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Annual Population Growth

Population compounded annually at rate r

We want a relationship for the current year’s population size and next year’s

Let Pt denote the size of the population at time t

Let P0 denote the initial population size

How big is the population one year in the future?

P1 = P0(1 + r)
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Annual Population Growth

We can continue this process

P1 = P0(1 + r)

P2 = P1(1 + r) = P0(1 + r)(1 + r) = P0(1 + r)
2

.

.

.

Pt = P0(1 + r)
t
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Population Compounded j Times Annually

New members added to the population j times per year

Pt+1 = Pt(1 +
r

j
)j

for Pt = 100, r = 0.02, and j = 1:

Pt+1 = 100(1 + 0.02)1 = 102

Now, say that the population is compounded twice annually

Pt+1 = Pt(1 +
r

2
)2
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for Pt = 100, r = 0.02, and j = 2:

Pt+1 = 100(1 +
0.02
2

)2 = 102.01

> compound <- expression(pt*(1+(r/j))^j)
> pt <- 100
> r <- 0.02
> j <- 1
> eval(compound)
[1] 102
> j <- 2
> eval(compound)
[1] 102.01
> j <- 3
> eval(compound)
[1] 102.0134
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Now for a fun fact of calculus

lim
j→∞

(1 +
1
j
)j = e

This is, in fact, one definition of the number e, the base of the natural logarithm

Replace the 1 with r

lim
j→∞

(1 +
r

j
)j = er

Continuously compounded populations grow in one year by

Pt = Pt−1e
r (1)
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Just checking . . .

> compound <- expression(pt*(1+(r/j))^j)
> pt <- 1
> r <- 1
> j <- 100000
> eval(compound)
[1] 2.718268
> exp(1)
[1] 2.718282

Stanford Summer Short Course: Dynamics 8



Continuous Growth Equation

Assume constant growth rate for t years:

Pt = P0(er)t = P0e
rt

Note that this means that the ratio between the population size separated by t years
is simply ert

One offspring born now constitutes 1/P (0) of the population

One offspring born t years from now constitutes 1/P (0)ert of the population

In terms of proportional representation an offspring born t years in the future must
be discounted by a factor e−rt

Go to equation 4
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Per Capita Birth and Death Rates

Some Definitions

Nt The total number of individuals in the population at time t
B Number of births per animal per year
D Probability that an animal dies in a year (1 - D is the probability that an animal

survives the interval)

Nt+1 = BNt + (1−D)Nt

Rearrange

Nt+1 = RNt

where R = (1 + B −D)
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Geometric Growth

Project the population forward t years

N1 = RN0

N2 = RN1 = R(RN0) = R2N0

It’s not difficult to see that

Nt = RtN0

Take logarithms of both sides of this relationship
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log(Nt) = log(R)t + log(N0)

Why should we care about this?

One very good reason is that it provides a simple graphical diagnostic

R.calc <- expression(1 + (B - D))
B <- 0.05
D <- 0.03
no <- 1
t <- seq(0,100,1)
R <- eval(R.calc)
geo.grow <- expression(R^t*no)
pop.dyn <- eval(geo.grow)
plot(t,pop.dyn,pch=20,col="blue",xlab="Time",ylab="Population Size")
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Geometric Growth: Linear Axes
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Another Plot: Semilogarithmic Axes

plot(t,pop.dyn,log="y",pch=20,col="blue",xlab="Time",ylab="Population Size")
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Population Growth in Continuous Time

Some Updated Definitions

N Population Size

b Average per capita birth rate per unit time

d Death rate per unit time

Note the shift to rates that accompanies a continuous model

dN

dt
= bN − dN

Combine the birth and death rates into a summary parameter, r, customarily called the “intrinsic

rate of increase” or, more stodgily, “the Malthusian parameter.”

r = b− d

The equation for population growth in continuous time

dN

dt
= rN (2)
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Solving the Continuous-Time Growth Equation

1. Rearrange Equation 2 so like items are on the same side of the equals sign:

dN

N
= rdt

2. Integrate both sides from t = 0 to t = TZ t=T

t=0

dN

N
=

Z t=T

t=0

rdt

3. Compute the integrals

log(N(T ))− log(N(0)) = rT

4. Remember that
R

1
N dN = log(N)

5. Take the exponential of both sides

e
log(N(T ))

e
− log(N(0))

= e
rT

6. Note that elog a = a and e− log a = 1
a.
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7. Solve for N(T )

N(T )

N(0)
= e

rT

N(T ) = N(0)e
rT

(3)
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What Happens for Various Values of r?
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This is very important.

1. Populations can grow exponentially, but “common sense” tells us they can only do so for relatively short periods of time.
2. An equilibrium only occurs when r = 0.
3. This result has many applications in applied mathematics.
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The Relationship between r and R

If r is small,

R ≈ 1 + r

Why is that?

This derives from a Taylor Series Approximation

We use a Taylor polynomial to approximate a function f(x) around some point a

For a continuous function with n + 1 derivatives, this polynomial is:

Pn(x) = f(a) + f
′
(a)(x− a) +

f ′′(a)

2!
(x− a)

2
+ . . . +

fn(a)

n!
(x− a)

n

Most of the time, we only worry about the first couple terms
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For the problem of the relationship between r and R we know that

R = er

But the Taylor series about 0 of er is:

er ≈ 1 + r +
r2

2
+

r3

6
. . .

If r is small, then the square terms and beyond will be negligible relative to r itself
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More on Taylor Polynomials

Taylor series approximations are a very important technique in formal demography

You will see them again and again...

> exp(r)
[1] 1.020201
> 1
[1] 1
> 1+r
[1] 1.02
> 1 + r + r^2/2
[1] 1.0202
> 1 + r + r^2/2 + r^3/6
[1] 1.020201
> 1 + r + r^2/2 + r^3/6 + r^4/24
[1] 1.020201
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Doubling Time of a Population

How long until a population growing at rate r will double?

The relationship for a continuously growing population is

N(t) = N(0)ert

We want to know about the doubling from the current population, so

N(t) = 2N(0)

Substitute and solve for t

2 = ert
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t =
log(2)

r
≈ 0.693

r

How long will it take for a population growing at 2% annually to double?

t =
0.693
0.02

= 34.7 years
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Growth Rate of a Mixture of Populations

A population size Q, with growth rate r, increases in numbers by Qert over the
interval t

The intrinsic rate of increase, r, is the per capita rate of increase of the population

Thus, by definition, we can write it as:

r =
1

N(t)
· dN(t)

dt
(4)

Aside: it is worth noting the following:

1
N(t)

· dN(t)
dt

≡ d log N(t)
dt

For a mixture of n subpopulations, each with its own rate of increase ri, the increase
in interval t will simply be
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N(t) =
n∑
i

Qie
rit

The derivative of N(t) is

dN(t)
dt

=
n∑
i

Qirie
rit

Substituting these, the overall rate of increase, r̃ is thus

r̃ =
1

N(t)
· dN(t)

dt
=

∑n
i Qirie

rit∑n
i Qierit

(5)

This is just a weighted mean of the subpopulation growth rates, with weights the
initial population size of the subpopulations
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Change in the Mean Rate of Change

Differentiate r̃ with respect to t

dr̃

dt
=

∑n
i Qir

2
i e

rit∑n
i Qierit

−
(∑n

i Qirie
rit∑n

i Qierit

)2

.

This messy looking equation, has the form of

IE(X2)− IE(X)2

which is the definition of variance of x

Thus,

dr̃

dt
= σ2(t)
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What does this mean?

1. r̃ increases. Can it increase without bound?
2. Since r̃ is the average of an ensemble of constituent ri, it can never be greater

than the largest of its constituents
3. This represents one derivation of Fisher’s Fundamental Theorem of Natural

Selection
4. It also means that the sum of a mixture of population projections with different

growth rates will grow faster than the the population projected by the mean
growth rate

This last fun fact is a demonstration of Jensen’s Inequality, which states for a
convex function:

IE[f(x)] ≥ f(IE[x])

(the inequality is reversed for concave function)

Go to equation 6
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Graphical Interpretation of Jensen’s Inequality

f(x)

E[f(x)]

f(E[x])

xE[x]
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Stalled Demographic Transition

Notestein, the father of demographic transition theory, famously wrote in 1945 of
a phenomenon in which “the stage of transitional growth...in which the decline of
both fertility and mortality is well established but in which the decline of mortality
precedes that of fertility and produces rapid growth.”

If mortality decline precedes fertility growth, how much bigger will the population
be when fertility finally drops to replacement?

Define two functions of time b(t) and d(t)

These describe the change in birth and death rates, respectively, with time
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More Stalling...

Time

b(
t)

 o
r 

d(
t)

d(t) b(t)
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If b(t) and d(t) start and end at the same points (i.e., equal, implying a stationary population),

then the ratio of the population size at the end of the transition period T and the beginning time

will be Z T

0

[b(t)− d(t)] dt =

Z T

0

r(t)dt = A

where A is just the area (hence “A”) between the two curves

The ratio of the population size at the end of T to that at the beginning of the period (i.e., t = 0)

is then simply

exp

"Z T

0

r(t)dt

#
= e

A

Now, if d(t) and b(t) also have the same shape, we can simplify even further

Say that the lag between d(t) and b(t) is L years and define K as the absolute drop in d(t) and

b(t)

In this special case A = KL
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Darwin’s Elephants

There is no exception to the rule that every organic being naturally increases at so high a rate,

that if not destroyed, the earth would soon be covered by the progeny of a single pair. Even

slow-breeding man has doubled in twenty-five years, and at this rate, in a few thousand years,

there would literally not be standing room for his progeny. Linnaeus has calculated that if an

annual plant produced only two seeds and there is no plant so unproductive as this and their

seedlings next year produced two, and so on, then in twenty years there would be a million

plants. The elephant is reckoned to be the slowest breeder of all known animals, and I have

taken some pains to estimate its probable minimum rate of natural increase: it will be under

the mark to assume that it breeds when thirty years old, and goes on breeding till ninety years

old, bringing forth three pairs of young in this interval; if this be so, at the end of the fifth

century there would be alive fifteen million elephants, descended from the first pair.

Darwin, The Origin of Species
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It’s Usually a Good Idea to Respect Darwin’s Observations
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Darwin’s ciphering amounts to 3.28% annual growth
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Feedback

We want a model such that as the population size gets large, the growth rate
decreases

dN

dt
= Nf(N) (6)

The simplest form is linear

f(N) = r(1−N/K)

where K is known as the carrying capacity of the population

> logistic.fn <- expression(r*(1-X/K))
> X <- 1:100
> plot(X,eval(logistic.fn),type="l",col="blue",xlab="Population Size",ylab="f(N)")
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which is clearly an equation for a straight line
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Another Way to Look at the Logistic Function

For a given population size, how many recruits are there?

To visualize this, we plot the Recruitment Curve

This is just the recruitment function (r(1−N/K)) multiplied by the population size
N (this is the number of recruits), plotted against N

> Dn <- expression(r * (1 - N/K) * N)
> r <- 1
> K <- 1000
> N <- seq(0,1000,by=10)
> plot(X,eval(Dn),type="l",col="blue",xlab="Population Size",
+ ylab="Recruitment")

If you were a hunter/forester, etc., at what population size would you want to
harvest your population?

The Maximum Sustainable Yield is the peak of the recruitment curve
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Go to equation 8
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Solving the Logistic Equation

The logistic model is one that can be solved analytically

dN

dt
= rN(1−N/K)

Separate variables and integrateZ N(T )

N(0)

dN

N(1−N/K)
=

Z T

0

rdt

To do the integration on the lefthand side, we need to do integration by partial fractions

1

N(1−N/K)
=

1

N
+

1/K

1−N/K

Z N(T )

N(0)

1

N
+

1/K

1−N/K
dN = [log(N)− log(1−N/K)]

N(T )

N(0)

= log(N(T ))− log(1−N(T )/K)− log(N(0)) + log(1−N(0)/K)
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The solution of the righthand side is

Z T

0

rdt = rT

Put these together, and take exponentials of both sides

N(T )(1−N(0)/K)

(1−N(T )/K)N(0)
= e

rt

Now, we solve for N(T)

N(T ) =
N(0)erT

1 + N(0)(erT − 1)/K

> logistic.int <- expression(n0*exp(r*t)/((1+n0*(exp(r*t)-1)/K)))
> n0 <- 1
> r <- 0.1
> K <- 100
> t <- 0:100
> plot(t,eval(logistic.int),type="l",col="blue",xlab="Time",ylab="Population Size")
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Equilibria and Equilibrium Analysis

Solve for equilibria

dN

dt
= rN(1−N/K) = 0

There are two equilibria:

• N = 0

• N = K
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Types of Equilibria

• stable

• unstable

• neutral

Locally Stable

Globally Stable
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Unstable

Neutrally Stable
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Stability of Continuous-Time Models

The idea: Tweak a population that is at equilibrium. What happens?

• Continue to move in the direction of the tweak?

• Move back to the equilibrium value?
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Stability of Continuous-Time Models II: A Recipe

Write the production function in generic form

dN

dt
= F (N) (7)

Assuming the logistic model F (N) is

F (N) = rN(1−N/K)

Determine equilibria: Solve for N in

F (N) = 0

Again, for the logistic model
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N̂ = 0, N̂ = K

Define a deviation from an equilibrium point N̂

n = N − N̂

Rearrange, putting N on the left-hand side N = N̂ + n, and substitute back into
the generic equation.

d(N̂ + n)
dt

= F (N̂ + n)

Now, N̂ is a fixed number (i.e., it’s the equilibrium), so it won’t change. All the
change in this differential will therefore come from n which is free to vary (its change
is, in fact, what we care about here)
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dn

dt
= F (N̂ + n)

We don’t (necessarily) know what F (N̂ + n) will be. For many interesting models,
there is no closed-form solution to this differential equation. Our strategy is therefore
to approximate it with a Taylor Series

By using a Taylor series approximation, we assume that n is small and we content
ourselves to investigate the behavior of our model near the equilibrium

F (N̂ + n) ≈ F (N̂) + F ′(N̂)n

F ′(N̂) is the derivative of F with respect to N evaluated at N̂

The equation for the dynamics of our perturbation becomes

dn

dt
= F (N̂) + F ′(N̂)n
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But, we are evaluating at an equilibrium where, by definition, F (N̂) = 0, so we are
left with

dn

dt
= F ′(N̂)n

For grins, rename as follows

F ′(N̂) = λ

This gives us our final step

dn

dt
= λn

Which we recognize as the exponential growth model, the solution of which is
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n(t) = n(0)eλt

. λ > 0, the equilibrium is unstable

. λ < 0, the equilibrium is stable

This process is known as linearizing around the equilibrium or local linearization
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Stability Analysis of the Logistic Model

The generic model for the production function

dN

dt
= F (N)

The logistic production function

F (N) = rN(1−N/K) (8)

The logistic model has two equilibria: N = 0 and N = K

Calculate λ = F ′(N̂)

For N̂ = 0, λ = r and

For N̂ = K, λ = −r
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• For small deviations near the equilibrium of N = 0, the population will increase exponentially

at rate r

• For small deviations near the equilibrium of N = K, the population will decay back to the

equilibrium exponentially at rate −r
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Deriving F ′(N) for the Logistic

Where do the values F ′(N) = r and F ′(N) = −r for the two equilibria of the
logistic model come from?

Use the Product Rule for Differentiation

Define

h(x) = f(x)g(x)

The Product Rule Specifies:

h′(x) = f ′(x)g(x) + f(x)g′(x)

For the logistic model
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f(x) = rN

g(x) = (1−N/K)

f ′(x) = r

g′(x) = − 1
K

h′(x) = r(1−N/K)− rN

K

Substitute back in the values for the equilibria (N = 0 and N = K)

N → 0, h′(x) = r

N → K, h′(x) = −r
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Fitting the Logistic Model to Data

Is the Logistic model a good one for human populations?

Pearl et al. (1940) thought so

The Data: Total Population Size of the United States, as estimated in the decennial
census

The Method: Least-squares minimization

The Tool in R: optim(), R’s tool for minimizing a function

> logistic.int <- expression(n0 * exp(p[1] * t)/(1 + n0 * (exp(p[1] * t) - 1)/p[2]))
> fit.logistic <- function(p,y){
n0 <- y[1]
t <- seq(0,140,10)
sumsq <- sum((y - eval(logistic.int))^2)
}

> year <- seq(1790,1990,10) # decennial census
> r.guess <- (log(usa[15])-log(usa[1]))/140
> k.guess <- usa[15] #1930 US population
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> par <- c(r.guess,k.guess)
> usa1930 <- usa[1:15] # Just want the data up to when Pearl had them
> usa1930.fit <- optim(par,fit.logistic,y=usa1930)
> usa1930.fit
$par
[1] 0.03126604 198.55566623

$value
[1] 4.830206

$counts
function gradient

115 NA

$convergence
[1] 0

$message
NULL

> p <- usa1930.fit$par
> plot(year[1:15],usa1930,col="red",type="p",xlab="Year",ylab="Population Size of USA")
> t <- year - 1790 # convert calendar year to 0:200
> lines(year,eval(logistic.int),col="blue")
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Perfect!
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Doh! (Famously)

Not so well-behaved after 1930 . . .
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Discrete-Time Logistic Model

Take the logistic model in continuous time:

dN

dt
= r0N(1−N/k)

Now, we want a discrete-time equivalent of this. One possibility is simply to write
down the continuous-time logistic model as a discrete-time model, assuming time
increments, ∆t = 1.

∆N

∆t
≈ dN

dt
= r0N(1−N/K)

Now ∆N = Nt+1 −Nt. We can do a little algebra:

Nt+1 −Nt = r0Nt(1−Nt/K)
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Rearrange a bit, solving for Nt+1

Nt+1 = Ntr0 + N2
t r0/K + Nt (9)

= Nt(r0 + 1)−N2
t r0/K (10)

We can write a = 1 + r0 and b = r0/K, giving us the following form for the
discrete-time logistic model:

Nt+1 = aNt − bN2
t (11)

What is wrong with this procedure?

Write down the inequality

0 > aNt − bN2
t

and solve
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Nt >
K(1 + r0)

r0

In other words, if the population size at time t exceeds K(1+r0)/r0, the population
size at time t + 1 is negative! That’s no good.

An alternative discretization of the logistic model suggested by Turchin (2003) is as
follows. Take the continuous-time logistic model, write r(t) = r0(1 − N/K), and
solve for a one year interval, assuming that r(t) remains constant over that interval.

N(t + 1) = N(t) exp[r(t)] (12)

Now substitute the expression for r(t) and re-write using subscripts to emphasize
that the model is now in discrete time.

Nt+1 = Nt exp[r0(1−Nt/K)] (13)
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Notice that the feedback term r0(1 − N/K) is now safely inside the exponential,
meaning that as Nt exceeds K, the population will be multiplied by a term that will
lie between zero and one.

This model is known as the Ricker model (Ricker 1954)

Note that similar problems beset discretizing the SIR epidemic model.
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Crazy Dynamics

The Ricker model is subject to some extremely funky dynamics, including chaos

This is a common feature of nonlinear difference equations, particularly those with
overcompensatory recruitment function (like Ricker)

> NN <- rep(0,101)
> K <- 100
> r <- 3.1
> for(i in 2:101) NN[i] <- NN[i-1]*exp(r*(1-(NN[i-1]/K)))
> plot(0:100,NN,xlab="Time",ylab="Population Size")
> plot(0:100,NN,type="l",xlab="Time",ylab="Population Size")
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Yikes!
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Maybe A Line Plot Will Help
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Or not...
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