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Abstract

Epidemic thresholds in network models of heterogeneous populations characterized by highly right-skewed contact distributions can
be very small. When the population is above the threshold, an epidemic is inevitable and conventional control measures to reduce the
transmissibility of a pathogen will fail to eradicate it. We consider a two-sex network model for a sexually transmitted disease which
assumes random mixing conditional on the degree distribution. We derive expressions for the basic reproductive number (%) for one
and heterogeneous two-population in terms of characteristics of the degree distributions and transmissibility. We calculate interval
estimates for the epidemic thresholds for stochastic process models in three human populations based on representative surveys of sexual
behavior (Uganda, Sweden, USA). For Uganda and Sweden, the epidemic threshold is greater than zero with high confidence. For the
USA, the interval includes zero. We discuss the implications of these findings along with the limitations of epidemic models which assume

random mixing.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Epidemic models exhibit critical behavior. When a
population is below some critical threshold, a major
outbreak of an infectious disease (i.e., an epidemic) cannot
occur. Classically, epidemic thresholds were seen in terms
of a critical number of susceptible hosts: a population with
too few susceptible could not support an epidemic (Bailey,
1975). More modern treatments have focused on the
threshold parameter %, the basic reproduction number
(Heesterbeek, 2002). %, is defined as the expected number
of secondary cases produced by a single (typical) index case
in a completely susceptible population (Diekmann et al.,
1990). In a deterministic model when %> 1, there will be
an epidemic. The “epidemic threshold” occurs when
Ry = 1. For a homogeneous, one-sex model of a directly
transmitted pathogen and one disease state, %, is given
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simply by the product of the transmissibility of the agent
(), the average contact rate between susceptible and
infected members of the population (¢), and the duration
of infectiousness, which is the inverse of the removal rate, v
when it is exponentially distributed (§ = v~'):

.@E)U) = 1380, (1)

where the superscript (U) indicates that %, applies to a
homogeneous (uniform) population. Thus, %, is the
product of the transmissibility of the agent given contact
and the contact process. We say that an epidemic threshold
exists if there is a level of transmissibility that produces
Ry < 1. If an epidemic threshold exists we define the critical
transmissibility to be the superium of transmissibilities that
produces #£y,<1. The critical transmissibility can be
expressed as a function of the contact structure. We
provide specific definitions for particular models below.
This somewhat schematic definition of %, enjoys the
great advantage of easy interpretation. Public health
campaigns designed to eliminate sexually transmitted
infections (STIs) focus on one of three strategies suggested
by (1): (a) reduce transmissibility (r) through vaccines,
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barrier contraceptive use, or, in the case of non-curable
viral infections, therapeutics which reduce viral load (e.g.,
HAART), (b) reduce the contact rate (¢) through educa-
tion, or (c) increase the recovery rate (v) through treatment
of curable STIs. Some interventions combine strategies.
For example, contact-tracing combines contact-reducing
and recovery-rate increasing interventions (Janssen et al.,
2001; Golden, 2002).

The definition of %, in heterogeneous populations is
somewhat more complex, though by discretizing ‘““genera-
tions” of infections, its calculation is a simple extension of
the homogeneous case (Diekmann et al., 1990; Dickmann
and Heesterbeek, 2000). For many STIs with one disease
state, heterogeneity is incorporated into models by way of a
mixing matrix in which the population is stratified by
sexual activity level and the matrix gives the activity-
specific probability of interaction (Gupta et al., 1989;
Anderson and Garnett, 2000).

For a population characterized by heterogeneous sexual
activity, and in which there is random mixing linearly
proportional to activity levels, Anderson et al. (1986)
demonstrate that %, becomes

2" =21+ v, )

where CV is the coefficient of variation of sexual activity in
the population (i.e., the standard deviation divided by the
mean of the number of sexual partners). Clearly, popula-
tions characterized by large variance—and particularly
large variance relative to the mean—will have higher
reproduction numbers and thus, at lower levels of
transmissibility attain the epidemic thresholds. One im-
portant class of models in which the variance in sexual
activity level greatly exceeds the mean are the so-called
““scale-free”” models in which the frequency distribution of
partnerships exhibits power-law behavior, and the theore-
tical variance is infinite (May and Lloyd, 2001; Liljeros
et al., 2001; Dezs6 and Barabasi, 2002).

Men’s and women’s sexual behavior differs system-
atically throughout the world as a function of cultural
norms, gender-power relations, and social institutions
regulating individual behavior. In Africa, home to the
world’s largest fraction of HIV sero-positive people, HIV is
sexually transmitted primarily by contacts between men
and women (WHO/UNAIDS, 2003). Two-sex models
admit the possibility of an epidemic threshold not existing,
even if the behavior of either of the sexes alone would yield
a threshold (Newman, 2002b).

A second, related concern is that the partnership
distributions’ variance, while finite, could still be high
enough to impede the effectiveness of transmissibility-
based interventions. Since, for example, no vaccine is
completely effective (Blower et al., 2001), a positive critical
transmissibility could still pose a practical barrier to disease
eradication if it were low enough.

Pastor-Satorras and Vespignani (2002) note that critical
transmissibilities for “bounded scale-free” networks are
higher than for homogeneous networks. While this result is

not particularly novel in the context of mathematical
epidemiology (cf. Hethcote and Yorke, 1984; Anderson et
al., 1986; Gupta et al., 1989), it reinforces the need to
examine quantitatively the effect of large degrees of
behavioral heterogeneity on the epidemic thresholds of
STlIs.

The Anderson et al. (1986) result for heterogenecous %
was derived for a compartmental model of infection
dynamics and provides a clear intuition for why partner-
ship distributions with power-law behavior can yield
epidemics without critical behavior (see also May and
Lloyd, 2001). Because of the discrete nature of sexual
contact, models based on random graphs have become
increasingly popular in the STI literature (Morris, 1997;
Diekmann and Heesterbeek, 2000). It is not immediately
clear that the result derived from a continuous-state
compartmental model will directly apply to the discrete
contact structure of a graph. Newman (2002b) has derived
results for epidemic thresholds in graphs using probability-
generating functions, which are a natural tool for dealing
with discrete random variables such as the structure of
random graphs. However, his treatment of the problem
suffers from a somewhat unorthodox notation and
terminology and thus obscures its deep links to standard
theory in formal epidemiology. The key assumption
employed by Newman (2002b) of random contact condi-
tional on the degree distribution of the contact network
means that his results are exactly analogous to the standard
theory given, for example, in Anderson and May (1991)
and Diekmann and Heesterbeek (2000).

The great majority of epidemic models that followed
from the pioneering work of Anderson et al. (1986) are
one-sex, either explicitly because they consider homosexual
transmission dynamics (e.g., Gupta et al., 1989) or
implicitly because they do not model the interaction of
the sexes (Newman, 2002b).

In this paper, we consider models where individuals are
represented as nodes in a network and edges represent
heterosexual sexual contact. Disease spreads only through
diffusion over the network of sexual contacts. We assume
that the network is a realization of a stochastic process
characterized by random mixing between individuals
conditional on the individual activity levels (i.e., the nodal
degrees) (Newman, 2002b). This assumption allows us to
show the straightforward links between epidemic phenom-
ena based on the next generation operator (e.g., Diekmann
et al., 1990; Diekmann and Heesterbeek, 2000) and the
percolation-theory results of Molloy and Reed (1995) and
Newman (2002b). We focus on models for the population
degree distributions in which the variance can greatly
exceed the mean and estimate corresponding thresholds for
two-sex epidemics in three population, Rakai district,
Uganda, Sweden, and the United States.

In Section 2, we develop models for the sexual contact
degree distribution. In Section 3, we derive the epidemic
thresholds for these models within the random graph
model of Newman (2002b) and show its relationship to
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more standard theory in mathematical epidemiology (e.g.,
Dickmann and Heesterbeek, 2000). Section 3.4 gives
methods for the estimation of the degree distribution
models. Section 3.5 presents interval estimates for the
epidemic thresholds and basic reproductive number. In
Section 4 results are given for the degree distribution
models, epidemic thresholds and basic reproductive num-
ber for the three populations. In Section 5, we discuss the
epidemiological relevance of these results, and approaches
to overcome the limitations of the models.

2. Models for degree distributions

Let P(K = k) be the probability mass function of the
number of partners within a well-defined period that a
randomly chosen person in a population has had. We say
P(K = k) has power-law behavior with scaling exponent
p>1 if there exist constants ¢j, ¢;, and M such that
0<c1 < P(K = k)k” <cy<oo for k> M. Empirical distribu-
tions of the number of sex partners, both lifetime and over
the past year, show a pronounced right-skew, with the
great majority of people having few partners and some
having many (Laumann et al., 1994; Lewin, 1996; Hubert
et al., 1998; Aral, 1999; Youm and Laumann, 2002). This
observation has led a number of authors to suggest that
sexual partnership distributions have power-law behavior
(Liljeros et al., 2001, 2003; Schneeberger et al., 2004). These
authors do not consider the wide range of right-skewed
distributions as plausible alternatives.

For p<3, the variance of a distribution with power-law
behavior is infinite. The Anderson et al. (1986) approxima-
tion for %, therefore suggests that populations character-
ized by partnership distributions with power-law behavior
and p<3 will lack epidemic thresholds, since with infinite
variance ,9?(()1{)>1 for arbitrarily small transmissibility or
duration of infectiousness. Note that an actual population
will always have finite variance, and hence the extrapola-
tion of mathematical models for the degree distributions
that have infinite variance requires a careful assessment of
the quality of the approximation provided by the model
(Jones and Handcock, 2003; Handcock and Jones, 2004).

We focus on two competing stochastic mechanisms for
the formation of sexual contact networks. The first is a
variation on a preferential attachment process, such as
those advocated by several recent authors (Barabasi and
Albert, 1999; Pastor-Satorras and Vespignani, 2001;
Liljeros et al., 2001). The second process is a non-
homogeneous Poisson model for partnership formation.
The limiting distributions of both these mechanisms can be
characterized by long tails. They have the additional
benefit that they have the same number of parameters,
facilitating comparison.

2.1. Preferential attachment model

A mechanism that has been suggested for the formation
of power-law sexual networks is preferential attachment

(Albert and Barabasi, 2000; Liljeros et al., 2001; Dezs6é and
Barabasi, 2002). This and related stochastic processes have
a long history in applied statistics (Simon, 1955; Kendall,
1961; Irwin, 1963). Consider a population of r people in
which (1) there is a constant probability p that the (r 4 1)st
partnership in the population will be initiated from a
randomly chosen person to a previously sexually inactive
person, and (2) otherwise the probability that the (r + 1)st
partnership will be to a person with exactly k partners is
proportional to kf(k|r), where f(k|r) is the frequency of
nodes with exactly k connections out of the r total links in
the population. The limiting degree distribution of those
connected by this process as r — oo is known as the
Waring distribution (Irwin, 1963). The Yule distribution
discussed by Simon (1955) and used by Jones and
Handcock (2003) to model degree distributions is a special
case of the Waring distribution with p = (p —2)/(p — 1).

The probability mass function (PMF) of the Waring
distribution (Johnson et al., 1992) is

P(K = k|K>0)
_(p=DIp+py) _Ik+py) -
= Tutl)  Thaptp P77 ?3)

where I'(-) is the Gamma function and the mixing

parameter p, is related to p via
p—2

ptpo—1

The Waring distribution has power-law behavior with

scaling exponent p. The mean and variance of the Waring
distribution are

p= 4)

HMK>m=l,
p

(I-pXp—1)

Plp—3)
Thus, the expected value of the Waring distribution is
simply the inverse of the probability of forming a tie to an
individual lacking existing ties. Both the Waring and the
Yule distributions have been re-discovered, apparently
without awareness of their historical antecedents, by
Levene et al. (2002) and Dorogovtsev et al. (2000),
respectively, in the context of modeling growth of the
Internet.

V(K|K >0) =

2.2. Non-homogeneous Poisson model

A reasonable alternative model to the preferential
attachment mechanism is that people form partnerships
according to a Poisson process. One possible behavioral
mechanism that underlies this model is that people acquire
new partners at a constant rate, 1. Clearly, the assumption
that all people in the population are characterized by the
same rate of partner acquisition is unreasonable. To
include heterogeneity, we can model 1 as a random draw
from some population distribution P(A).
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Here we model P(1) as a Gamma distribution with mean
1 and standard deviation o. Let 4;+ 1 be the expected
number of partners for person i in the sub-population of
those with at least one partner. The model can then be
written

e_)“ik_l
P(K = k|K>0,1) = T (5)
e Mm@/ n)n!
Pij=))=——LT1 0 )0, (6)

mI(n,) ’

where n = (,,1,) = (6 /u, 1> /6*). The conditional distri-
bution of K given K>0 is therefore negative binomial
distribution shifted to k =1,2,... . One interpretation of
this distribution is that people are following a search for
partners that satisfy a certain criterion and continue to
acquire partners until they have 5, such partners. Partners
satisfy the criterion independently and each with prob-
ability p,. This probability defines the scale parameter of
the underlying heterogeneity distribution (1, = (1— p,)/p,).
The mean and variance of the negative binomial in terms of
the gamma mean-standard deviation parametrization are
E(K|K>0) = u+ u?/c* and V(K|K>0)= (o4 pu/o)*. If
the population heterogeneity distribution P(Z1) is right-
skewed the partner distribution K will also be right-skewed.
Thus, this model is one plausible alternative to the
preferential attachment model that can have heavy tails,
but does not have power-law behavior. As we shall see, this
leads to different epidemic potentials for the two models
even when their ability to describe the observed partnership
distributions is similar.

3. Epidemic models on random graphs

The impact of the degree distribution on the spread of
STDs on an arbitrarily defined contact structure has been
studied by Newman (2002b), who gives both one-sex and
two-sex results. Newman presents his results in terms of
percolation theory. In what follows, we translate his
formalism into a notation and terminology more familiar
to epidemiologists.

3.1. Ry in a heterogeneous one-sex population

Suppose that the degree distribution of a population has
PMF Py(K = k) where 0 is the (possibly vector) parameter.
For example, for the Waring model 0 = (p, p) the scaling
exponent and probability of recruiting a novice parameter.
A fundamental characteristic of the distribution is the
quantity we call the concentration index, C(), given by

Eo(K) Eo(K|K > 0)

O = 5K — K~ Es(KK>0) — Ex(KIK>0)’

()

where [Ey(K) is the expectation of the random variable K
with respect to the PMF Py(K = k). Higher values of

C(0)=0 indicate distributions that are more concentrated
and a value of zero indicates a distribution with infinite
variance.

Diekmann and Heesterbeek (2000) give the following
expression for the basic reproduction number in a network:

where 7 is the average integrated probability of transmis-
sion per random contact (‘“‘partnership’”) between
an infected and susceptible individual and 7. = C(0).
The epidemiologically relevant contact rate in the graph
is 77'. An epidemic will occur if 2, exceeds the
threshold of 1. Expressed in terms of transmissi-
bility, the epidemic threshold is 7>7.. Hence, we refer to
1. as the epidemic threshold. 1f an epidemic threshold
exists, then t. is also the critical transmissibility. If the
epidemic threshold does not exist 7. can still be inter-
preted as the concentration index of the degree distribution
of the graph. The notation highlights the dependence of
this quantity and the critical transmissibility on the
parameter, 0.

As an application, suppose that the degree distribution
of a one-sex population follows the Waring model (3) with
scaling exponent p and recruitment probability p. Then

pp —3)
E(K T e P>3,
Clpup) =y = A= =) ®)
(K7) — E(K) 0, p<3.
For the negative binomial model, the concentration index
is most parsimoniously represented using the underlying
gamma heterogeneity parameter #:

O =D — B " m =)=

©)

3.2. Ry in a heterogeneous two-sex population

For an epidemic in a heterogeneous population, the
basic reproduction number is given by the spectral radius
of the square matrix @ (Diekmann and Heesterbeek, 2000).
O is known as the next generation matrix, and its elements,
0; provide an accounting of the expected number of type i
infections produced by a single type j infection in a
completely susceptible population.

Consider a two-sex population where all disease trans-
mission is heterosexual. Suppose that the degree distribu-
tion of the men and women in the population have PMFs
with parameters 0,, and 0, respectively. We assume that
the population follows the form of random mixing with
respect to degree that satisfies the constraints on the degree
distributions given in Newman (2002b). Let 74, denote
the average integrated probability of transmission per
partnership given contact between an infected male and
susceptible female. The conditional integrated probability
of females infecting males is 7,,. The next generation
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matrix is

0 Tin/ C(0r)
T /CO) 0| (10)

The basic reproduction number for this case is the
dominant eigenvalue of @, given by

R — ('L-mf’l:fm))l/2

"= ooy (

where T =, /T5iTmy is the geometric mean of transmissi-
bility, and

1. = [C(07)C(0,,)]'/. (12)

For a fixed population structure, with sufficient statistics
C(0r), C(0n), we can again call t. the epidemic threshold. If
the epidemic threshold exists 7. is also the critical
transmissibility.

Newman (2002b) refers to the concentration index as the
critical transmissibility (7.), which it clearly is for the one-
sex case. The concentration index notation, C(0), makes
specification of the epidemic thresholds in the two-sex case
much more compact than Newman’s original notation,
which was in terms of probability-generating functions of
the nodes and edges of the transmission graph.

3.3. Epidemic thresholds in heterogeneous population

Based on the common notation for the one- and two-sex
populations it is simple to explore epidemic thresholds for
their transmission models.

Assuming that the disease has mutually positive trans-
missibilities between men and women, Newman (2002b)
effectively shows that an epidemic will occur with prob-
ability approaching one as the number of partnerships
approaches infinity if 7. is zero. That is, if either the female
or the male degree distributions are characterized by
infinite variance, there is no critical transmissibility which
will keep Z, < 1. In this case there is no epidemic threshold
and 7, =0. Based on his results the probability of an
epidemic approaches zero as the number of partnerships
approaches infinity if

0<i<1,. (13)

In particular, this means that if 7.>1 and the transmissi-
bility is positive the probability of an epidemic approaches
zero as the number of partnerships approaches infinity.
The range of values of the population distributions that
allow for a transition to an epidemic following random
infection is defined by

0<1.<7. (14)

If both C(0;)>0 and C(0,,)>0 so that 7.>0, efforts to
reduce transmissibility through medical or public health
interventions have the potential for success. Examples of
such interventions include vaccination, barrier contra-
ceptive use, or therapeutics (e.g., anti-retroviral therapy).

For degree distributions with power-law behavior, such
as the Waring, the probability of an epidemic approaches
one as the number of partnerships approaches infinity if
either p,, and p; is less than or equal to 3. The probability
of an epidemic approaches zero as the number of partner-
ships approaches infinity if (p,, —3)(p; — 3)>4(py,, +
D(por + 1) regardless of the transmissibilities. The epi-
demic potential in the intermediate range will depend on
the geometric mean of the transmissibilities ¥ and the
scaling parameters (0,,, 0y).

3.4. Estimating the degree distribution

Much of the empirical work on characterizing the degree
distribution of samples from a variety of physical,
biological, and social networks is based on regression
concepts, in which the scaling parameter is estimated from
the regression of the apparently linear region of the plot of
the logarithm of the survival function P(K>k) against
log(k). OLS regression is not an appropriate inferential
tool for this problem as the data violate a variety of
assumptions linear regression (Jones and Handcock, 2003).
Furthermore, the apparent linearity of the tail can be a
spurious visual illusion owing to the cumulative nature of
the log-survival plot. In order to move away from ad hoc
curve fits, Handcock and Jones (2004) advocate the
specification of stochastic process models for network
formation. Such stochastic models are amenable to
empirical verification and allow estimation of model
parameters using maximum likelihood.

We estimated the Waring and negative binomial para-
meters for three populations: (1) Rakai District, Uganda
(Wawer, 1992), (2) Sweden (Lewin, 1996), (3) USA
(Laumann et al., 1994). Descriptions of these data sets
are given in Handcock and Jones (2004). We adapt the
model to allow for the possibility that the tail behavior (i.e.,
k>1) of the degree distribution may differ fundamentally
from the majority of the observations for which k =0 or 1
(May and Lloyd, 2001). We generalized the models to
allow separate parameters to fit the probabilities of lower
degrees. The parametric model is fit only to values
K>kuyin >0, and we use likelihood-based model selection
procedures (e.g., Burnham and Anderson, 2002) to choose
the best fitting model. Specifically, we used a corrected
Akaike Information Criterion (4/C,) (Simonoff and Tsali,
1999). Full details of the fitting procedure can be found
elsewhere (Jones and Handcock, 2003; Handcock and
Jones, 2004).

3.5. Confidence intervals for epidemic thresholds and R

Uncertainty in the network model parameters, 0 will
produce uncertainty in the concentration index and, hence,
the epidemic threshold of the population. To assess this
uncertainty quantitatively, we constructed 95% bootstrap
confidence intervals for C(6) (Efron and Tibshirani, 1993).
For each population of » individuals, the observed values
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of individual partner counts were re-sampled with replace-
ment to produce 5000 samples of size n and C(6) for each
replicate sample was calculated. Intervals for the epidemic
threshold were then based on these and Eq. (12). Intervals
for #, were computed using Egs. (12) and (11), conditional
on a level for 7.

4. Results
4.1. Degree models

The results for the Waring model MLE fits are presented
in Table 1. For both men’s and women’s networks from all
three populations p >3, indicating finite variance. None-
theless, the parameter values for the USA yield quite low
values of C(0).

The results for the negative binomial model MLE fits are
presented in Table 2. For all samples but the American
women, the negative binomial model fits better than the
Waring, as indicated by the AIC, values. Fig. 1 plots the
inferred distribution of the Poisson parameter A for the
three populations. As expected, all three populations show
a great deal of right-skew. The heterogeneity in propensity
to have additional partners is very similar for men
and women and for the Western countries. In Uganda,
women are much less likely to form additional partners
than the men.

4.2. Confidence intervals for epidemic thresholds

We estimated 95% confidence intervals of the epidemic
threshold level (Eq. (12)) for each population using each of
the four combinations of underlying degree models (e.g.,
male Waring, female Waring, etc.). The confidence inter-
vals for the Waring and negative binomial models are
compared in Fig. 2. The intervals for the negative binomial
model tend to be higher than those of the Waring for the
Sweden and the USA. In Uganda, the epidemic threshold is
much higher and more uncertain than the two countries in
the developed world. As the epidemic threshold is above
one for Uganda, the model predicts that an epidemic
cannot occur there no matter the transmissibility. Fig. 3
plots the confidence intervals for the best fitting models.
For Uganda, the model predicts that an epidemic cannot
occur regardless of the transmissibility. It is clear that this
is not consistent with reality as Rakai is home to a mature
AIDS epidemic. The current estimate of HIV/AIDS
prevalence in Rakai is 16%, a generalized epidemic by
any definition. If the random mixing model is roughly
correct an epidemic would not be possible. This disjunction
between the epidemiology in Rakai and the model
predictions is clearly problematic and will be taken up in
the Discussion (Section 5).

For Sweden, all models yield bounds on the epidemic
threshold which do not overlap with zero, so a critical
transmissibility exists below which an epidemic will not

Table 1

Parameter estimates for the Waring model

Country Sex AIC. Knin o P C(0)

Uganda Women 1061.3 1 8.68 0.94 7.64
Men 1576.2 2 4.58 0.83 0.97

Sweden Women 2143.9 2 4.45 0.49 0.75
Men 3025.0 2 6.53 0.61 1.56

USA Women 3208.7 1 3.11 0.77 0.17
Men 3247.8 2 4.47 0.45 0.24

AIC, is the corrected Akaike Information Criterion for the best fitting Waring model, &y, is the lower cutoff degree, p is the scaling exponent, p is the
probability of forming a tie to an individual lacking partners, and C(0) is the concentration index for the parameter values.

Table 2
Parameter estimates for the negative binomial model

Country Sex AIC., Kmin t, De I g C(0)
Uganda Women 1058.3 2 0.27 0.19 0.22 0.96 6.60
Men 1574.4 4 3.58 0.52 1.72 1.26 0.82
Sweden Women 2142.9 1 0.38 0.36 0.24 0.65 2.31
Men 3024.3 1 0.66 0.25 0.49 1.23 1.21
USA Women 3210.0 4 2.86 0.15 2.42 3.68 1.88
Men 3204.3 1 0.78 0.26 0.58 1.30 0.93

AIC. is the corrected Akaike Information Criterion for the best fitting negative binomial model, ki, is the lower cutoff degree, 7, is the expected stopping
time of the negative binomial, p, is the probability a person satisfies the criterion, p is the mean of the underlying gamma distribution, ¢ is the standard
deviation of the gamma distribution, and C(0) is the concentration index for the parameter values. To aid interpretation of the model we have included the
alternative parametrization: ¢, is the expected stopping time of the negative binomial, and p, is the probability a person satisfies the criterion.
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Fig. 1. Gamma heterogeneity in the rate of partner acquisition in the three
populations. Women are solid blue lines, men are dashed red lines.

occur. The confidence interval includes one, so it is possible
that a critical transmissibility exists above which an
epidemic must occur. In the USA, the confidence interval
for the best fitting negative binomial-Waring model
includes zero but does not include one. The test of the
hypothesis that the threshold is zero against the alternative
that it is positive has p-value = 0.69. Hence, the model
predicts that there is a transmissibility above which the
USA is certain to have an epidemic, and that this
transmissibility may be zero.

4.3. Confidence intervals for A

In this section we compute confidence intervals for %.
We do this conditional on an integrated transmissibility.
Gray et al. (2001) estimate the probability of HIV
transmission per coital act for the same population
represented in our sample from the Rakai district, Uganda.
They did not find a significant difference between 74, and
T,7. To calculate a maximally conservative estimate, we
can use the upper quintile of their estimate per act
(y = 0.0015), multiplied by both the mean number of coital
acts reported per month, and the number of months over

! |
|
R !
Uganda : | ! | |
|
| '
5|  r----
kS| . ;
2 | Sweden
o
o
|
|
|
I USA
T T T T T T 1

0.0 0.5 1.0 1.5 2.0 25 3.0 3.5
epidemic threshold (1)

Fig. 2. Comparison of the 95% bootstrap confidence intervals for the
epidemic threshold given by the negative binomial model (solid lines) and
the Waring model (dashed lines) for each population.
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Fig. 3. 95% bootstrap confidence intervals for the epidemic threshold
given by the best fitting model in each population.

which the local network data were collected (i.e., 12). This
yields an estimate of 7,; = 14, = 0.162 so T = 0.162.

Fig. 4 presents 95% confidence intervals for %, for each
population conditional on this value of 7. For compar-
ability we have used the conservative Rakai value of T
for Sweden and USA. The interval for Uganda is quite
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Fig. 4. Comparison of the 95% bootstrap confidence intervals for %
given by the negative binomial model (solid lines) and the Waring model
(dashed lines) for each population.

low—indeed as we have seen it will be below the epidemic
threshold of one for all values of 7. For Sweden the
estimates of %, are about one-quarter of those required to
ensure an epidemic. Thus, regardless of transmissibility
there is negligible probability of an epidemic. Thus, both
models correctly predict that there is not a general epidemic
in Sweden.

For the United States, the confidence interval for the
negative binomial model predicts an %, comparable to that
for Sweden and a negligible probability of an epidemic.
The scale-free Waring model indicates only that we can be
95% confident that %, is above 0.27. As we have seen, it
predicts that an epidemic may be possible in the USA for
any positive transmissibility. Based on the MLEs for the
scaling parameters of the Waring model, the MLE of %,
for the USA is 0.81 (Egs. (12), (11), and (8)). This indicates
that the United States is possibly below, but quite near the
epidemic threshold.

5. Discussion

Using a graph-theoretic, two-sex epidemic model, we are
able to calculate confidence bounds for epidemic thresholds
and reproductive numbers in three populations. Our results
indicate that there is very high probability that two of the
populations, Uganda and Sweden, are characterized by
non-zero epidemic thresholds. Confidence intervals for the
epidemic threshold in the USA include the zero value (i.e.,
the epidemic threshold may not be positive). The best
fitting model suggests that there could be no epidemic
threshold in the United States. However, alternative non-
scale-free models close to it in terms of model fit indicate
the presence of an epidemic threshold.

The models predict no epidemic in Uganda, despite
Rakai having one of the most mature HIV/AIDS
epidemics in the world. Four points may help to explain
this apparent paradox. First, Rakai is characterized by a
declining epidemic (Stoneburner and Low-Beer, 2004) and
our finding that an epidemic cannot occur regardless of
transmissibility may simply reflect the contracting epi-
demic. This seems somewhat unlikely however, since the
HIV/AIDS prevalence is still 16%, higher than most other
regions in the world. A second possibility which is closely
related to the first is that there is potential censoring of
highest-activity people due to premature mortality. The
inclusion of more highly active individuals would have
made the contact pattern less concentrated, making an
epidemic more likely. A third intriguing possibility is that
epidemiological assumptions underlying the HIV/AIDS
epidemic in Africa are incorrect. Specifically, some recent
research has suggested that the role of heterosexual
transmission of HIV in Africa has been greatly over-
estimated and that a large fraction of HIV is attributable to
contaminated needles (Brewer et al., 2003; Gisselquist and
Potterat, 2003). The parenteral amplification hypothesis is
interesting, but seems to have failed some critical empirical
tests (Walker et al., 2003; Lopman et al., 2005). Finally, the
epidemic model may simply fail to capture the actual risk
structure of Rakai.

While the two-sex graph-theoretic formalism employed
in this paper potentially increases the realism of models of
STI dynamics, it still contains a major weakness which
ultimately limits its utility. Specifically, it assumes random
mixing conditional on degree. We suspect that this is the
primary reason for the failure of the model to correctly
predict the epidemic situation in Rakai. For compart-
mental epidemic models structured by activity class,
departures from random mixing can either slow (if mixing
is disassortative) or accelerate (if mixing is assortative)
epidemic growth (Morris, 1991; Marschner, 1992; Garnett
and Anderson, 1996). In either case, models with hetero-
geneous activity will yield lower equilibrium prevalence
(Anderson and May, 1991). This point is made clear by the
final-size equation given by Anderson and May (1991,
p. 272) under heterogeneity:

To=1—(14+ )71 (15)

where [, is the overall fraction of the host population ever
infected, A is an integrated measure of the force of
infection over the course of the epidemic, and CV is
the coefficient of wvariation of sexual activity in the
population—see (2). Clearly, as CV — oo, I — 0, a point
recently re-emphasized by May and Lloyd (2001). This
observation suggests that policy recommendations that
emerge from recent discussions of ‘“‘scale-free” networks
(Liljeros et al., 2001) should be viewed with a strong degree
of skepticism.

Newman (2002a) notes that correlations in the con-
nectivity of nodes in a network can reduce epidemic
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thresholds. The extent of assortative mixing by degree in
sexual networks is an open empirical question in epide-
miology. While Newman (2002a) notes the implications of
such correlations for epidemic processes on social net-
works, the social network data he analyzes come from
various professional collaboration networks (e.g., scientific
co-authoring, business board membership, movie co-
starring) and not from epidemiologically relevant network
samples. There is no reason to believe that the structure of
a sexual contact network resembles the collaboration
network of mathematics papers. We suggest that sex and
mathematics, while both potentially “‘social,” are rather
different activities.

Empirical work in epidemiology indicates that some
networks show assortativeness by degree, some do not
(Stoner et al., 2000), while some show it weakly (Garnett
et al., 1996; Barlow et al., 1997). Degree-based correlations
based on standard local network sampling procedures
(Morris, 1997) are subject to considerable error. Respon-
dents typically have accurate knowledge of their partners’
behavior when they believe their partners have other
partners (i.e., high specificity). However, respondents
appear to be much worse judges of their partners’ behavior
when they report that their partners do not have other
partners (i.e., low sensitivity) (Stoner et al., 2003).
Unbiased estimates of assortative mixing by degree are
further complicated by the fact that when sampling
networks, a random sample of graph nodes does not yield
a random sample of the graph’s edges, and for STIs, the
clear unit of epidemiological analysis is the partnership.

The answer to the question of degree-based correlations
depends on the availability of quality data on the structure
of the network that is not present in most sexual history
surveys. Such surveys typically only ask questions about
the number of sex partners. However, the information
necessary for evaluating degree-based correlations is
available from link-tracing designs and related adaptive
designs (Goodman, 1961; Thompson and Seber, 1996).
These observations emphasize the need for partner enroll-
ment studies (e.g., Johnson et al., 2003) to facilitate
improved inference on the contact structures which
support STI epidemics.

In contrast with the recent network research suggesting
that properties of sexual networks may facilitate STI
spread and persistence—effectively lowering epidemic
thresholds—the spatially motivated work of Sander et al.
(2002) suggests that social networks can actually impede
the spread of an STI. Whether or not the spatial lattice
metaphor applies in any way to human intimate contacts,
the point that localization effects, by partitioning sexual
networks, could slow the spread of an STI (Keeling, 1999).
The localization effects could be, literally, geographic or
they could be social. For example, Laumann et al. (1994)
report effective structural zeros in the NHSLS mixing-by-
race matrix. African-American women are exceptionally
unlikely to have white male partners, making direct
transmission between these compartments rare.

A large body of research suggests that human sexual
relations, like other forms of social interaction, are
anything but random (e.g., Morris, 1991; Laumann et al.,
1994; Youm and Laumann, 2002; McPherson et al., 2001).
Modeling epidemics on contact structures which reflect, for
example, differential homophily by age and race, and low
levels of transitivity is a challenging task. Nonetheless,
strong statements regarding optimal control and eradica-
tion strategies must be predicated on the best models for
the system in question.
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