7. Staggered Price Setting and New Keynesian Economics

John B. Taylor, May 8, 2013

Outline

- Why Sticky Prices in Monetary Models?
- From Keynesian to New Classical to New Keynesian
- Original staggered contract model
- Derivation
- Implications
- Generalizations and special cases
- Calvo version
- New Keynesian Phillips Curve

Sticky Prices and/or Wages: An Old Topic in Monetary Economics

- Keynes: Labor demand $L^{d}(w / p)$ with fixed w
- an increase in p lowers real wage, increases quantity of labor demanded \Longrightarrow positive relation between p and L
- But implied real wage was countercyclical, which it wasn't
- Phillips Curve
- Prices or wages slowly adjust to excess demand $\pi=f\left(y-y^{*}\right)$
- Friedman-Phelps critique and expectations augmented Phillips curve: $\pi=\pi^{e}+f\left(y-y^{*}\right)$
- Lucas supply function: prices or wages perfectly flexible
- New classical models
- Only unanticipated changes in money matter ($\pi^{e}=E_{t} \pi$)
- Monetary policy ineffectiveness (Sargent)
- Thus need RE model with price stickiness: But how?

The concept of staggered price setting

$$
\begin{aligned}
& p_{t}=\frac{1}{2}\left(x_{t}+x_{t-1}\right) \\
& x_{t}=\frac{1}{2}\left(x_{t-1}+E_{t-1} x_{t+1}\right)+\frac{\gamma}{2}\left(E_{t-1} y_{t}+E_{t-1} y_{t+1}\right)+\varepsilon_{t}
\end{aligned}
$$

Note : First term on right hand side of second equation can be written differently :

$$
\begin{aligned}
& x_{t}=\frac{1}{2}\left(p_{t}+p_{t+1}\right)=\frac{1}{2}\left[\frac{1}{2}\left(x_{t}+x_{t-1}\right)+\frac{1}{2}\left(x_{t+1}+x_{t}\right)\right] \\
& \Rightarrow x_{t}=\frac{1}{2}\left(x_{t-1}+x_{t+1}\right)
\end{aligned}
$$

Put equations into an economy wide model and solve

Model with money demand and policy rule
$\mathrm{y}_{\mathrm{t}}=\alpha\left(m_{t}-p_{t}\right)+v_{t} \quad$ (from money demand)
$m_{t}=g p_{t} \quad$ (monetary policy rule with $\mathrm{g}<1$)
$\Rightarrow y_{t}=-\beta p_{t}+v_{t}$ where $\beta=\alpha(1-g)$
which can be substituted into the staggered price equations
$p_{t}=\frac{1}{2}\left(x_{t}+x_{t-1}\right)$
$x_{t}=\frac{1}{2}\left(x_{t-1}+E_{t-1} x_{t+1}\right)+\frac{\gamma}{2}\left(E_{t-1} y_{t}+E_{t-1} y_{t+1}\right)+\varepsilon_{t}$
to get :
$x_{t}=\frac{1}{2}\left(x_{t-1}+E_{t-1} x_{t+1}\right)+\frac{\gamma}{2}\left[-\beta\left(\frac{E_{t-1} x_{t}+x_{t-1}}{2}\right)-\beta\left(\frac{E_{t-1} x_{t+1}+E_{t-1} x_{t}}{2}\right)\right]+\varepsilon_{t}$
$=\frac{1}{2}\left(x_{t-1}+E_{t-1} x_{t+1}\right)-\frac{\gamma \beta}{4}\left[E_{t-1} x_{t+1}+2 E_{t-1} x_{t}+x_{t-1}\right]+\varepsilon_{t}$

One stochastic equation in one unknown

Now need to solve the model
$x_{t}=\frac{1}{2}\left(x_{t-1}+E_{t-1} x_{t+1}\right)-\frac{\gamma \beta}{4}\left[E_{t-1} x_{t+1}+2 E_{t-1} x_{t}+x_{t-1}\right]+\varepsilon_{t}$
for x_{t}.
Guess a solution of the form
$x_{t}=a x_{t-1}+\varepsilon_{t}$
where a must be determined.
Example values --recall $\beta=\alpha(1-g)$
Then $E_{t-1} x_{t}=a x_{t-1}$
and $E_{t-1} x_{t+1}=a^{2} x_{t-1}$
which can be substituted back into the x equation to get :
$a x_{t-1}+\varepsilon_{t}=\frac{1}{2} x_{t-1}+\frac{1}{2} a^{2} x_{t-1}-\frac{\beta \gamma}{4}\left(a^{2} x_{t-1}+2 a x_{t-1}+x_{t-1}\right)+\varepsilon_{t}$
$\Rightarrow a=\frac{1}{2}+\frac{a^{2}}{2}-\frac{\beta \gamma}{4}\left(a^{2}+2 a+1\right)$
a quadratic in a which has solution :
$a=c \pm \sqrt{c^{2}-1}$ where $\mathrm{c}=(1+\beta \gamma / 2) /(1-\beta \gamma / 2)$.
Clearly $c>1$, so can chose stable root for uniqueness.

The complete solution: a stochastic process for p_{t} and y_{t}

Use the solution for x_{t} to get p_{t}
$x_{t}=a x_{t-1}+\varepsilon_{t}$
$x_{t-1}=a x_{t-2}+\varepsilon_{t-1}$
thus
$p_{t}=a p_{t-1}+.5\left(\varepsilon_{t}+\varepsilon_{t-1}\right) \quad($ an ARMA $(1,1)$ model $)$
$y_{t}=-\beta p_{t}+v_{t}$ where $\beta=\alpha(1-g)$
From these we can compute the variances of y_{t} and p_{t} and stipulate an objective function such as $\min \lambda \operatorname{var}\left(p_{t}\right)+(1-\lambda) \operatorname{var}\left(y_{t}\right)$ and choose the value of g to minimize it.

Note that the infinite moving average representation is :
$p_{t}=.5\left(\varepsilon_{t}+\psi_{1} \varepsilon_{t-1}+\psi_{2} \varepsilon_{t-2}+\psi_{3} \varepsilon_{t-3}+\ldots\right)$
$y_{t}=v_{t}-.5 \beta\left(\varepsilon_{t}+\psi_{1} \varepsilon_{t-1}+\psi_{2} \varepsilon_{t-2}+\psi_{3} \varepsilon_{t-3}+\ldots\right)$
where $\psi_{i}=a^{i-1}(1+a), i=1,2, \ldots$

The Policy Tradeoff in a Staggered Pricing Model

An RE - Staggered Price Setting Model
$p_{t}=\frac{1}{2}\left(x_{t}+x_{t-1}\right)$
$x_{t}=\frac{1}{2}\left(x_{t-1}+E_{t-1} x_{t+1}\right)+\frac{\gamma}{2}\left(E_{t-1} y_{t}+E_{t-1} y_{t+1}\right)+\varepsilon_{t}$
$y_{t}=-\beta p_{t} \quad \Leftarrow$ Can think of policy as choosing β

Solution :

y_{t}
where
$a=c \pm \sqrt{c^{2}-1}$ with $c=(1+\beta \gamma / 2) /(1-\beta \gamma / 2)$.

Now from the formula for the variance of an ARMA $(1,1)$ model we have
$\sigma_{p}^{2}=.5 \sigma_{\varepsilon}^{2} /(1-a)^{\swarrow}$ (See derivation on slide 13)
$\sigma_{y}^{2}=\beta^{2} \sigma_{p}^{2}$
As the policy parameter β varies, the variances and standard deviations of p and y move in opposite directions.

Implications

- Expectations of future inflation matter for pricing decisions today.
- There is inertia in the inflation process
- The inertia is longer than the length of the period during which prices are fixed. (contract multiplier)
- The degree of inertia or persistence depends on monetary policy.
- The theory implies a tradeoff curve between price stability and output stability.

Briefly Compare with More General Model
"Aggregate Dynamics and Staggered Contracts," J.B.Taylor JPE 1980)

$$
\begin{aligned}
& x_{t}=N^{-1} \sum_{i=0}^{N-1} E_{t}\left(p_{t+i}+\gamma y_{t+i}+\varepsilon_{t+i}\right) \\
& p_{t}=N^{-1} \sum_{i=0}^{N-1} x_{t-i}
\end{aligned}
$$

- For empirical work you need to go beyond the stylized assumption

$$
\begin{aligned}
& x_{t}=\sum_{i=0}^{N-1} \theta_{i t} E_{t}\left(p_{t+i}+\gamma y_{t+i}+\varepsilon_{t+i}\right) \\
& p_{t}=\sum_{i=0}^{N-1} \delta_{i t} x_{t-i}
\end{aligned}
$$

Guillermo Calvo version of staggered price setting

$\left.\begin{array}{l}x_{t}=(1-\beta \omega) \sum_{i=0}^{\infty}(\beta \omega)^{i} E_{t}\left(p_{t+i}+y_{t+i}+\varepsilon_{t}\right)\end{array}\right\} \begin{aligned} & \begin{array}{l}\text { Possible random price setting times, but } \\ \text { still "time dependent," not "state dependent". }\end{array} \\ & p_{t}=(1-\omega) \sum^{\infty} \omega^{i} x_{1-1}\end{aligned}$ $p_{t}=(1-\omega) \sum_{i=0}^{\infty} \omega^{i} x_{t-i}$
These two equations can be rewritten as
$x_{t}=\beta \omega E_{t} x_{t+1}+(1-\beta \omega)\left(p_{t}+2 y_{t}+\varepsilon_{t}\right)$
$p_{t}=\omega p_{t-i}+(1-\omega) x_{t}$
Once a model for y and the impact of monetary policy is added, you have a well - defined RE model as before.

- The two equations can also be re - written in an interesting form :
$\pi_{t}=\beta E_{t} \pi_{\mathrm{t}+1}+\delta y_{t}+\delta \varepsilon_{t}$
where
$\delta=\left[\frac{(1-\omega)(1-\beta \omega)}{\omega}\right]$
which has become a popular way to write the model--new Keynesian Phillips Curve

Derivation of the simple aggregate equation

$x_{t}=(1-\beta \omega) \sum_{i=0}^{\infty}(\beta \omega)^{i} E_{t}\left(p_{t+i}+\gamma y_{t+i}+\varepsilon_{t}\right)$
$p_{t}=(1-\omega) \sum_{i=0}^{\infty} \omega^{i} x_{t-i}$
Note use of the lead and lag operator,
$x_{t}=(1-\beta \omega) \sum_{i=0}^{\infty}\left(\beta \omega L^{-1}\right)^{i}\left(p_{t}+\gamma y_{t}+\varepsilon_{t}\right)$
$x_{t}=\frac{(1-\beta \omega)}{\left(1-\beta \omega L^{-1}\right)}\left(p_{t}+\gamma y_{t}+\varepsilon_{t}\right)$
$p_{t}=(1-\omega) \sum_{i=0}^{\infty}\left(\omega L^{i}\right) x_{t}$
$p_{t}=\frac{(1-\omega)}{(1-\omega L)} x_{t}$
$p_{t}=\frac{(1-\omega)(1-\beta \omega)}{(1-\omega L)\left(1-\beta \omega L^{-1}\right)}\left(p_{t}+\gamma y_{t}+\varepsilon_{t}\right)$
$\left(1-\omega L-\beta \omega L^{-1}+\beta \omega^{2}-\left(1-\omega-\beta \omega+\beta \omega^{2}\right)\right) p_{t}=(1-\omega)(1-\beta \omega)\left(\gamma y_{t}+\varepsilon_{t}\right)$
$\omega\left(p_{t}-p_{t-1}\right)=\beta \omega\left(E_{t} p_{t+1}-p_{t}\right)+(1-\omega)(1-\beta \omega)\left(\gamma y_{t}+\varepsilon_{t}\right)$
Now set $\pi_{t}=p_{t}-p_{t-1}$, divide by ω, and define δ to get the simple form

Derivation of the expression on slide 8

To derive the variance of the price level on slide 8 of lecture 7 , recall that for a general ARMA(1,1) process
$x_{t}=\alpha x_{t-1}+u_{t}-\theta u_{t-1}$ with $E u_{\mathrm{t}}=0$ and $\operatorname{var}\left(u_{t}\right)=\tau^{2}$
the variance of x_{t} is given by this formula
$\operatorname{Var}\left(\mathrm{x}_{t}\right)=\frac{\tau^{2}\left(1+\theta^{2}-2 \alpha \theta\right)}{1-\alpha^{2}}$
The ARMA model derived in class on May 9 is
$p_{t}=a p_{t}+.5\left(\varepsilon_{t}+\varepsilon_{t-1}\right)$ with $\operatorname{var}\left(\varepsilon_{t}\right)=\sigma_{\varepsilon}^{2}$
thus setting $\alpha=a$ and $\theta=-1$ and $\mathrm{u}_{\mathrm{t}}=.5 \varepsilon_{t}$ we get
$\operatorname{Var}\left(p_{t}\right)=\frac{.25 \sigma_{\varepsilon}^{2}\left(1+(-1)^{2}+2 a\right)}{1-a^{2}}=\frac{.5 \sigma_{\varepsilon}^{2}(1+a)}{(1-a)(1+a)}=\frac{.5 \sigma_{\varepsilon}^{2}}{1-a}$
which is the expression on slide 8 .

