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Outline
• Why Sticky Prices in Monetary Models?

– From Keynesian to New Classical to New 
Keynesian

• Original staggered contract model
– Derivation
– Implications

• Generalizations and special cases
– Calvo version

• New Keynesian Phillips Curve



Sticky Prices and/or Wages: 
An Old Topic in Monetary Economics  

• Keynes: Labor demand Ld(w/p) with fixed w
– an increase in p lowers real wage, increases quantity of 

labor demanded         positive relation between p and L
– But implied real wage was countercyclical, which it wasn’t

• Phillips Curve
– Prices or wages slowly adjust to excess demand π = f(y-y*)

• Friedman-Phelps critique and expectations augmented 
Phillips curve: π = πe + f(y-y*)

• Lucas supply function: prices or wages perfectly 
flexible

• New classical models
• Only unanticipated changes in money matter (πe = Etπ)
• Monetary policy ineffectiveness (Sargent)

• Thus need RE model with price stickiness: But how?
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Average price
p3 = .5(x3+x2)
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Prevailing 
price for x3
is .5(x2+x4)

The concept of staggered price setting
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 equations price staggered  theinto dsubstitute becan which 

)1(    where

)1g with rulepolicy monetary (
)demandmoney  from()(y

rulepolicy anddemandmoney  with Model
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Put equations into an economy wide model and solve
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a βγ

1.00
0.87
0.75
0.60
0.29

.00

.01

.04

.13

.60

Example values
--recall β=α(1-g)

One stochastic equation in one unknown
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The complete solution:
a stochastic process for pt and yt



The Policy Tradeoff in a Staggered Pricing Model

 .directions opposite in move y and p of deviations standard
 and  variances the varies,parameter policy   theAs
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(See derivation on slide 13)



Implications
• Expectations of future inflation matter for pricing 

decisions today.
• There is inertia in the inflation process
• The inertia is longer than the length of the period during 

which prices are fixed. (contract multiplier)
• The degree of inertia or persistence depends on 

monetary policy.  
• The theory implies a tradeoff curve between price 

stability and output stability. 
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Briefly Compare with More General Model 
“Aggregate Dynamics and Staggered Contracts,” J.B.Taylor JPE 1980)
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Guillermo Calvo version of staggered price setting

Possible random price setting times, but 
still “time dependent,” not “state dependent”.
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Note use of the lead and lag operator,
L-1 and L

Derivation of the simple aggregate equation
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Derivation of the expression on slide 8


