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1 Introduction

The Price equation is a complete description of the evolutionary process. With it, we partition
the change in the mean of a trait from one generation to the next into two quantities: (1) the
effect of transmission and (2) the effect of selection.

2 The Price Equation

Price’s original (1970) paper in which he develops his eponymous formula (PE) is rather terse
and, unfortunately, many of the follwers of Price have maintained this tradition. It is therefore
useful to try to expand a bit on his derivation. His development of the PE is as follows. We
will use Price’s original notation (but see section 2.1 below). Let there be two populations P1

and P2, where P1 contains all parents of P2 and P2 all the offspring of P1. The total size of P1

is N individuals and individuals in P1 is indexed i = 1, 2, . . . , N . The zygotic ploidy is denoted
nz (e.g., a diploid organism would have nz = 2) and gi denotes the dose of gene A in individual
i. Let qi = gi/nz be the frequency of gene A in individual i and let Q1 be the frequency of A in
population P1. Thus,

Q1 =
∑

i

g1/nzN =
∑

i

nzqi/n2N = q̄

We now look at the offspring. Let nG be the genetic ploidy of gene A (different than nz?)
and zi be the number of successful gametes contributed by individual i. Let g′

i be the number
of A genes in the set of i’s successful gametes and q′

i = g′
i/zinG be the frequency of gene A in

the set of gametes (assuming that zi 6= 0). Let ∆qi = q′
i − qi and let Q2 be the frequency of A

in P2. Price derives his equation in three lines. The first is:

Q2 =
∑

g′
i∑

zinG
=

zinGq′
i∑

zinG
=

∑
ziq

′
i

Nz̄
. (1)
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The next line is: ∑
ziq

′
i

Nz̄
=

∑
ziqi

Nz̄
+

∑
zi∆qi

Nz̄
=

z̄ · q̄ + Cov(z, q)
z̄

+
∑

zi∆qi

Nz̄
. (2)

That is, the frequency in P2 is the frequency in P1 plus the change in frequency from P1 to P2.
This clearly reduces to

Q2 = q̄ +
Cov(z, q)

z̄
+

∑
zi∆qi

Nz̄
. (3)

When we difference Q2 and Q1 (= ∆Q), we get the familiar form of the PE:

∆Q =
Cov(z, q)

z̄
+

∑
zi∆qi

Nz̄
, (4)

where
∑

zi∆qi/IE(z∆q).
The only tricky part of the derivation comes in the last equality in equation 2. How do we go

from
∑

ziqi/Nz̄ to z̄ · q̄ + Cov(z, q)/z̄? This arises from a simple identity relating to covariance,
namely, Cov(z, q) = zq − z̄ · q̄. Note that

∑
ziqi/N = zq and that zq = z̄ · q̄ + Cov(z, q).

The first term in equation 4 is the covariance between fitness and the trait value and it rep-
resents the selection acting on the trait from the first generation to the second. The second term
is the expected fitness-weighted change in the trait between generations and it represents trans-
mission. Thus total change can be decomposed into selection and transmission. We frequently
make assumptions that allow us to drop the transmission term in the PE. If the population size
remains constant from P1 to P2, for example, we can work with a reduced form of the PE which
simply involved the covariance term. Price (1970, 520) notes that “if meiosis and fertilization
are random with respect to gene A, the summation term at the right will be zero except for
statistical sampling effects (“random drift”), and these will tend to average out to give equation
1.” The equation to which Price refers is sometimes called th reduced Price euqation or the
“covariance equation” and has been discovered independently by a variety of authors (Robertson
1966; Li 1967; Price 1970). Using Price’s notation, it is simply:

∆Q = Cov(z, q)/z̄

2.1 On Notation

I have retained Price’s original notation in the previous section to facilitate reading the original
paper (Price 1970). In many ways, his notation is unfortunate since it contradicts conventional
notation in evolutionary genetics. For example, Price (1970) uses zi to denote fitness of the ith
individual, and he uses qi to denote the breeding value of the ith individual. i In evolutionary
genetics z is usually reserved for the trait or breeding value and q is a population proportion
(where qi is an individual proportion in Price’s usage). The more-or-less consensus notation
for the Price Equation currently writes fitness as w and the trait as z, following conventions in
evolutionary genetics (Lande. 1982; Arnold and Wade 1984). The form of the PE that typically
occurs in the literature (Frank 1995: 1996: 1997) is as follows:

w̄∆z̄ = Cov(z, w) + IE(w∆z).
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The right-hand side is normalized by mean fitness, w̄, which is brought to the left-hand side
through multiplication for largely aesthetic reasons.

2.2 A Derivation Using Frank’s Notation

While completely redundant, I re-derive the PE in this section using the contemporary nota-
tion typified by Frank (1996). Sometimes it is pedagogically useful to see the same derivation
approached in a slightly different way.

Define zi as the value of the trait with label i in generation t. The frequency of i in generation
t + 1 is z′

i. By definition, z′
i = zi + ∆zi, where ∆zi is the change in zi from the first generation

to the next.
The frequency of trait i in generation t is qi and the frequency of trait i in generation t + 1

is q′
i. The relative frequency of trait i in the next generation will be proportional to its relative

fitness: q′
i = qiwi/w̄, where wi is the fitness of the ith trait and w̄ is mean fitness.

We are interested in the change in the mean trait z̄. We know, by definition, that ∆zi = z′
i−zi:

the change in zi is the difference in trait i from generation t to t + 1. To get the change in the
mean, we need to calculate the expected values of w and w

′
:

∆z̄ =
∑

i

q′
iz

′
i −

∑
i

qizi.

We substitute (wi/w̄)(zi + ∆zi) for z′
i and use the fact that (wi/w̄)∆zi = −zi to yield:

∆z̄ =
∑

i

qi(wi/w̄ − 1)zi +
∑

i

qi(wi/w̄)∆zi

The first term on the right hand side is the expected value (over i) of ziwi/w̄ − zi, which is
the covariance between z and w. This is perhaps not obvious, so let’s spell it out:

∑
qi(wi/w̄ − 1)zi =

∑
qiwizi/w̄ − zi

=
1
w̄

∑
qiwizi −

∑
qizi

=
wz

w̄
− z̄

= Cov(w, z)/w̄ + (w̄ · z̄)/w̄ − z̄

= Cov(w, z)/w̄ + z̄ − z̄ = Cov(w, z)/w̄

Again, we use the identity Cov(z, q) = zq− z̄ · q̄. This leads directly to the full Price equation
as seen in most contemporary writings (e.g., Frank 1996):

w̄∆z̄ = Cov(w, z) + IE(w∆z) (5)

w̄ is mean fitness, which normalizes the right side of the equation. We bring it to the left side
of the equation by multiplication largely for aesthetic reasons. ∆z̄ is the change in mean fitness
from generation one to generation two. Cov(w, z) is the covariance between the trait and fitness
w. This term represents selection. The last term is the expected change in z, IE(w∆z), where
IE() represents mathematical expectation. This is the transmission part of the Price equation.
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3 Fisher’s Fundamental Theorem: Or Is It Robertson’s
Secondary Theorem?

The trait z in the Price equation can be anything. Indeed, it can be fitness itself. Using the
reduced form of the Price equation (i.e., the “covariance equation”), we note the following:

∆w̄ = Cov(w,w) = Var(w).

Thus with a simple identity, we see Fisher’s famous result: change in fitness is proportional
to the variance in fitness. Also, mean fitness increases. This arises because variance is, by
definition, greater than or equal to zero and except in the rather outlandish case where there
are no differences in the population in fitness, this inequality is strict. Turns out that this is not
what Fisher meant, but that’s another story (Price 1972).

4 Kin Selection

Hamilton (1964) originally derived the concept of kin selection by conceiving of genetic relat-
edness in terms of shared alleles identical by descent (IBD). The Price equation provides a
alternative means of deriving the kin selection result that makes no such assumption. Hamilton
(1970) and Hamilton (1975) noted that this was, in fact, the proper way to conceive of inclu-
sive fitness theory. One key interpretation that arises from this formulation of the problem is
that what matters is the statistical association between genes and fitness regardless of how such
associations come about. There is nothing particular about IBD.

Again, we use the reduced form of the Price equation to model kin selection, following
Queller (1992). We are investigating the effect of an individual’s breeding value with respect to
the altruistic trait on fitness. Breeding value is the sum of the additive effects of an individual’s
genes.

The covariance equation is w̄∆z̄ = Cov(w, z).
Following Arnold and Wade (1984), we can write down a regression equation that predicts

fitness based on the breeding values g and g′, where g is the breeding value determining the level
of altruism, g′ is the average breeding value of an individuals neighbors.

w = α + gβwg·g′ + g′βwg′·g + ε

where βwg·g′ is the partial regression coefficient of an individual’s breeding value’s effect on its
own fitness, given its neighbors (the cost of altruism), βwg′·g is the effect of the individual’s breed-
ing value on the fitness of its neighbors (the benefit of altruism), and ε is the error uncorrelated
with either g or g′.

Substitute the regression equation into the covariance equation to get:

w̄∆z̄ = Cov(α, g) + βwg·g′Cov(g, g) + βwg′·gCov(g, g′) + Cov(ε, g).

The first and last terms on the right-hand side are zero by definition (α is a constant and ε is
defined as being uncorrelated with g). Cov(g, g) is, by definition, Var(g). We can now solve for
the equilibrium condition where ∆z̄ = 0, yielding the following condition:
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βwg·g′ + βg′,gβwg′·g > 0.

The first term is the cost to the individual. βg′,g is the genetic regression definition of relatedness
(Hamilton 1972), which we get when we divide both sides of the equation by Var(g). The term
βwg′·g is the benefit to the individual. We see, therefore, that the Price covariance equation yield
the familiar Hamilton’s rule for the evolution of altruism through kin selection (i.e., c+ br > 0).

Re-framing the problem of altruism this way leads to a fairly profound insight, discussed
above, that what matters for the evolution of altruism is the statistical association between
the genes of the altruist and the genes of its beneficiaries. There is nothing special about
consanguinity. As noted by numerous authors, including Hamilton (1975) himself, this provides
a principled way of thinking about group selection. This is the approach taken by Bowles
(2006) that I discuss in the next section. Another key insight provided by this approach is that
there exists the possibility for spite, whereas such behavior could never evolve under Hamilton’s
original formulation. This arises because the covariance between an individual and her neighbors
might be negative, making the evolution of behaviors that induce a cost in both the actor and
recipient at least possible.

5 Bowles and Reproductive Leveling

Bowles (2006) starts with a Price Equation. While he is short with details, the model he uses is
the reduced covariance-equation form. The statement about constant population size is a clue
to this. The PE that he uses partitions covariance between fitness and possession of the altruism
allele into the within and between group components. Following his notation, this equation is

∆p = Var(pj)βG + IE(Var(pij))βi,

where pj is the fraction of altruists in the jthe deme, pij is an indicator of whether the ith
individual in the jth deme is an altruist, βG is the regression coefficient of average fitness within
a deme on the fraction of altruists in a deme, and βi is the regression of individual fitness of an
individual in deme j on pij (i.e., on switching from being a non-altruist to altruist). We expect
βi to be negative since being altruistic is, by definition, costly within the deme. Note that a
regression coefficient βij = Cov(i, j)/Var(j). This is why Bowles’s version of the PE includes
variances and regression coefficients.

Solving this equation for ∆p > 0, we find the following condition for the spread of altruism
by inter-demic competition:

Var(pj)
IE(Var(pij))

> − βi

βG
.

The left-hand side is a measure of assortativeness: do altruists tend to be clustered in
particular groups? The right hand side is a ratio of the fitness effects of altruism within and
between demes.
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Bowles introduces two key ingredients into the model: (1) selective deme extinction and (2)
reproductive leveling. The idea of reproductive leveling arises both from ethnographic observa-
tions (e.g., extensive sharing of game among hunter-gatherers) and from the fact that models
without it often require the group benefit from individual altruism be enormous to offset the
within-group cost. The key result is as follows. The condition in which altruists (A) increase in
their share of a metapopulation is:

FST

(1 − FST )
>

(1 − τ)c
κ2λA

(6)

where FST is the fraction of total genetic variance at a locus that is contained between groups, τ
is the amount of reproductive leveling within demes, c is the cost to altruists, κ is the likelihood
of a between-deme agonistic contest, and λA is the marginal increase in deme survival from
individual i becoming an altruist, λA = dλ/dpij , where λ is the probability that a deme survives
a contest. λA thus represents the marginal benefit to the group of a single altruist.

The left-hand side of equation 6 measures the degree of positive assortment of altruists within
demes. The right-hand side is the ratio of individual costs to the benefits for the deme. Clearly,
if the degree of leveling is greater, the cost will be smaller and the inequality is more likely to
apply.
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