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1. Introduction

Economists are frequently faced with the practical problem of
optimizing the behavior of an economic system about which little is
known. Recently there has been much discussion and research abbut
one such problem: the control of dependent variables over time in a
model with unknown parameters but with a known structure. It is now
well known that in these multiperiod problems, current control deci-
sions affect not only current performance, but also the information
available for estimating the unknown parameters. Sometimes called the
problem of joint estimation and contgol, this problem has been investi-
gated in the simple linear regression model with one unknown para-
meter by Prescott (1972) from a Bavesian point of view and by Taylor
(19" ) from a non-Bayesian point of view.

Because optimal Bayes cont;ol rules have been analytically as well
as computationally difficult to find, except in the most simple cases,

a large amount of research has been devoted to finding approximations

to these rules { sec Tse EE.EE:(1973) and Chow (1973}, for example).

Most of these suggested approximations are accompanied by Monte Carlo
experiments Lo evaluate thelr performance in a particular.model with a given

set of parameters. Tor the same recason that optimal Bayes rules are
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difficult to find analytically, there has been no analytic evaluation of
these approximations.

The main purpose of this paper is to present and analyze a critcrion
for evaluating control rules which does provide some analytic results, at
least for problems with an infinite time horizon and no discoﬁnting. The
criterion is roughly defined as the limit, as the number of time periods
approaches infinity, of the ratio of a sum of deviations from bliss to an
appropriate function of time. The criterion is closely related to the
concept of asymptotic efficiency of statistical estimation theory. It is
because of such a relationship thatl some analytic results can be obfained.
The criterion does not depend on placing prior distributions on the unknown
parameters although an investigator may do so when the value of the criter-
ion depends on the unknown parameters.

‘In order to analyze the infinite horizon no discount case whén parameters
are unknown, we must first consider the similar situation when the para-
meters are known. Therefore in Section 2 we consider a linear stochastic
difference equation model with known parameters, and show that a stochastic
version of the Ramsey deviation from bliss approach leads to a sum of un-
discounted losses which converges.

In Section 3 we consider the unknown parameter case. The Ramsey
deviation from bliss approach cannot be used in this case since the undis-
counted sum diverges. We therefore modify the deviation from bliss
approach by dividing the sum by an inereasing function of time so that the
limit of the ratio exists. 1In Section 4 we illustrate the use of the cri-
terion with some previous results and in Section 5 we discuss how the criter-
ion relates to the notion of good rules and the overtalking criterion of op-

timal growth thoory.



2. No Discounting in the Known Parameters Case.

Consider a control problem of the following type. Let
(1) x =Axt + Cu + E ’ t=1,2,...,'

where x, 1s a vector of p elements consisting of current endogenous variables,
lagged endogenous variables, current control variables and lagged control
variables,2 where ut is a vector of g elements consisting of current con-
trol variahles only, where {Et} is a vector sequence of unobservable ran-—
dom variables which is independent and has zero mean and unknown finite
variance §, and whére A and C are unknown constant matrices of coefficients.
We are concerned with bringing the elements of Xt close to certain target
levels over an infinite time horizon with no discount rate, so that the
loss function associated with deviations of x from these target levels is

t

assumed to be independent of time.

This loss function is assumed to be the quadratic form

(2) L(xt) = (xt - a)'K(xt - a},

where K is a known symmetric and positive semi—definite matrix and a is
a known vector of targets.

A control rule is defined to be a sequence {ut} such that

ut = ut (xt—l' xt_2,...) for t = 1,2,.... . Conceptually we would like

to find a control rule which minimizes

I'J-l
{3) lim E I L(xt).
Ter00 =1

2

For a discussion of the rationale behind this partitioning of the model
see Chow (1970).
3

By definition of the vector x this means that u is choscn sequentially
on the basis of all past obscrvaEions including obskrvations on the control
variable.



Using dynamic programming one may find that the limit as T9® of the so-

lution to the functional equations for this problem exists. However, the
criterion is meaningless because, with the additive disturbances in eguation
(1), the infinite sum diverges. 1In order to formulate the stochastic control
problem more formally (which is necessary for the problem with unknown para-
meters introduced in the next scction), we use a stochastic version of Ramsey's
deviation from bliss approach which does lead to a well.defined stochastic
optimization problem.

The control problem is thus formulated as: find a control rule {ut} to

minimize
T
(3a) lim F 2 (L(xt} - b)
T-yo0 t=1

where b is the minimized value of EL(xt) in the steady state.
That is,
(4) b = min lim EL(xt).
{ful e
t

We refer to b as the bliss level of the expected loss function. A sufficient
condition for this steady state value to exist is that all the roots of A be
less than one in absolute value, but necessary conditions depend on X and C
as well as A.

One method of obtaining the minimized value of EL(xt) in the steady
state is the constrained minimization approach described in Chow (1970).

Considering the case where a=0 for simplicity, this leads to the control rule

(5) u* = Gx s L=1,2,...,
t =1
where G = —(C'HC)_lC'HA and H satisfies the equations
(G) H = K + A'"P'IIPA,
\ -1, . . .
where P = I-C(C'HC) “C'll. Using this control rule, ecquation (1) becomes



xt = Rx L + £ where R = A + CG. Therefore, if all the roots of R are
_ t- t

less than one in absoclute value, the steady state value of the loss function is

(7) b = trkM,
= ot
where M = 1lim Ex xé = L rRtQrt and can be found from the set of egunations
teo =0

M = {I + RMR'.

We now show that the infinite sum in (3a) exists for the control
rule defined in equation (5). This réSults from a simple generalization of
the fact that a series whose terms consist of the remainders of a con-
vergent geometric seriecs is also a convergent geometric series.

Let EXy %y = M, then for >0,

t t-1 .
(8) X =Rx +1%L Re |,
t 0 i=0 t—i
and
o b1 .
() Ex'Kx = trk {RM R'Y 4 ¥ RQ rei},
t ot 0 i=0

Thercefore the expected T period sum of deviations from bliss is

o
(10) E X (L(xf)—b)
=0 -

T ) T -1 . 3
= trk & RMR'Y 4+ k¥ ¥ (RO R- M.
t=0 o t=0i=0

The first series in eguation (10) converges if all the roots of R are
' 4
less than one in absolute value. Let R=0Q A Q l, where A is a diagonal

matrix of the characteristics roots of R. Then, the tth term in the second

series in equation (10) can be writtoen:

(11) ek £ rigred - m)
i'——' O t._l . [&] .
=tr K % (oA' o”lp QAlQ_l - T QAlQ"lQ oAip™1)
i=0 i=- 0
O T
=tk Q% (A= N AT,
i=0 1=0
. . . . A 2
The: Jth diagonal clement of this last som can be wrilleon as "'-.I /(]---,-\.]) .

4 The argumont can be modified in the casce of multiple roots.



T
Thus, since L At converges for IA_|< 1, the second series in equation (10)
' t=1 3
will converge if [A I< 1 for all j.

]
Having shown that the criterion of (3a) exists for the control rule

(5) which minimizes the expected loss in the steady state, we can now legit-
amately consider the minimization of (3a) using dynamic programming. The
limit as T»o of the solution of the functional egquationg for {3) is eguivalent
to (3a), since we have only changed the scale of the loss function in order to

> that the limit of this solution

obtain the finite sum. Chow (1972) has noted
gives the same control rule that is found by minimizing the expected loss

in the steady state; namely that given by equation (5). One may interpret the result of
this section as a justification for minimizing the expected loss in the steady

state when one really is interested in minimizing an undiscounted sum of ex-

pected losses in each period.

3. - The Unknown Paramcters Case

When the coefficient matrices A and B are unknown the optimal control
rule {uz} defined by (b} cannot be used since it is defined in terms of these
matrices. Therefore, some alternative which we represent as Gt must bhe used.
For example, Gt might: have the same form as (5) with the least squares estimates
of A and C replacing the unknown values. Alternatively, Gt might have an en-
tirely different form than (5), perhaps reflecting risk and experimentation
te cbtaln more information about the unknown parameters. Such an experimental
rule might be a Bayes control rule calculated for a suitable prior distribution on
the unknown parameters or it may be an approximation to such a rule as suggested
in the papers menticoned in the introduckion.

In order to evaluate rules in this gituation, a first inclination ig to use
the same criterion (3a) thalt was introduced in Soction 2.

However, although the sum in {3a) is e

5

Merton (1973) obtains the same result in a contincus time stochastic growth
mode] .



finite when the parameters are known, it will not be finite when the
parameters are unknown because E(L(xt)—b) does not converge to zero
quickly enough. This is demonstrated in the next section of this paper in
a model with one unknown paramcter where E(L{x }-b) = 0{1/t) so that
0 t
§=1E(L(xt)—b) does not converge. Since in a model with more than cne un-—
known parameter there will be even legs information, the convérgence cannot
be any faster than 1/t so we will have divergence of this sum in more gencral
situations also.

The suggested criterion of control is therefore

B E (L{x }-b)

(13) iim t=1 t ,
Tooo

£(T)
where [(T) is a positive increasing function of T defined so that the limit
exists and is nonzero, and where b is given in equation (7). Of two con-
trol rules, the one which results in a smaller value of (13) is preferred.
It should be emphasized that the expectation is with respect to the segueonce
of random variables {Et}. A and C and therefore b are fixed constants although
unknown. Note that f{T) should be chosen to increase more slowly than T when-
ever fhere exists a control rule for which E(L(xt)—b)+ﬂ; therefore, the
criterion is generally different from an average deviation from bliss.

It would seem that a minimum prerequisite for a control rule would be that
EL(xt}+ b, so that one might limit the admissible class of control rules to
rules which have this convergence property. ITn situations where such mean
sqguare converacnce 1s difficult to establish, one miaght use some other con—

vergence concept.  If {ﬁr]and {x*} represent the path of x

when {Gt} and
L -

i

{UE} are used respectively, then this might entail showing that ﬁt—x* 2+ 0
t

in probability or with probability one.

Tt may be arqued Lhat Lhis convergence prorogquisileo 15 not worth copne-



sidering since it is already well known that many classical or Bayesian
estimates are consistent, and thercfore ﬁtwhich is a function of these
estimates will converge to XE in some sense. Such a sanguine view is not
warranted, however, because the usual consistency theorems cannot be em-
ployed. The data used for estimation are the control variables of previous
periods and are therefore random variables with a possibly complicated struc—
ture. In other words, the data cannot be assumed 1o be fixed énd given since
it is manipulated in a prescribed way by the control rule. One possible
result is that as the control variable converges to a deterministic function
of the lagged endogenous variables (note that u: is a linear function of

, Xﬁ—l)’ so that a multicollinearity problem becomes so serious as to prevent
consistent estimates of the parameters. If the estimates of A and B upon
which Gtis based are not consistent, then ﬁt may not converge to x;. The
simulation results of Tse, et. al.(1973) are interesting in this regard,
because the parameter estimates do not secm consistent.

The criterion in (13) is also related to the notion of asymptotic
efficiency in statistical estimation theory. Suppose that for some increasing
function dt a class of control rules has the property that lim th(L(Xt)ub)

to
exists and is nonzero. Then, analogous to estimation theory, a control rule
{i } is said to be asymptotically efficient out of this class, if lim d E{I.(® ) -h)
t {00 t
is a minimum out of all other rules in the class. TLet m be this minimym

I 6
value. Then, assuming that » d-1 diverges,

T t=]1 t
E X (L{x )-b)
(14) lim  t=1 T =,
00 £(T)
where T(T) = ; d"l. Thus an asymptotically effidentcontrol rule minimizes
t=1 t
6
This assumption holds if d,=t. The following lemma is used: Lot {p“} he a so-

quence of positive numbers with ; P, diverging to infinity and suppdsc that a

soquence {ZL} converyes to z, t=1

then T
)

?? P{,Z /

. P, 4. (See Knopp (1956, . 32.)
L= 1 8 1= ]

t:



the criterion of this paper.

If the limit of the normalized variance is difficult to obtain ona might
be satisfied in determining the limiting distribution of dt(ﬁt—xz) and com-
pare.control rules on the basis of the variance of this limiting distribution.
It should be mentioned that a byproduct of this derivation is.the distrib-
ution of the parameter estimates. These distributions will be different
than in the non-centrol case where thé data is not manipulated. The para-
meter estimates may converge at a rate considerab1y7 less than dt.

The similarity between our criterion and asymptotic efficiency indicates
that the appreoach is useful in evaluating the advantages of control rules de-
signed specifically for experimentation. The idea behind such control rules
is that, by experimenting, more information can be obtained about the parameters
to improve control performance in later periods. It might be argued intuitive-
ly that experimental control rules are designed for short run problems, and
that in an infinite horizon model they are not important. However, in an
infinite horizon problem experimentation in early periods has a much greater
reward in the future than in short horizon problems, simply because there are
more future periods. Thus, the intuitive argument can go either way, and a
mathematical analysis using the criterion suggested here would be of interest.

Finally, the similarity between our criterion and asymptotic ef-
ficiency indicates that the approach will fail to diseriminate betwecen
some control rules (just as morc than one estimator may be asymptotically
efficient}. This is a difficulty which may be overcome by using asymptotic
expansions to further discriminate between control rules as is currently

being donc in simultancous equations problens. On the other hand,

7 . . . - .
Preliminary analysis of a model with two unknown parameters indical.os

{(though dees not riqorously establish) that if d =t, then the variaonce of he
parameter estimates converges as 1/log L. The cfonoretrician should be aware
of such poor estimates if his wodel is ever to be used for purposes other than
control.
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the criterion is of some value even when it fails to discriﬁinate, if the
control rules were previously ranked differently on intuitive grounds. For
example, if by this criterion a certainty equivalence control rule performs
just as well as a computationally cumbersome control rule then in many
problems a policy maker may be satisfied with using the certainty equivalence
rule. In the following section we consider a particular case where this occurs.

4. The Case of One Unknown Parametér

As a particular case of cquation (1) consider the scalar model
{15) X = But +e, t=1,2,...,

where ut is a scalar control variable, Xt is the variable to be controlled,
B is an unknown scalar, and {e } is an independent sequence of random var-—

t

2

iables with zero mean and finite variance ¢ . Further assume that the loss func-
tion is

2
{16) L(xt) = {x - a) ,

t
so that there is no cost of control? Thus, u* = a/f and b = 0° and the devia-
t

tion from bliss dué to B being unknown is

~ 2
(17) E(L( )- b) = E(But - a)
t

when ﬁt is used instead of ué. In a previous paper {Taylor (1974)} two such
control rules {ﬁt} were considered; a least squares certainty equivalence

control rule defined by ﬁl non-zero but otherwise arbitrary, and

a
(18) G = A , t=2,3,...,
R

8
The following discussion could be easily modificd if u also appeared in
the loss function, -
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where B is the least squares estimate of £ based on ({x , u R O L I B
t-1 t-1  t-1 171

and a Bayesian certainty equivalence control rule
a
(19} 4 = b t=1,2,...,

where b is the Bayes estimate of P when the assumed prior distribution
t-1 )

of f is normal with mean b , Et is normally distributed and the loss function
(8]

for estimation is quadratic. For both rules it is shown that

{20} X - x* 0
t t

with probability one, and that
(21) Jf(xt - x:) SN(0,07y .

If we assume that G 1is bounded, then
t

2
(22} tE(BG -~ a) > o,
t

and using cguation (14)

T N 2
¥ E(But - a)
(23) lim~ {=1

T

0%,

log T

when we use the fact that v 1/t = 0{log T). “Thus by the c¢ritericn of this

paper both control rules perform equally well.

But a stronger result alse holds. The carlier paper shows that any
control rule {ﬁt} for which Bﬁt - a* 0 with probability cnec, cannot lead to
estimates of B which have a smaller asymptotic variance. Since the control
value of Gt must be based on parameter estimates of B. we conclude that any such
control rule cannot have a smaller asymplotic variance than that given in (21).
Thus, any control rule which converdges to the value a/f wilh vrobabildity one
cannot give a smaller value of the criterion than that given by {23).

Therefore, under the assunptions of this model and criterion, the cer-

Eainty ecauivalence conlrol rulos corform as welt oo any cond ral o rile designed Tor
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experimentation. If this result also holds‘in more gencral medels, then the

practical use of certainty equivalence rules in models with a long time hor-

izon might be acceptable afterall. But the more general results remain to be
shown.

5. The Overtaking Criterion and Good Rules -

In the literature of optimal cconomic growth it has become common to use
the overtaking criterion introduced by von Weiszacker (1965) in undiscounted
infinite horizon problems. A stochastic version of the overtaking criterion is
that a control rule {Gt} overtakes {ut} if there exists a TO such that
E %_l {L(ﬁt)—L(xt)} 20 for all T > To' A related criterion discussed by Gale

(1967) is that of a good rule. A control rule {ﬁt} is good relative to {ut}
if there exists a To and an M such that E %Zl{L{;t)—L(xt)} = M for all T > TO.
If {Gt} overtakes fut}, then {ﬁt} is good relative to {ut} but the converse is
not true since M may be greater than zero.

Both the overtaking criterion and criterion (13) of this paper arc gen-
eralizations of the usual methods of comparing sums. That is, when the expected
sum of losses in expression (3) happens to converge then both criteria give the
same partial ordering and one which coincides with the common sense method of
comparing convergent sums. A priori it is therefore difficult to decide which
generalization makes more economic sense.

To facilitate comparison of these criteria in nonconvergent cases, we note
that, if the value of criterion (13) at {ﬁt} is less than or equal to the value
at {ut}, then

EL {nd) - 1exn))
t t

(24) lim t=1

T-ron

A

£(T)
Therefore, whenever lLim F{P) existy, the overtaking criterion is equivalent
to criterion (13) since we can focus on the numerator of the above expression.

In particular when the coofFicient matrices A and C in eqguation (1) are known,

£{T) may be chosen to be a constant (since the exnected sum of doviations from
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bliss converges) and criterion (13) is eduivalent to the overtaking criterion.
However, if £(T} is divergent, as is the case when the coefficient matrices
A and C are unknown, then the criterion (13) and the overtaking criterion are
not equivalent. If there is a strict prefercnce of one control rule over an-
other by criterion (13}); that is, if strict inequality holdsin (24), then
there will also be strict inequality in the overtaking criterion. However, as
the following example shows, if equality holds in (24), then ﬁot only may the
overtaking criterion be violated, but one rule may not even be good relative o

the other. For example, suppose that

(25) Ze=b+ 8+ 0 . t=2,3,..,
t tlogt

and

(26) rt=b+§ + 6 . t=2,3,...,

t tlogt
is the expected loss at any time t associated with the control rule {Gt] and

~

{ut} respectively, where O > 0. Then t(ft*b) and t{rt~b) both converge to &
so that the value of criterion (13) under both rules is the same, and we have
equality in (24) with £(T) = logT. However,

i

8- 06) % 1
( ) t=2 tlogt

which diverges to infinity. Thus {ﬁt} is not good relative to {ut]. The con-

il

T a
(27) L, (Femry)

ditions of a nmarticular problem may exclude examples such as this, but never-
theless it illustrates that control rules which perform egually well under
criterion (13) might be ranked quite differently by another criterion. Such
difficulties scem inhercent in any criterion propesed to compare infinite sums.
The criterion proposed in this paper is uscful becauso it can provide
analytic results about control rules as illustrated in Section 4 using khe
meihads of slalistical entimation theory. T4 a parbicular control rule ins under
consideration in a practical problem, cither beeause it is intuitively pleasing

or because it oia an approximal ion Lo oa Bayes coutrol rule, LU shovld b inves-
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tigated under the basis of this criterion if possible. Any control rule which
is strictly inferior by this criterion should be eliminated from consideration.

For rules which perform equally well, other critera - might also be taken into

account.
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