories is the set summation of individual firm extraction trajectories.  Compactness of the individual
sets implies compactness of the set summation.  Hence the conditions of the theory of the maximum are
met and thus the correspondence we have defined is upper hemicontinuous and hence closed.

All premises of the Kakutani fixed point theorem are met.  Thus its conclusion holds:  there exists a

fixed point of the mapping we have constructed.  Thus a competitive equilibrium exists even with weak
convexity of the cost functions.

Given the existence of an equilibrium, we can now turn to characteristics of the price and quantity
trajectories in competitive equilibrium.  The nature of these trajectories will depend on several factors: 

! The direction and rate of change of the demand function over time;
! The rate of technological change in resource extraction;  and
! The nature of the cost function.



78

(46)

These relationships will be examined in what follows.  We start with the classical Hotelling cost
assumption, progress through non-Hotelling models without stock effects and end with models which
include stock effects.

2. Hotelling Cost Models

For this section we assume that the Hotelling cost assumption is satisfied.  There may be many deposits,
each characterized by different costs and initial stocks.  

Competitive equilibrium price and quantity trajectories can be solved comparatively simply under
Hotelling assumptions.  By equation (21), extraction can be positive for resource deposit i only during
that time interval in which price is growing along a Hotelling path:  

Here ci represents the marginal cost for resource i and 8i, the present value opportunity cost associated
with resource stock i.  The opportunity cost, 8i, is equal to the maximum (over time) of the present
value of Pt - ci.   Whenever price is below ci + 8i ert, there would be no extraction from the ith deposit. 
If 8i > 0, then deposit i must ultimately be totally depleted.

We can explore properties of competitive equilibrium, assuming that all firms satisfy the Hotelling cost
assumption.  We will assume that any time horizon is far enough in the future that extraction ceases
because of resource depletion, not because of a time horizon. We start first with the simplest case: 
Hotelling cost models with no technological progress.  The demand function, however, will be allowed
to depend on time.  Once results are presented, we will examine the differences in results if there is
technological progress.

a. Hotelling Cost Models With No Technological Change

We assume that there is no technical progress so that extraction costs for any given deposit are
independent of time.  Demand functions may be time varying.  Several results will emerge from the
analysis.  (1)  Whenever demand is positive, price will always be growing and present value of price
always declining.  (2)  If the demand function is time invariant or shrinking over time, then market supply
and demand will decline over time.  (3)  If several resource deposits have different costs, then
resources will be extracted strictly in order of increasing cost, except that at the transition time between
two deposits both could be extracted simultaneously.  (4)  Higher cost resources will have lower
opportunity costs.  (5) Each resource with an extraction cost below the maximum market price at will
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ultimately be totally depleted.  (6)  Once started, extraction from a deposit will not stop until it is totally
depleted, unless there is sufficient stock of the resource for it to be a "backstop technology."  We will
now demonstrate these propositions.

Whenever demand is positive, price will always be growing and present value of price always declining. 
By equation (46), for extraction to occur from deposit i, price must be changing along the following
path where 8i is strictly positive for any resource which will ultimately be totally depleted:

Along this path, price is growing but the present value of price, Pt e-rt, is declining.  If price were
declining or growing so rapidly that Pt e-rt were increasing, the equation above could not hold for any
deposit and market supply would equal zero.  That would not be a competitive equilibrium if there were

positive demand.

If the demand function is time invariant or shrinking over time, then market supply and demand will
decline over time because price must always be rising.  However, if the demand function is increasing
rapidly enough, then market clearing quantities can grow over time.  For example if, for some time, the
inverse demand function increases at the interest rate, so that P(Qt,t) = P(Qt) ert for a time interval, then 
Pt e-rt declining implies that market clearing supply and demand must be growing.

The order of competitive extraction will be strictly from low to high cost.  To demonstrate, assume the
converse, that deposit i is more costly than deposit j -- ci > cj -- but that some quantity of resource i is
extracted before some quantity of deposit j is extracted -- Ei

t > 0 and Ej
J > 0 for two times t, and J, for

J > t.  

By equation (46) both the following inequalities must  hold:

The inequalities can be rewritten as follows:  

By these inequalities,  8i  -  8j  > 0, and thus these inequalities also imply that ert  #  erJ, a contradiction,
because J > t and r is positive.  It is thus established that in a competitive equilibrium with time invariant
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(47)

Hotelling costs, deposits must be extracted strictly in order of cost, with low cost deposits used up
before higher cost deposits are initiated.

At the moment of transition between two deposits, both would typically be extracted simultaneously33. 
Therefore at such times of transition, equation (46) must hold for both resources.  If J is the transition
time from the jth to the ith deposit, then:

Equation (47) shows that higher cost deposits will have lower opportunity costs.  

In the Hotelling case competitive equilibrium, price exceeds the unit cost of the deposit being extracted
by an amount equal to the opportunity cost of that resource.  Opportunity cost increases at the rate of

interest.  When the next resource is being extracted, its opportunity cost becomes the relevant one for
determining price and the price increases based on growth of that lower opportunity cost.

Ultimately, all deposits will be fully depleted if their costs are strictly below the maximum value that the
market price reaches over time, PM.  If a deposit were not fully extracted, then its opportunity cost
would be zero.  But if firm i's opportunity cost were zero and PM > ci, it would extract its entire stock. 
PM must be at least as high as the maximum value of the choke price at the time of final shutdown or
afterwards.  Otherwise there would be a positive demand for the resource.  Therefore,  all deposits
whose costs are below any value of the choke price at or after final shutdown will ultimately be fully
depleted.

Since 1) resources will be extracted strictly in order of increasing cost, and 2) a resource will ultimately
be fully depleted if price ever exceeds its cost, then once started, extraction from a deposit will not stop

until it is totally depleted.  The exception is if the resource is the last being extracted, market price at
maximum just equals its cost, and its stock is sufficiently large to satisfy all demand for all time that
choke price remains above its extraction cost.  If this condition holds, then the resource satisfies all
characteristics of a "backstop technology."

Market quantity can either increase or decrease over time, depending upon changes in the demand
function.  For demand functions that do not grow rapidly, market clearing quantities will decline over
time.  However, for rapidly growing demand functions, quantities can grow.  
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(48)

Based on these characteristics, in what follows we develop equations to allow explicit calculation of
market clearing prices and quantities for resources with Hotelling costs. 

At the time of transition from the jth to the ith deposit, all deposits with cost lower than cj must be
depleted, while at the end of the preceding time some of the jth deposit will remain.  Cumulative demand
to time J must be at least as great as the total initial stock of resources having cost j or smaller but
cumulative demand up to time J-1 must be smaller than the total initial stock of resources having cost
smaller than or equal to cj:
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Figure 15
Determination of the Initial Price:  Hotelling Costs

(49)

At the final time, the right hand inequality of (48) may be an inequality or a strict equality, depending

upon whether the maximum price ever obtained is equal to or greater than the unit cost of the most
expensive resource extracted: 

Here PM denotes the maximum value reached by Pt over all time. 
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The competitive equilibrium price path can be determined uniquely by equations (46) through (49).  If
P1 is known, equation (46) determines price until the lowest cost deposit is totally depleted and
determines opportunity cost for that deposit.  Once the deposit is depleted, equation (47) determines
opportunity cost for the next lowest cost deposit.  Inequality (48) determines the transition timing. 
Equation (46) determines price until the next transition, and so on. The final time of positive extraction is
determined as the last time before price equals or exceed the choke price (unless extraction occurs up
to a final time horizon).

Finally, equation (49) must also hold in equilibrium.  Unless choke price is declining over time, PM

would typically equal choke price at final shutdown of extraction. With a discrete set of extraction costs
(as might be typical in a quantitative model), the right hand side of equation (49) is a step function, with
cumulative extraction increasing in steps as PM increases.  The right hand side will depend on initial

price, P1, to the extent that P1 influences time of final shutdown and choke price depends on final
shutdown time.  The left hand side of this equation represents cumulative demand until final shutdown
and is a decreasing, continuous function of P1.  If P1  is too high, cumulative demand is reduced, and
resources for which ci < PM will remain after all extraction ceases.  If P1  is too low, the cumulative
demand will exceed the total stock of resources with costs no greater than PM.   Neither case would be
a competitive equilibrium.  A unique P1  exists which allows (49)  to be satisfied.   

Determination of P1 through equation (49) is diagrammed in Figure 16 for a time invariant demand
function.  Cumulative demand is a decreasing function of P1.  With time invariant demand, cumulative
demand is zero for P1  =  PM because PM just equals the choke price.  Cumulative supply is an
increasing step function of PM.  This diagram illustrates choke price determining which resources will be
depleted and thus determining the cumulative supply.  Cumulative supply determines cumulative
demand, which in turn determines P1. 

b. Hotelling Cost Models with Technological Progress

With technological progress in resource extraction, costs decline over time.  In this case each of the
equations (46) through (49) must continue to hold, but with each ci declining over time.  Resources may
not be extracted strictly in order of increasing costs.  If the low costs decline rapidly enough relative to
the high cost resources, then competitive firms could extract low cost resources after higher cost
deposits. 
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In addition, equilibrium prices need not necessarily grow.  By equation (46), if ci shrinks more than 8i

ert grows, then price will decline over time.  For example, assume that each cost function decreases at
the same exponential rate.  In that case, low cost resources will still be extracted before high cost
resources.  Higher cost resources will still have lower opportunity costs. Right after transition from a
lower cost to a higher cost resource the price growth rate must decline and could become negative. 
While that resource is being extracted, the opportunity cost absolute growth increases and unit cost
absolute decline will become smaller. Thus price could again begin growing after some time.  The
process could then repeat as progressively poorer grades of resources are extracted.  With
technological progress, equilibrium price may either increase or decrease over time and could alternate
between periods of price growth and periods of price decline.  Market clearing quantities could
similarly alternative between growth and decline.

3. Non-Hotelling Models Without Stock Effects
We now turn to more complex models in which marginal extraction costs from individual deposits are
increasing functions of extraction rate, but remain independent of remaining stock.  In competitive
equilibrium of such a model, the quantity supplied for each resource as a function of the price trajectory
is determined by equations (15) and (16).   Market demand as a function of price is determined by the
demand function and equation (43) links the market together, equating market supply to market
demand.

Characteristics of the equilibrium will depend upon properties of the cost functions and of the demand
function.  We will first explore models in which all cost functions are time invariant but in which the
demand function may vary over time.  We will then relax the assumption of time invariant demand
functions and admit technical progress.

We assume now that there is no technical progress so that extraction costs for any given deposit are
independent of time.  Several results will emerge from the analysis.  (1)  If the inverse demand function
is time invariant or growing, equilibrium price will always be growing.  If the present value of the inverse
demand function is never growing, then the present value of equilibrium price will always be declining. 
(2)  If the inverse demand function is time invariant or declining over time, then market supply and
demand will decline over time.  If the present value of the inverse demand function is growing, then
market supply and demand will increase over time.  (3)  If several deposits have different costs but
identical initial stocks, these deposits will generally be extracted in order of increasing cost, but typically
there will be deposits of several different costs being extracted simultaneously.  (4)  Higher cost
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deposits will have lower opportunity costs for initial stock fixed and larger deposits will have lower
opportunity costs for cost functions fixed.  (5) Each resource will ultimately be totally depleted if the
market price remains above its minimum marginal extraction cost for long enough. 

These propositions are far more limited than those obtained for Hotelling cost functions.  Thus insights
from Hotelling models cannot necessarily be generalized to non-Hotelling models.  We will demonstrate
these propositions in turn.

The time pattern of increases or decrease in the market clearing price trajectories and quantity
trajectories will depend upon the rate at which the inverse demand function shifts.  We will identify three
ranges:  (a) P(Qt,t) declining over time, (b) P(Qt,t) increasing over time but P(Qt,t) e-rt decreasing over
time, and (c) P(Qt,t) e-rt increasing over time.  These three ranges lead to the two sets of propositions

above about price changes and quantity changes.  In the middle range we can place upper and lower
bounds on price changes but no bounds on quantity changes.  In the upper range we can put lower
bounds on price and quantity changes while in the lower range we can put upper bounds on both rates
of change.

If the inverse demand function is time invariant or growing, equilibrium price will always be growing.  By
equation (15), if the equilibrium price were constant or declining, extraction rate from each firm would
decline over time and the market supply would decline.  Declining supply (and hence demand) would
imply increasing prices, a contradiction.  

If the present value of the inverse demand function is never growing, then the present value of
equilibrium price will always be declining.  By equation (15), if Pt e-rt were constant or increasing from
one time period to the next, extraction would be increasing for each deposit and thus market supply

would be growing over time.  Growing market supply (and hence market demand) implies that Pt e-rt

would be declining over time, a contradiction.  

If the inverse demand function is time invariant or declining over time, then market supply and demand
will decline over time.  If quantities were increasing, then prices would be declining. But by equation
(15), declining prices imply declining extraction rates from all deposits and hence declining market
supply, a contradiction.   
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If the present value of the inverse demand function grows, then market supply and demand will increase
over time.  If quantities were decreasing, the present value of price would be increasing. But by
equation (15), increasing present value of prices implies increasing extraction rates from all deposits and
hence increasing market supply, a contradiction.   

In summary, unless demand functions are shrinking over time, prices must rise until the choke price is
reached.  The rate of price growth will depend upon movements of the demand function, 
characteristics of individual cost functions, the interest rate, and the sizes of the various deposits.   The
overall characteristics for the three ranges of inverse demand function change are displayed in Table 2.

Rate of Change: Inverse
Demand Function

Rate of Change: Market
Clearing Prices

Rate of Change:  Market
Clearing Quantities

Declining Present value declining  Declining

Growing, 
Present value declining

Increasing,
Present value declining

Present value growing Increasing  Growing

Table 2
Time Patterns of Market Clearing Price and Quantity Trajectories

Assume that there were two deposits in a market and that one had a lower marginal cost than the other
for each rate of extraction.  The first will be referred to as the "low cost" deposit and the second the

"high cost" deposit.  We assume that they are both ultimately totally extracted.  In market clearing, if
both initial stocks are the same size, then the high cost deposit will have a lower opportunity cost than
will the low cost deposit.  (If they were ultimately not totally depleted, then they would have zero
opportunity costs.)  To see this, assume that the opportunity cost of the low cost deposit were at least
as low as that of the high cost deposit.  Then by equation (15), the low cost deposit would have a
higher extraction rate at all times34.  But because both have the same initial stock, this would be
impossible.

If two deposits have the same marginal cost function, but different initial stocks, the larger deposit will
have a lower opportunity cost than the smaller.  If the reverse were true, then by equation (15), the
smaller deposit would have higher extraction over all time, which again would be physically impossible,
unless the deposits were ultimately not totally depleted.
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Deposits will generally be extracted in order of increasing cost, but typically there will be deposits of
several different costs being extracted simultaneously, even though they may each have different cost
functions.  This pattern corresponds far more closely to that found in reality than the does the pattern
forced by Hotelling cost functions, in that many different resource grades could be extracted
simultaneously under this model.

More precisely, two propositions can be established to formalize the sense in which deposits are
generally extracted in order of increasing cost.  Extraction from the lower cost deposit must either be
initiated first, terminated first, or both.  When the lower cost deposit reaches its peak extraction rate,
the extraction rate of the higher cost deposit will still be increasing. 

Let i represent the high cost deposit and j the low cost deposit.  Then 8j  >  8i.  Assume that extraction

from deposit i is positive and extraction from deposit j is still zero at time J.  Then, because both
deposits face the same price, equation (15) implies:

where both marginal costs are evaluated at zero extraction rate.  Because 8j  >  8i, the right hand side
the above inequality grows over time more than does the left hand side.  Thus the inequality must remain
valid for all future time.  Consider that time at which the extraction rate of deposit j (the low cost
deposit) just declines to zero.  Then this inequality implies that the extraction rate of the high cost
resource must still be positive, in fact, must be higher than it was when extraction was first initiated for
the low cost resource.  Hence if the high cost extraction is initiated before the low cost extraction, then
extraction must stop for the low cost resource first. 

We can now demonstrate that when the lower cost deposit reaches its peak extraction rate, the
extraction rate of the higher cost deposit will still be increasing.  If both are being extracted
simultaneously, then the following equation must hold, where the marginal costs are now evaluated at
the positive extraction rates:

When the extraction rate from deposit j just reaches its maximum, extraction rate remains constant from
that period to the next.  Thus the marginal extraction cost of resource j just remains constant.  However
the opportunity costs continue to grow, with 8j ert increasing by more than does  8i ert (since 8j  >  8i). 
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Thus the marginal extraction cost of resource i must continue to increase from one time period to the
next for the equation above to hold.  Therefore the ith extraction rate must still be increasing;  the
extraction rate from the ith resource will not yet be at its peak35.

For models assuming Hotelling costs, we concluded that each deposit will ultimately be totally depleted
if the market price ever gets above its marginal extraction cost.  That conclusion is not valid for non-
Hotelling models.  We can only conclude that each resource will ultimately be totally depleted if the
market price remains above its minimum marginal extraction cost for long enough.  If it were not totally
depleted, then the opportunity cost would be zero and extraction rate would be positive as long as
market price exceeded the minimum marginal extraction cost.  With enough time the deposit would be
totally depleted.

Once technical progress is introduced, fewer results can be established.  In particular, if extraction costs
decline over time, then prices tend to increase less rapidly or may decrease even though they would
have increased absent technical progress.  In Table 2, all results predicting declines in price or present
value of price or those predicting growth in quantities can still be established.  Those predicting
increases in price or present value of price or those predicting declines in quantities cannot.

Other results must be weakened or eliminated as well.  Since models with Hotelling costs are extreme
limiting cases of this class of models, the wide range of possibilities for Hotelling solutions implies an
even wider range for these models.

Additional characteristics of the competitive equilibrium, either with or without technical progress, are
dependent upon the specific demand function and cost functions.  Typically numerical simulation is
required to solve such models.  The equations presented within this chapter provide a complete basis

for such numerical simulations, once market demand functions, costs functions, and initial stocks are
specified.

4. Models With Stock Effects

A more complex case is one in which marginal extraction cost from any particular deposit is an
increasing function of the extraction rate and a decreasing function of the remaining stock. In
competitive equilibrium of such a model, the quantity supplied for each resource as a function of the
price trajectory is determined by equations (24) through (26).   Market demand as a function of price is
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determined by the demand function and equation (43) links the market together, equating market supply
to market demand.

We assume now that there is no technical progress so that extraction costs for any given deposit are
independent of time, although dependent on remaining stock.  Unless otherwise indicated, we will
assume that the time horizon is so far in the future that its existence has no significant impacts on the
extraction patterns.  In addition, we will assume that total cost and marginal cost are a decreasing
function of the amount of the stock remaining.  

A few results will emerge from the analysis:  If the inverse demand function is time invariant or growing,
equilibrium price will always be growing except when market supply and demand are zero36.  A
corollary follows:  If the inverse demand function is time invariant market supply and demand will

decline over time.   Under the further assumption that -MC/MS is convex in E, if the inverse demand
function is time invariant or declining over time, market supply and demand will decline over time. 

Note that these propositions are far more limited than those obtained for models without stock effects. 
Thus some of the conclusions based upon models without stock effects cannot be generalized to models
with stock effects.   We will demonstrate the propositions in turn.

If the inverse demand function is time invariant or growing, equilibrium price will always be growing
(except when market supply and demand are zero) if the time horizon is so far in the future that its
existence has no significant impacts on the extraction patterns.  There exists some time J after which37

equilibrium price will not be lower than PJ, since the system must at some time reach a choke price,
which is itself constant or growing.  

Equations (24) through (26) imply that if J exists after which prices will not be lower than PJ, then PJ-1 
<  PJ.  To demonstrate, assume that PJ-1  $  PJ.  As a consequence, market supply and demand must
be non-decreasing from time J-1 to J and thus so must be output from some deposit, say deposit i.  
By equation (24) , non-decreasing output with non-increasing price occurs only if Ni

J  <  Ni
J-1.  Hence

Ni
J  must be below the N-constant locus.   Because future price will never be lower than  PJ, the N-

constant locus will not decline from its position at time J;  thus  Ni
J will always stay below the N-

constant locus and can never converge to a steady state.  Rather opportunity cost must forever
decrease and must become and stay negative, violating condition (26).  This contradiction implies that
PJ-1  <  PJ.   Hence it follows that price will never again be lower than  PJ-1.  The same logic then shows
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that price will never again be lower than PJ-2, and so on.  Thus price must always be rising if market
supply and demand are positive. 

From this conclusion it follows directly that if the inverse demand function is time invariant then market
supply and demand will decline over time, since in this situation prices will always be increasing
whenever demand is positive.

Under the further assumption that -MC/MS is convex in E, if the inverse demand function is time invariant
or declining over time, market supply and demand will decline over time.   If market supply and
demand were increasing or constant from time J-1 to J then PJ-1 $ PJ and Ei

J-1 # Ei
J for at least one

deposit, i.  But we have shown in a previous section of this chapter that under these assumptions,
whenever price is declining, extraction must also be declining for each individual deposit.  This

contradicts the supposition that market supply in and demand were increasing or constant.

The results change dramatically if time were approaching a final horizon.  Then it would be possible for
the inverse demand function to either shrink or grow over time, yet have competitive equilibrium prices
decline and output increase over time.  We have seen from the example illustrated in Figure 12 that for
an individual deposit, it is possible for both prices and output to decline over time as the final horizon is
reached.  If all deposits were similar to that individual deposit, then this would be true for the overall
market supply.  One could easily construct an inverse demand function which was either growing or
shrinking and which gave the quantity path of Figure 12 when the price path of Figure 12 occurred.

5. Models with New Discoveries
In the work presented so far, locations of all resource deposits are known at the beginning of time and
firms can extract from these deposits at any time.  However, one important feature of most depletable

resource systems is the process of discovery of new deposits.  Discovery implies that these deposits
were not available for extraction in the time prior to discovery, in contrast to the assumption made so
far.  The assumption of exogenous discovery can be readily incorporated into the theory, although
endogenous discovery requires a careful discussion of uncertainty and information, a discussion beyond
the scope of this chapter.

Assume that the various deposits will be discovered at various dates, denoted by TD
i.  Then for each

deposit we need only add the additional constraint that Ei
t = 0 for t  <  TD

i.  If that constraint is added,
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the optimal extraction trajectory for each firm follows the same optimality conditions for all time after
discovery.   

Under this model, discovery of additional deposits has no effect on optimal trajectories of previously
discovered deposits, except to the extent such discoveries change current prices or expectations of
future prices.  And if all participants in the market have rational expectations about future discoveries,
the actual event of a new discovery need have no significant impact on any prices and thus would have
no effect on optimal extraction of any other deposits38.  

Competitive equilibrium still would be characterized by supply and demand equality for all times.  The
properties of this competitive equilibrium can differ as a result of the addition of new resource deposits
over time.  Late discovery implies that more of the resource stock remains at any given time than would

have been the case had the deposit been discovered earlier.  Thus early year prices would be increased
and extraction rates decreased and later year prices would be decreased and extraction rates increased
if such discovery constraints were incorporated into the model.  Therefore, even without technical
progress, market clearing prices need not rise over time, except in Hotelling models.  Prices could fall
over a long period of time if new deposits were constantly being discovered.  All deposits, once
discovered, would be extracted at high rates initially and their extraction rates would decline over time. 
However, if sufficient numbers of new deposits were being discovered, this process could dominate the
decline from existing deposits so that supply would be increasing over time, satisfying a growing
demand.   

Empirically, these observations are important, in that we have observed depletable resource prices
declining over significant periods of U.S. and world history as new deposits become available.  This
price decline does not suggest the invalidity of depletable resource theory, since once new discoveries

are incorporated into the competitive models, we can generate patterns of declining prices along with
decreasing extraction from existing deposits and growing total market quantities.  But such
incorporation of new discoveries does make empirical research in depletable resource theory even
more challenging.

We turn now from competitive market models to examine an alternative market structure.
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(50)

B. Depletable Resource Monopoly
In the analysis so far, we have maintained the assumption that all firms and consumers are price takers
in markets for commodities extracted from depletable resource stocks.  However, as discussed more
fully in the chapters by Teece and Sunding and by Newbery and Karp, many commodities extracted
from natural resources are sold in non-perfectly competitive markets.   The diamond cartel, the
Organization of Petroleum Exporting Countries (OPEC), and the copper cartel are examples of

organizations who have market power to influence prices at which their outputs are sold.  

In this section we examine models which assume the opposite extreme from perfectly competitive
markets, models of markets dominated by a single extractor of the depletable resource.  Such
monopolies, taking into account the impact of their output choices on market clearing prices, can
generally be expected to operate differently from perfectly competitive firms.   More complex structures
are covered in the two chapters of this Handbook cited above.  We will maintain the monopoly
assumption throughout this section, unless otherwise indicated.

Assumption:  Monopoly.
A single firm controls all deposits of the depletable resource.  That firm chooses extraction
patterns so as to maximize the discounted present value of its profit.  There are many
consumers of the commodity, all of which are price takers.  

We will assume that a monopoly faces the same conditions as do competitive firms, except that it owns
all of deposits, incurs all costs, and collects all revenues from extraction of the resource.   The
monopoly controls N resource deposits, numbered from 1 to N.

As in a competitive model, if markets clear, price is determined by the inverse demand function from
equation (44).  Revenue obtained from selling Ei

t units from resource deposit i depends upon the
commodity price, which in turn depends on the total quantity sold from all deposits.  Total monopoly
revenue will be denoted as Rt(E1

t,E2
t, ... ,EN

t):

Optimization of each deposit must account for the impact of extraction from that individual deposit on
prices facing all extraction.  
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(51)

(52)

(53)

(54)

The cost facing the monopolist is the sum of costs over all resource deposits. Underlying cost functions
could be as simple as Hotelling cost functions or could be more complicated, with each marginal cost
depending on the extraction rate and remaining stock in that deposit.  We will go directly to the more
general cost functions, recognizing that the simpler models are all special cases of the more general cost
functions.

The problem facing the monopoly is then:

1. Necessary Conditions for Optimality
This monopoly optimization can be solved using the same methods applied above.  The Lagrangian can
be written:

First-order necessary conditions require that at the optimal point, the Lagrangian must be a stationary
point with respect to each Si

t and Ei
t.  Differentiating ‹ with respect to each variable and combining

equations:

Equation (50) can be differentiated to relate marginal revenue to market clearing price:
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(55)

where RN
t is marginal revenue at time t, Qt is the market quantity of the resource, and ,t(Qt) is the

elasticity of demand, defined to be a positive number.  RN
t is a function of Qt and depends on the shape

of the inverse demand function.

2. Characterizing Monopoly vs. Competitive Equilibrium Solutions

The conditions for monopoly optimality are very similar to the conditions describing the competitive
equilibrium.  Equations (52) through (55) are identical to equations (24) through (26) plus (42) and
(44), which define optimal paths for competitive deposits, with one crucial exception.  In equation (52)
marginal revenue appears in place of the price.  Marginal revenue is itself simply price scaled down by a
factor dependent on elasticity of demand. 

In a competitive industry each deposit is small enough that its extraction will not influence price
significantly from the perspective of the individual deposit owner or manager.  The same must be
true if these deposits are organized monopolistically.  Each deposit manager faces a price and a
marginal revenue which he or she cannot influence significantly from the perspective of the individual
deposit manager.  But insignificant impacts at the deposit level can be important when applied to the
entire enterprise.  Therefore, the manager in a monopolistic industry must look to marginal revenue;
while the owner or manager in a competitive industry must look to price.  In both markets, optimality
conditions for individual resource deposits can be solved separately, using but one variable to link the
various commodity outputs39: marginal revenue for a monopoly and price for a competive firm.  All
differences in market clearing trajectories stem from the difference between marginal revenue and price.

Equation (55) shows that for any given demand function there is a mapping that relates price to marginal

revenue.  For "well behaved" demand functions marginal revenue is a monotonically  increasing function
of price.  In what follows we assume that monotonic relationship to hold.  In addition, if a choke price
exists, then at that choke price marginal revenue and price are equal, although for all other prices
marginal revenue is strictly smaller than price.  The monotonic relationship implies that once
characteristics of the marginal revenue trajectory are determined, these characteristics can be translated
to the price trajectory.  

In previous sections, we have analyzed characteristics of the price trajectory for a competitive
equilibrium.  For a monopoly, each of these characteristics become precisely the equivalent
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(56)

characteristics of the optimal marginal revenue trajectory.  For given demand functions, the marginal
revenue trajectory can be translated directly into a price trajectory.  Thus the analysis of a competitive
industry can be translated completely to analysis of monopoly solutions.  We now turn to several
examples of that principle.

a. Hotelling Cost Models with No Technology Changes

We again assume that the Hotelling cost assumption is satisfied.  Deposits are characterized by different
costs and initial stocks; extraction costs are independent of time.  Any time horizon is far enough in the
future that extraction ceases due to resource depletion and not to a time horizon. Inverse demand
functions may be increasing, decreasing, or constant.  

Several results can be translated immediately from the competitive equilibrium analysis:     (1) 

Whenever demand is positive, marginal revenue will always be growing and present value of marginal
revenue always declining.  (2)  If the marginal revenue function is time invariant or shrinking over time,
then market supply and demand will decline over time.     (3)  If several resource deposits have
different costs, then resources will be extracted strictly in order of increasing cost, except that at the
transition point between two deposits both could be extracted simultaneously.  (4)  Higher cost
resources will have lower opportunity costs.  (5) Each resource with an extraction cost below the
maximum marginal revenue will ultimately be totally depleted.  (6)  Once started, extraction from a
deposit will not stop until it is totally depleted, unless there is sufficient stock of the resource for it to be
a "backstop technology."  

We need not demonstrate these propositions because they are established in exactly the same manner
as the parallel propositions for a competitive equilibrium.

Characteristics of the optimal price trajectory can be ascertained from the marginal revenue trajectory
for particular demand functions.  As examples, we examine two demand functions: the constant
elasticity and the linear functions.

b. Hotelling Cost Models: Constant Elasticity Demand Functions

The constant elasticity demand function has the form:
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(57)

where A and 0 are positive constants.  Elasticity of demand must exceed 1.0 or the monopoly could
obtain unlimited profit by selling a vanishingly small total output and no optimal would exist.  Note that
for the constant elasticity demand function no choke price exists.

While the ith resource is being extracted the first order necessary conditions for the monopoly solution
become:

This equation can be rearranged to give the price equation applicable while the ith resource is being
extracted:

Equation (57) can be compared with equation (46) which shows the competitive price trajectory.  The
cost term on the right hand side of equation (57) is multiplied by a factor greater than 1: [,/(,-1)].   The
second term is simply a new opportunity cost which increases at the interest rate, just like the second
term on the right hand side of equation (46).
  
The optimal price and quantity trajectories for a monopoly facing a constant elasticity demand
function would be identical to equilibrium trajectories in an equivalent competitive market with
extraction costs scaled up by a factor of [,/(,-1)].  

Equation (57) can be used to illustrate the case, discussed by Stiglitz, in which a monopoly extraction
path is identical to that of an equivalent competitive industry.  Stiglitz assumed a constant elasticity

demand function with 0 > 1 and ci = 0 for all deposits.  For a monopoly, equation (57) becomes:

where ki is a positive constant selected so that cumulative demand equals the initial stock.  For a
competitive industry, equation (46) becomes:

where 8i is a positive constant selected so that cumulative demand just equals initial stock.
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(59)

The two price trajectories must be identical.  They both rise at the interest rate and they both begin at a
level which just causes the resource to be totally depleted over all time.

This special case, although not representative of many depletable resources, illustrates an important
point.  If there are sufficient incentives to assure ultimate total depletion of resources, a monopolist
cannot manipulate market prices by altering ultimate cumulative extraction.  The only option is to shift
the time pattern of the given total extracted quantity.  The monopolist can increase its profit only if there
are intertemporal differences in the discounted present value of the "wedge" between price and marginal
revenue.  This "wedge" will be formalized as a "market imperfection function" and discussed more fully
in a later section of this chapter.

In the constant elasticity case, the "wedge" between price and marginal revenue is equal to the Pt/0. 

With zero extraction cost, both price and marginal revenue rise at the interest rate, as does this
"wedge".  Thus the present value of this "wedge" is independent of time.  There are no intertemporal
differences to motivate the monopolist and thus the monopolist chooses an extraction path identical to
that of a competitive industry. 

For positive extraction costs equation (57) implies that the initial monopoly price will exceed the
competitive equilibrium price.  Monopoly price will rise less rapidly than the competitive price so that in
later years the monopoly would have a larger stock remaining and would charge a price lower than
would occur were the market perfectly competitive.  If the initial monopoly price did not exceed the
competitive equilibrium price,  by equation (57), the initial 8i  in the competitive equilibrium would be
larger than 8i [,/(,-1)] for the monopoly and the monopoly price would grow more slowly than the
competitive equilibrium price.  If the monopoly price starts lower and grows slower, it would always be
below the competitive price and more of the resource would be extracted.  However, in the competitve

industry all would be extracted, so extracting more would be infeasible.  This contradiction implies that
the initial monopoly price will exceed the initial competitive equilibrium price.

In this case, the monopoly would shift extraction from the present to the future, charging higher than
competitive prices at early times and lower prices at later times.

c. Hotelling Cost Models: Linear Demand Functions

The linear inverse demand function has the form:
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(60)

where B is a positive constant and PC is the choke price.  Calculating marginal revenue gives the
necessary condition for the price path while resource deposit i is being extracted: 

Equation (60) can be compared with equations (46) and (57).   In a monopoly with a linear cost
function, the cost term on the right of equation (60) is the average of actual cost and choke price.  
Since the only deposits which are extracted are those for which unit cost is smaller than the choke
price, this average is larger than the actual unit cost. The second term is simply a new opportunity cost
which increases at the interest rate.
  
The optimal price and quantity trajectories for a monopoly facing a linear demand function are

identical to the equilibrium trajectories in a competitive market with all extraction costs
increased to the average of actual cost and choke price.  

A similar analysis to that above shows that this monopoly will initially charge a price higher than the
competitive equilibrium price and will thereby extract the resource more slowly than would be the case
in competitive equilibrium.  Prices will rise less rapidly for the monopoly.  If the time horizon is long
enough, extraction will cease when the choke price is reached.  The monopoly facing a linear demand
function will reach this choke price strictly later than would the competitive industry40 and will extract
the resource over a longer period.  

d. Non-Hotelling Models Without Stock Effects
Here again, we can use all of the results obtained for competitive markets, translating price to marginal
revenue.  Several conclusions follow for models in which all cost functions are time invariant but in

which the demand function may vary over time:  (1)  If the inverse demand function, and hence the
marginal revenue function, is time invariant or growing, marginal revenue will always be growing.  If the
present value of the marginal revenue function is never growing, then the present value of marginal
revenue will always be declining.  (2)  If the marginal revenue function is time invariant or declining over
time, then market supply and demand will decline over time.  If the present value of the marginal
revenue function is growing, then market supply and demand will increase over time.  (3)  If several
deposits have different costs but identical initial stocks, these deposits will generally be extracted in
order of increasing cost, but typically there will be deposits of several different costs being extracted
simultaneously.  (4)  Higher cost deposits will have lower opportunity costs for initial stock fixed and
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larger deposits will have lower opportunity costs for cost functions fixed, unless they are ultimately not
totally depleted.  (5) Each resource will ultimately be totally depleted if market price remains above its
minimum marginal extraction cost for long enough.

e. Non-Hotelling Models with Stock Effects

We again assume that extraction costs for any given deposit are independent of time and that the time
horizon is so far in the future that its existence has no significant impacts on the extraction patterns. 
Total cost and marginal cost are assumed to be decreasing functions of the amount of the stock
remaining.  

A few results will emerge emerge immediately based on the parallel of the monopoly solution to the
competitive equilibrium:  If the marginal revenue function is time invariant or growing, marginal revenue

will always be growing except when market supply and demand are zero41.  A corollary follows:  If the
marginal revenue function is time invariant, market supply and demand will decline over time.   Under
the further assumption that -MC/MS is convex in E, if the marginal revenue function is time invariant or
declining over time, market supply and demand will decline over time.   

C. Comparative Dynamics and Intertemporal Bias
We saw above that the monopoly optimum and the competitive equilibrium solution were described by

the same equations, with but one difference.  In a competitive industry each deposit owner faces price
derived from an inverse demand function while in a monopolistic industry, each deposit manager faces
marginal revenue derived from a marginal revenue function.  These differ by a time varying "wedge"
equal to Qt MPt/MQt.  We will refer to this "wedge" as a "market imperfection function" and denote it as
g(Qt,t).  Thus the market imperfection function for the monopoly problem is just:

The market imperfection function depends on market conditions and may well vary in its magnitude and
sign over time, but is the same for all deposits participating in the market.

Here we analyze how properties of the market imperfection function translate to changes in extraction

and price trajectories.



100

(64)

(65)

(66)

(67)

Market imperfection functions are applicable to additional situations.  Any postulated alteration in the
demand function can be referred to as a "market imperfection function".  For example, an excise tax on
resource extraction in competitive markets reduces the inverse demand function by the amount of the
tax.  Regulations on use of the extracted commodity, failure to internalize externalities common to all the
firms, expectations of the development of a backstop technology, or exogenous shifts in the extraction
of a close substitute product:  all could shift the inverse demand function.  The shift may well vary over
time but it is felt the same for all deposits. If the inverse demand function shifts from Pt(Qt) to PN

t(Qt),
the market imperfection function will equal the difference between these inverse demand functions:

The market imperfection function allows analysis of market quantity trajectories as if the inverse

demand function shifts in a competitive market.  Whenever there are no stock effects, properties of the
market imperfection function -- whether its sign is positive or negative and whether its present value
grows or shrinks -- are sufficient for determining whether the resource will be extracted more rapidly or
more slowly as a result of the change.

With market imperfection functions,  the new market solution becomes:

If g(Qt,t) is identically zero, equations (64) through (67) represent the unchanged competitive
equilibrium.  Analysis of changing conditions reduces to analysis of changing solutions to equations (64)
through (67) as the function g(Qt,t) changes.  In conducting our analysis we assume that there are no
stock effects and that Pt(Qt) + g(Qt,t) is a decreasing function of Qt.  We can formally define the
market imperfection function:
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Definition: Market Imperfection Function.  If one market situation can be represented by
equations (64) through (67) with g(Qt,t) /  0 and another by the same equations but with g(Qt,t)
…   0, then g(Qt,t) is referred to as a market imperfection function.  

1. The Impact of Market Impact Functions

In important special cases we can analyze impacts of market imperfection functions on extraction
trajectories.  For situations in which all deposits will ultimately be fully depleted, if present value of the
market imperfection function either 1) decreases below its initial level for all future time,  2) increases
above its initial level for all future time, or 3) equals its initial level for all time, we can determine the
direction of changes in the first period market rate of extraction, or more generally, in the extraction rate
standardized for remaining resource stocks.  If the initial extraction rate is increased, stock will decline
more rapidly and at some later time less of the resource will be extracted.  Therefore the absolute

change in extraction will be predicted only for the initial time.42  The direction of change will depend
upon whether the market imperfection function is positive or negative.  If some resource deposits are
not ultimately fully depleted, then results will be available for constant or declining present value of the
market imperfection function but not for increasing present value.

For positive values of the market imperfection function, Table 3 summarizes impacts on the initial rate of
extraction.  For negative values, impacts on extraction would be opposite those indicated here.  Proof
of this result appears in the Appendix.

Present Value of Market Imperfection
Function Over Time

 Are all Deposits Ultimately Fully Depleted?
Yes No

g(Qt,t) e-r(t-1)  <  g(Q1,1) for all t > 1 )Q1  >  0 )Q1  >  0
g(Qt,t) e-r(t-1)  =  g(Q1,1) for all t > 1 )Q0  =  0 )Q1  >  0
g(Qt,t) e-r(t-1)  >  g(Q1,1) for all t > 1 )Q1  <  0 Indeterminate

Table 3
Impacts of Market Imperfection Function on Initial Extraction Rates:

  Positive Values of Market Imperfection Function

Table 3 indicates that if the present value of the market imperfection function is positive initially and
decreases below its initial level for all future time, then the initial extraction rate will increase as a result
of the changed conditions, independently of whether all deposits are ultimately fully depleted.  Results
will be reversed for a negative market imperfection function.  If the present value of the market
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imperfection function remains constant over time, then the entire extraction trajectory will be unchanged
if all deposits are ultimately totally depleted but the intial extraction rate will increase if some deposits
are not ultimately totally depleted.  Finally, if the market imperfection function is positive and its present
value decreases below its initial level for all future time, then the initial extraction rate would be
decreased if all resources will ultimately be fully depleted but its sign would be indeterminate if some
deposits would not ultimately be fully depleted.  

2. Application: Intertemporal Bias Under Monopoly

The theory of market imperfection functions allows a generalization of the results obtained previously
for intertemporal bias of monopolies.  We previously have shown that a monopoly (absent technical
progress) facing either a linear or a constant elasticity demand function would reduce supply and raise
price relative to performance of a competitive industry with the same remaining stocks.  

These results can be generalized using the theory of market imperfection functions. 
The market imperfection function for a monopoly is g(Qt,t) = Qt MPt/MQt  <  0.  For the constant
elasticity demand function in equation (56),  g(Qt,t) =  - Pt/,.   If the present value of price were
rationally expected to decline, present value of the market imperfection function would always be
smaller than its initial value.  By Table 3, such a monopoly would extract its resources less rapidly than
would a competitive industry.  Similarly,  if price were rationally expected to grow at the interest rate so
that expected value of price were expected to remain constant, present value of the market
imperfection function would remain constant over time.  By Table 3, if all deposits would ultimately be
fully depleted, such a monopoly would extract its resources at exactly the same rate as would a
competitive industry.

In a competitive market with Hotelling costs, present value of price will decline unless extraction is

costless or extraction costs are expected to increase rapidly enough.  Absent these two circumstances, 
the monopoly would always extract less rapidly than would a competitive industry.  Similarly, for a non-
Hotelling costs without stock effects, present value of price must decline unless the present value
inverse demand function were increasing or cost functions were increasing rapidly enough.  Absent
these circumstances, the monopoly facing a constant elasticity demand function would extract more
slowly and charge higher prices than would a competitive industry. 

For competitive markets with linear demand functions, the market imperfection function equals the
difference between current price and the choke price:  g(Qt,t)  =   Pt(Qt)  -  PC, by equation (59).  The
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market imperfection function is negative and its magnitude is increasing with market quantity. 
Therefore, for time invariant demand functions, unless Qt  is  increasing rapidly, the present value of the
market imperfection function must be declining in absolute value.  By Table 3, a monopoly would
extract more slowly than would a competitive industry and would charge higher prices.  If present value
of the inverse demand function is growing over time, present value of the market imperfection function
would be declining in absolute value whenever market quantity is stationary or declining.  Again, the
monopoly would reduce extraction rates and charge higher prices than would a competitive industry.

In summary, monopolies typically can be expected to extract less rapidly and to charge higher prices,
relative to stocks, than a competitive industry, although this need not be the case if demand functions
are growing rapidly enough.  Nor need it be the case for all shapes of demand functions.  But market
imperfection functions can be used in many cases to derive theoretical conditions which determine

monopoly directions of intertemporal bias.

3. Application: Expected Future Demand Function Changes
Here we use the theory of market imperfection functions to examine market implications of a change in
regulatory or economic conditions rationally expected to decrease demand functions in the future but to
have no effect on current demand functions.  For example, in the mid 1970's, U.S. efficiency standards
were set for future vintages of automobiles.  Those standards were expected to reduce demand
functions for petroleum starting five to ten years after their passage but to have no effect on demand
functions before that time.

Under these assumptions the market imperfection function was zero during the mad 1970's.  The
expected future demand reduction implied that g(Qt,t)  <  0 for all t > J, where J is the date at which
the standards would first become effective.  Table 3 suggests that if ultimate full depletion were

expected, the market response would be an initial increase in extraction and reduction in initial price. 
Anticipation of future demand function changes would lead to market responses before the exogneous
changes in fact occured. After J, extraction could be increased or decreased, depending on the
particular form of the demand function shift.  However, at some future times, extraction would be
reduced compensating for the initial increase.  However, if ultimate full depletion is not to be expected,
the immediate changes could not be predicted directly from Table 3.  Furthermore, Table 3 has not
been proved to apply to situations in which stock effects are important. 
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IV. IN CONCLUSION
This chapter has presented a deterministic theory of depletable resource economics, both for individual
deposits and for market equilibrium including extraction from a group of deposits.  For both situations
we have examined a sequence of models, beginning from the most common Hotelling models,
progressing through non-Hotelling models without stock effects, and finally ending with non-Hotelling
models with stock effects.   

As we have gone through the sequence, results became scarcer and scarcer.  Under Hotelling
assumption we could quantify the price path by a limited set of parameters of the problem and could
examine comparative dynamics in detail.  With non-Hotelling costs absent stock effects, we could
characterize directions of price and/or quantity changes in the overall market and could derive general
theorems describing the comparative dynamics.  But once stock effects were introduced, even the
direction of price and quantity change impacts of changing conditions could not be established in
general.  The problem became even more complex when the normal process of new deposit discovery
was added to the models and results were still fewer.  

Since results from the simpler models may not remain valid for more complex models, without further
work we cannot be confident that insights from the simpler models will remain valid for the more
complex.  Serious empirical work, such as that discussed in the Epple and Londregan chapter within

this volume, is necessary to specify appropriate cost functions, demand conditions, and market
structures.  More sophisticated theoretical models are needed to address the many phenomena ignored
by the models discussed in this chapter.  While much work has been completed and some of that work
is described in subsequent chapters of this Handbook, much needed work remains.  Our hope is that
this Handbook will help to motivate renewed theoretical and empirical attention to issues of depletable
resource economics.



105

V. APPENDIX: PROOFS

A. Marginal Cost for a Discrete Time Cost Function (Equation (10))

As Et varies, instantaneous extraction rates, g((), must vary so that their sum remains equal to Et.  Their
variation leads to the change in cost:  

We can change the order of integration for the second term under the integral above and switch the
designation of the differentials d( and d2 to rewrite the above equation as:

Combining the terms under one integral gives:

The derivative MCt/MEt would seem to depend on the resulting changes in the g(() and the impacts of
those changes on cost.  However, because the cost function is the result of a minimization problem, it is
not necessary to know how each g(() changes in response to changes in Et.  First order conditions for
optimality within the time interval can be expressed as follows, where Q is a constant, independent of
time within the interval:

Inserting this relationship into the equation above gives:

where the functions on the right hand side of the equation are all evaluated at ( = t.  Equation (10) is
derived.

B. Intertemporal Bias Result
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In establishing the results of Table 3, we  begin with an analysis of how the opportunity costs change in
response to the change in g(Qt,t).  Basic result can be stated as Lemma 1:

Lemma 1:  The maximum and minimum values (over time) of the market imperfection function
place limits on changes in present value opportunity cost for the ith deposit:
  

where Ei
tand ENi

trepresent extraction absent and with the market imperfection function,
respectively.  The maxima and minima are defined over that time that deposit i is being

extracted.  If g(QJ ,J) e-rJ   reaches its maximum (or minimum) value at only one time, then )8 i 
<  max {g(Qt,t)  e-rt}  (or )8 i  >  min {g(Qt,t)  e-rt}.

Assume the converse of the first part of Lemma 1: for that deposit with the largest value of )8j (here
denoted as deposit i), that either )8i  >  max {g(Qt,t)  e-rt} or  that 
)8i  =  max {g(Qt,t)  e-rt}  >  {g(QJ,J) e-rJ}  for all other J … t and for which ENit  >  0.  If max g(Qt,t)
> 0 then  )8i  >  0 and 8i  >  0:  the deposit will ultimately be totally depleted.  If max g(Qt,t) # 0, then
by the premise of the Lemma, deposit i will be totally depleted.   In either case, for deposit i, )Ei

J  $ 0
at some time J.  Then at J, for all j:  
0 # ){PJ + g(QJ,J) - 8i erJ} #  ){PJ + g(QJ,J) - 8j erJ}.  This inequality implies that )Ej

J  $  0 for all
j.  But then )QJ $ 0 and )PJ # 0.   But since g(QJ,J) < )8i erJ, 
){PJ + g(QJ,J) - 8i erJ} <  0, a contradiction.  Thus  )8i  #  max  {g(Qt,t)  e-rt}  and )8i < max
{g(Qt,t) e-rt} if  max {g(Qt,t) e-rt} > g(QJ,J) e-rJ  for all J  that deposit i is being extracted.  The second

part of Lemma 1 is established in the same manner.

Lemma 1 leads us directly to the main result linking market imperfection functions to intertemporal bias.

Theorem 1:
If g(Q1,1)  >  0 and all deposits would be fully depleted in the original situation, then 

if g(Qt,t) e-r(t-1)  <   g(Q1,1) for all t > 1, then )Q1  >  0;
if g(Qt,t) e-r(t-1)  =   g(Q1,1) for all t, then )Q1  =  0;
if g(Qt,t) e-r(t-1)  >   g(Q1,1) for all t > 1, then )Q1  <  0.
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If g(Q1,1)  >  0 and some deposits would not ultimatly be fully depleted in the original
situation, then 

if g(Qt,t) e-r(t-1)  <   g(Q1,1) for all t>1, then )Q1  >  0;
if g(Qt,t) e-r(t-1)  =   g(Q1,1) for all t, then )Q1  $   0.

If g(Q1,1)  <  0, all the inequalities above are reversed.

Assume that g(Q1,1)  >  0.  Assume first that g(Qt,t) e-rt  =  g(Q1,1) for all t and that all deposits
ultimately are fully depleted in the original case.  By Lemma 1,  max {g(Qt,t) e-rt } #  )8i  #  max
{g(Qt,t) e-rt}  for all i.  Thus max { g(Qt,t) e-rt } =  )8i  =  max {g(Qt,t) e-rt } =  g(Qt,t) e-rt for all t.  
Then for all i and all t:  ){Pt + g(Qt,t) - 8i ert} =  )Pt.  Therefore if )Pt  >  0, then )Ei

t  > 0, )Qt  > 
0, and )Pt  <  0,  a contradiction.  A similar contradiction is reached if it is postulated that  )Pt  <  0.
Therefore )Pt  =  0,  )Ei

t  = 0, and )Qt  =  0  for all i and all t if all deposits would be fully depleted. 

If some deposits would not be fully depleted, then 
)8i  <  max {g(Qt,t) e-rt} =   g(Q1,1).  Therefore  )Q1  $  0 in this situation.

Assume next that g(Qt,t) e-rt  <   g(Q1,1) for all t > 1.  Then by Lemma 1, )8i  <  g(Q1,1) for all i,
independent of whether all deposits would be fully depleted.  Assume the converse of the theorem, that
)Q1  #  0.  Then )P1 $ 0.  These results imply that ){P1 + g(Q1,1) - 8i} > 0 for all i, thus that )Ei

1 >
0 for all i, and that )Q1 > 0, a contradiction.  Thus )Q1 > 0.   

Assume finally that g(Qt,t) e-rt  >  g(Q1,1) for all t > 1.  Then by Lemma 1, )8i  >  g(Q1,1) for all i if all
deposits would be fully depleted.  Assume the converse, that )Q1  $  0.   Then )P1 # 0.  These results
imply that ){P1 + g(Q1,1) - 8i} < 0 for all i and thus that )Ei

1 < 0 for all i and that )Q1 < 0, a
contradiction.  Thus )Q1 < 0 if all deposits would be fully depleted in the initial case.   

A similar demonstration can be used when g(Q1,1) <  0.
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2. There can be both consumptive and non-consumptive uses of many resources.  Unless
otherwise indicated, by "use", we refer to consumptive use.

3. British Thermal Unit, a measure of the energy content of energy commodities.

4. These examples suggest that depletable resources can be viewed a limiting case of renewable
resources, a case in which the renewal rate has been reduced to zero.  This interpretation will not be
used here, but it can link the theory of depletable resources and that of renewable resources.

5. We use finite, but arbitrarily long time periods to avoid the mathematical complications
associated with an infinite time horizon model.

6. This could be a minimization of the discounted present value of  g(g((),S(()).  However it is
envisioned that L is short enough that discounting within a time period is irrelevant.  If a discounted
present value is used, none of the subsequent conclusions are modified.  Under the formulation as
stated here, the necessary condition for optimization is:

where Q is a constant independent of ( and each of the partial derivatives is evaluated at the time t+(
within the time interval.  Theory for solving this optimization is identical to that for solving the overall
optimization problems discussed in this paper.  This equation leads directly to equation (10) in the body
of the chapter.

7. Because Ct(Et,St-1) is defined based on the result of an optimization, the impact on cost for a
small variation in the g(() will be zero as long as the total of all the g(() is unchanged.

8. The inequality of equation (12) might not apply to the underlying continuous time model, yet it
must apply to the discrete time model.  To illustrate, assume that the inequality was reversed in a
discrete time model.  Consider two cases in which the Pt and opportunity costs were unchanged
between the two cases (see the discussion of first order necessary conditions for optimality at a later
point in this chapter.)  In the first, the initial stock was higher by *St-1.  As a result the optimal extraction
rate in the first case is increased by *Et, where *Et  =  - *St-1 [M2Ct/MSt-1MEt ] / [M2Ct/MEt

2 ]  >  *St-1. 
Consider the change in stock after time period t:   *St  =   *St-1  -  *Et  <  0.  Higher stock at the
beginning of a time period would lead to lower stock at the end of the period!  

This could not happen in a continuous time model even if the inequality were likewise reversed. 
Assume that [M2g/MSMg] < - [M2g/Mg2] and that the initial stock were higher by *St-1.  Instantaneous
extraction rate would increase by *g =  - *St-1 [M2g/MSMg] / [M2g/Mg2]  >  *St-1.  Therefore the rate of
stock decline over time would increase by an amount larger than  *St-1.  The stock increase *S would
decline over time.  But in so doing, it would reduce the magnitude of *g and hence of the rate of decline
of  *S.  It would never be possible for *S to become negative because as *S converged to zero, so

VII. ENDNOTES
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would *g.  Thus if *St-1  >  0, then  *St  >  0, even if the inequality were reversed.  

Hence if the discrete time model is consistent with an underlying continuous time model, then it must be
true that [M2Ct/MSt-1MEt ] >  - [M2Ct/MEt

2 ], even if  [M2g/MSMg] < - [M2g/Mg2]. 

9. This ordering by extraction cost will be discussed more fully in a later chapter section.

10. Convexity of the cost function and linearity of the revenue function together imply that the
objective function is weakly concave.  The constraints define a convex set.  The set of optimal points
for a concave function, constrained to a convex set, must always be convex.  Hence for this problem,
while the optimal point may not be unique, the set of optimal points will be convex.  

11. A clear explanation of the Kuhn-Tucker theorem appears in Varian.

12. If binding non-negativity constraints on the extraction rates were explicitly included in the test,
the same conclusion would hold as long as at least one extraction rate were positive. The derivative
with respect to Et would equal 1 for the tth depletability constraint and 0 for all other depletability
constraints.  If the non-negativity constraint were not binding at one time, say, time t, then the gradient
of the non-negativity constraint at time t would not be included in the set of gradients tested for linear
independence.  Hence there would be but one single gradient that included a non-zero derivative for Et. 
This gradient could not be obtained as a linear combination of the other gradients. 

13. Second order conditions for optimality will be simply the convexity conditions on the cost
function.  If these conditions were not valid, larger changes would allow an increase in profit from the
optimal, a contradiction from the concept of optimality.

14. Here it is assumed that the paths of tax plus opportunity cost will cross.  If they did not, say
because tax plus opportunity cost in the new situation was always lower than in the initial situation, then
equation (16) would be violated.  In this case extraction would be increased at every time period and
final stock would decrease.  But if the deposit were ultimately totally depleted in the original situation,
then the final stock could not decrease.  If the deposit were not ultimately totally depleted in the original
situation, then the original opportunity cost would be zero and could not decrease further.  In this
situation tax plus opportunity cost must increase in moving to the new situation.

15. The basic theory of difference equations shows that the solutions to equations such as (28) will
in general be the sum of a homogeneous solution and a particular solution.  The homogeneous solution
must grow at the interest rate and can always be written as 8 ert.  The particular solution is just equation
(29).  

16. Note that the steady state opportunity cost is independent of the length of a time interval (L),
since both the numerator and the denominator are roughly proportional to L.

17. This relationship can be seen from equation (24).  If E = 0 for one value of N, then if N
increases, E remains equal to zero.  If N decreases below the minimum level which gives E=0, then
extraction rate will become positive.

18. This result can be shown from equation (25).  From the N constant locus, if S increases, the
first term on the right hand side of equation (25) remains unchanged.  The second term increases (or
remains constant) under the convexity assumption, as will be shown in what follows.  If S increases by
*S, where *S is infinitesimally small, then the change in MC/MS will be:  *[MC/MS] = M2C/MS2  *S  + 
M2C/MSME  *E.  By equation (24) the change in E will be *E  =  - [M2C/MSME] / [M2C/ME2]  *S. 
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Combining these two equations gives:  
*[MC/MS] = M2C/MS2  *S - [M2C/MSME]2 / [M2C/ME2]  *S  
= { 1/ [M2C/ME2]} { [M2C/MS2]  [M2C/ME2] - [M2C/MSME]2 }   $  0  for *S  >  0.  Thus the right hand
side of equation (25) increases or remains constant when S increases.  Therefore N must increase in
time, or in the limit, be constant over time, to the right of the N-constant locus.

19. Differentiating D N = -MC/MS gives the following for infinitesimally small changes in N, S, and E: 
D *N  =  -M2C/MS2 *S  -  M2C/MSME *E.  Differentiating  P = MC/ME + N gives:
M2C/MEMS *S  +  M2C/ME2 *E  + *N  =  0.  Combining these two expressions:
D *N  =  -M2C/MS2 *S  +  M2C/MSME [M2C/MEMS *S  + *N] / [ M2C/ME2 ], or 
{D M2C/ME2  -  M2C/MSME } *N  =   - { [M2C/MS2]  [ M2C/ME2 ]  -  [M2C/MSME]2 }  *S.
Convexity of the cost function implies that the expression in brackets on the right hand side of this
expression is non-negative.  The first term in brackets on the left hand side of this expression is always
positive and the second term is positive as long as  M2C/MSME < 0.  This establishes the result that N is a
decreasing function of S as long as M2C/MSME  < D  M2C/ME2.  

20. Notice that this condition will be independent of the length of the interval in the discrete model. 
In particular, as L increases, D would increase in proportion to L, as would M2C/MSME.  M2C/ME2 would
be roughly independent of L.

21. Additional limits are placed on these parameters by the requirements of equation (11).  In using
this equation, we choose parameters so that equation (11) is valid for all values of the variables in the
optimal solution.

22. If the initial stock was below the steady state level, however, this pattern would be impossible
and therefore no extraction at all would occur.  However this possibility has been ruled out by
assumption.

23. I would like to thank Robert Patrick for for pointing out this result about multiplicatively
separable functions.

24. Note that the steady state stock and opportunity cost are independent of L.  Both the
numerators and the denominators will tend to be proportional to the length of the time period.

25. Equation (29) suggests this counter-intuitive result for stock levels from which M2C/MSME > 0. 
Higher prices lead to more extraction in early years when M2C/MSME > 0 and less extraction in later
years when M2C/MSME < 0.  Thus MC/MS increases in both early and later years.  Thus the discounted
present value of -MC/MS must decrease as a result of the price increase.  Note that if M2C/MSME < 0 for
all years,  MC/MS would decrease in early years and increase in later years.  In that case the discounted
present value of -MC/MS could be expected to increase as a result of the price increase.

26. We could reasonably assume that if marginal cost is decreasing in S for one stock level it is
decreasing in S for all lower levels.  Convexity implies that if MC/MS is negative for some level, it must
be negative for all lower levels if E is held constant at those levels.  However, that does not strictly
imply that if marginal cost is decreasing in S for one stock level it is decreasing in S for all lower levels. 
Thus the awkward statement in the text. 

27. Alternatively, in an infinite time problem which converged to a steady state, the increase in the
steady state opportunity cost must be smaller than the increase in the price in the steady state as shown
in the body of the chapter.  But this would be impossible if the initial opportunity cost increase equalled
or exceeded the initial price increase.  
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28. Alternatively, in an infinite time problem which converged to a steady state, the increase in the
steady state opportunity cost must be negative, as shown in the body of the chapter.  But this would be
impossible if the initial opportunity cost increase were non-negative.

29. This clarification of the concept will be necessary for establishing the existence of a competitive
equilibrium.

30. A discussion of these fixed point concepts as well as the basic mathematical concepts
embedded in the fixed point theorems appears in the Green and Heller chapter within the Handbook of
Mathematical Economics.

31. This statement is quoted directly from the Green and Heller chapter of the Handbook of
Mathematical Economics.  A correspondence ( is closed if and only if its graph is a closed set.  The
Green and Heller chapter also provides a discussion of upper hemicontinuity of a correspondence. 
Essentially, a correspondence ((a) is upper hemicontinuous if it does not blow up discontinuously in
any small neighborhood of any point a.

32. See for example, Varian, for more discussion.  The statement given here is a restatement of the
theorem as cited by Varian.

33. The statement assumes that the firms producing resources of a given cost do not have exactly
enough stock left during the last period of production from that resource grade to meet total market
demand precisely.  If they did, then there would be a small range of possible price variation at that time. 
The shorter the time intervals in the model, the smaller the range of possible variation.  In the limit of a
continuous time model, there would be no possibilities for price variation at the time of transition.

34. It should be remembered that both resources face the same price.

35. This discussion assumes that time intervals are so small that at the maximum extraction rate
there is virtually no change in extraction rate from one time to the next.  For larger time intervals, the
more precise statement would be:  if the low cost deposit increases in extraction rate from one time
period to the next, then the higher cost deposit must also increase in extraction rates between these two
time periods.

36. Here it is important that we assumed that the time horizon is so far in the future that its existence
has no significant impacts on the extraction patterns.  As the system approaches a time horizon, we
have seen that extraction can rise over time with constant prices.  For the competitive equilibrium, that
implies that prices can be falling as the horizon is approached.

37. Price could decline as the time horizon is approached.  However that time is assumed to be so
far in the future as to be irrelevant for the current choices.

38. Note that depletable resource models based upon an aggregate cost function for all existing
resources, rather than the disaggregated concept used here, could well lead implicitly to predictions of
changes in the extraction from existing resources, based upon the discovery of new deposits.

39. This fact is perhaps important for decentralization of decision making within a monopoly or a
cartel.  The central controller needs only to communicate one variable to managers of the deposits, the
derivative Qt MPt/MQt, or equivalently, Pt/,t.  The central controller must motivate or cause the manager
of each deposit to maximize its own profit, with relevant price adjusted downward by  Pt/,t.
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40. This proposition can be proved by assuming the converse and examining the difference in
opportunity costs backward, starting from the time which the choke price is reached.  

41. Here it is important that we assumed that the time horizon is so far in the future that its existence
has no significant impacts on the extraction patterns.  As the system approaches a time horizon, we
have seen that extraction can rise over time with constant prices.  For the competitive equilibrium, that
implies that prices can be falling as the horizon is approached.

42. More precisely, the prediction is only for the first period when the remaining stock varies with
the market imperfection function.  However, as will be seen, when the discounted present value of the
market imperfection function remains constant over time and the entire resource will be fully depleted,
there is no initial impact on extraction.  Thus the stock will be unchanged and there will never be an
impact on extraction rates.


