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ABSTRACT

This online appendix presents various additional results, explanations, proofs, and sim-
ulations referenced in the main text.




1. ILLUSTRATION OF THE GAUSSIAN SUPERPOSITION VIEW

The text describes three primary views that are equally valid interpretations of KRLS: a ridge
regression in an infinite-dimensional transform of the original features, the similarity-based view,
and the Gaussian superposition view. Here we provide additional illustrations to help develop the
intuition of the Gaussian superposition view, which we could not accommodate in the main text.

The Gaussian Superposition view interprets KRLS as a process of building up the solution
surface through placing Gaussian curves or mounds over each observation in the dataset, then scaling
them such that the summated surface of these overlapping mounds approximates the response data.
To build this intuition, consider a simple dataset in which z = [1,2,3,4], and y = [-2,0,1,1]. We
begin by choosing the x; values in the observed data, and placing Gaussians over them. The unscaled
Gaussians are visualized in the left panel of Figure [A.1] Next, we use the KRLS algorithm to chose
the scaling coefficients ¢;. The right panel in Figure shows each Gaussian after re-scaling by the
corresponding ¢;, as dotted lines. It also shows the final step of the process, the summated surface,
as a solid line. The same logic generalizes to multidimensional functions. Note that the fitted
function passes through the original data points, shown as dots, though this is not guaranteed in
noisier data. In addition, the continuity of the Gaussians allows us to estimate the value of f(z) for
any other x in-between the existing observations. This representation also makes it easy to see why
we can compute derivatives at each point: since y is formed by a sum of differentiable functions, it
is itself differentiable.

Regularization plays its essential role through the choice of the scaling coefficients. Instead of
choosing relatively small values of ¢; as KRLS did in this example, one could have instead chosen
very large but opposing values of ¢;, corresponding to very large rescaled Gaussians that mostly
offset each other. At the observations, such functions can fit the data similarly well or better than
the “small ¢;” solution, but at the expense of (undesirable) “wiggliness” at locations in-between the
observed points. Through regularization, KRLS avoids choosing these large offsetting coefficients by

T¢ would be a reasonable

explicitly punishing models with larger (squared) coefficients. The norm ¢
choice for establishing this penalty (and works well in practice), corresponding to the notion of a
ridge regression in the columns of K. KRLS instead uses the norm ¢! K¢, corresponding to a ridge
regression instead in the feature space associated with the kernel. More intuitively, using ¢’ Kec

instead of c’c has the effect of more heavily punishing large coefficients when they correspond to



observations closer to each other in X (i.e. with more heavily overlapping Gaussians).

2. REGULARIZATION AS A BAYESIAN PRIOR

In the main text we motivate Tikhonov regularization as a natural strategy for achieving stability
and generalizability outside the trained sample. However, regularization is also justifiable as the
maximum a posteriori estimator after imposing a prior that models with greater complexity are
expected to be less likely. Let y; = f(x;) + €, with € ~ N(0,02). Let our prior be that low-
complexity functions are more likely than high complexity ones, and specifically that the prior
probability of observing a model with complexity ||f]|% is proportional to e~k where « is some
positive constant and || f||% is the Ly norm in the feature space associated with K, i.e. ¢! Kc. Then,

the posterior probability of observing the given dataset is proportional to:
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The maximum of this posterior can be found by minimizing its negative log:
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or equivalently by minimizing >,(f(z:) — vi)® + || f||% with A = o%a, which is simply Tikhonov
regularization.
3. SOLVING FOR c*

We wish to choose ¢* to satisfy:

argmin (y — K¢)'(y — Kc) + A\c' Ke (3)
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This is easily achieved by solving the first order conditions:

J=(y—Kc)'(y— Ke)+ M"Ke

0J
e = —2K(y — Kc) + 2\Kc
0= —2K(y — Kc)+ 20Ke
y=c(K+ )
= (K+ M)y (4)



4. CHOICE OF KERNEL BANDWIDTH

The key result that motivates our approach of choosing the kernel bandwidth automatically is that
using the standardized data, the average distance between observations is simply two times the
number of dimensions. This is shown as follows: let xz(»a) designate the i observation of the a'*

independent variable then the expected squared difference between any two pairs of observations is
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where we use the fact that, after standardization, each variable has mean zero and equal variance

2 2

02 =0} = ... = 0%, and also that the data are i.i.d. such that the pairwise covariances are zero.

This does not depend on the correlation of the different variables within X, only on the i.i.d. nature

of each draw of x; across the observations.
llzj =41
Now, recall that the Gaussian kernel is k(xj, z;) = e~ 57 Since the average squared distance

between two points on the standardized data is simply two times the number of dimensions, the
average value for the numerator of the exponent, ||z; —z;||?, is 2D. Choosing o2 to be proportional
to D ensures a reasonable scaling of these distances on average, regardless of D. What exactly the
constant of proportionality should be is an open question, though 2 = 1D seems to be a reliable
choice in practice. In the many test cases that we have examined, the resulting distribution of K
values from this choice has been reasonable, some observations to be considered similar (values near

1), some to be very dissimilar (near 0), and a spread out distribution in between.

5. PROOF OF THEOREMS 1-2: UNBIASEDNESS

First, we prove Theorem 1, the unbiasedness of the choice coefficients for the target choice coeffi-

cients in the available space of functions.



AssumpTION 1 (FuNcTIONAL FOrRM) The target function we seek to estimate falls in the space of

functions representable as y* = Kc* and we observe a noisy version of this, Yops = y + €.

ASSUMPTION 2 (ZERO CONDITIONAL MEAN) Ele|X] = 0, which implies that Ele|K;] = 0 (where K;

designates the i column of K ) since K is a deterministic function of X

THEOREM 1 (UNBIASEDNESS OF CHOICE COEFFICIENTS) Under assumptions[1{d, E[¢*|X] = c*.

E[e&*|X] = B[(K + M) ™ yobs]
= E[(K + )" (y +¢)]

= E[(K +A)'y] + E[(K + X) '€
= E[(K +A)'y] + (K + \) ' E[¢| K]
= E[( )"

1

(K + A\)"y]

:C*

The unbiasedness of the fitted g vector follows immediately:

THEOREM 2 (UNBIASEDNESS OF FITTED VALUES) Under assumptions[1Hg, E[g] = y*.

E[g|X] = E[K&] = KE[&"] = K" = y* (7)

We note that the estimates of ¢* are unbiased for ¢*, not for c¢. In other words, we take as part
of the correct specification requirement (assumption 1)) that the target function we seek to estimate
unbiasedly is one which has taken the complexity punishment into account. This is consistent with
the view that we utilize regularization precisely because we think regularized functions are more
likely to represent the generalizable, stable, or useful relationship between X and y. Put differently,

the unbiasedness result obtains only conditional on a chosen level of regularization.

6. PROOF OF LEMMA [1]

Lemma (1] gives a closed form expression for the variance-covariance matrix of ¢.



AssumMPTION 3 (SPHERICAL ERRORS) The errors are homoscedastic and have zero serial correlation,

such that Elee” | X] = o?1I.

LEMMA 1 (VARIANCE OF CHOICE COEFFICIENTS) Under assumptions[1)|3, and[3 the variance of the

choice coefficients is given by Var[¢*| X, \| = o?(K + \I) 2.

Var[¢*| X, \] = E[(&* — E(¢))% X, A
= E[(K + M) e” (K + AI) Y| K]
= (K + M) 'Elee"|[K](K + M)~
= (K + M) 'o?I(K + )"

=0 (K + A\I)? (8)

We note that assumption |3 is made for convenience here, in parallel to the spherical error
assumption often made under linear models. More complicated forms for the covariance matrix
of the errors can be introduced for Elee’|X], which would allow computation of other standard
error estimators. A particularly useful extension will be the development of cluster-robust standard

errors through an appropriate choice of Elee” | X].

7. PROOF OF THEOREM 3: CONSISTENCY

ASSUMPTION 4 (REGULARITY CONDITION 1) Let (i) A > 0 and (ii) as N — oo, for eigenvalues of K

gwen by a;, Y, - grows slower than N once N > M for some M < oo,
Here we establish Theorem 3, the consistency of the KRLS estimator.

THEOREM 3 (CONSISTENCY) Under assumptions E[4;|X] = y; and plim Var[g|X,\] = 0 and
N—o00

the estimator is therefore consistent with plim y; n = y; for all i.
N—oo

The proof is as follows. First, since K is symmetric and positive semi-definite, we can decompose

it into its eigenvectors, V', and eigenvalues on the diagonal of A. We can now rewrite the variance-



covariance matrix of ¢* as:

Var[j| X, \] = K Var[c¢*] KT
= K[o?I(K + M)} K"
=0?KK(K +X)"Y(K+ M)
=2 (K(K +XI)7')?
=2 (VAVIV(A+ XI)'VvT)?
= ?V(A(A+ X)) VT

(a%)2 0 o 0
0 (2% 0
_ O_EQV ‘ <a24.r)\) VT (9)
0 0 0 (;25)

Where a; designates the i diagonal element of A (i.e. the i*" eigenvalue of K). For convenience,

define matrix M as follows:

(afﬁ) 0 0
0 a ) 0
M= ‘ (“W) ' , (10)
0 0 0 (F725)

Then we can rewrite the variance as Var[§| X, \| = 2V M?VT and the standard deviation of § as
o.VMVT. In this form we can easily see that when A = 0, M = I and thus Var[j| X, \] = 21, i.e.,
the variance never collapses regardless of N. A useful interpretation of this results is that without
regularization (A = 0), adding more observations serves only to increase the available complexity
of the best-fitting function, rather than reducing uncertainty over the parameters. By contrast,
choosing A > 0 allows additional observations to translate at least partly into improved certainty
rather than additional complexity.

We now examine the behavior of the diagonal elements of 02V M2V7T by examining their sum

(the trace of o2V M?V7T), and then by extension their average. First, note the equality:



tr[o?V M*VT] = o tr[V M2 V7]
= o2 tr[VIV M2

= o2 tr[M?]

()

%

Thus the sum of the variances of § is simply o2 tr[M?]. In this way the quantity tr[M?] is
central to understanding the consistency of KRLS. For large eigenvalues, the corresponding diagonal
element of M? approaches 1. For eigenvalues near 0 by contrast, the corresponding element of M?
approaches 0. Thus tr[M?] can be roughly understood as the count of large eigenvalues of K
or the number of important dimensions of the data. Given the construction of K, the number of
large eigenvalues will grow with /V only initially, after which additional observations will increase the
number of important dimensions or eigenvalues only very rarely or not at all. Thus, for A > 0, tr[M?]
will typically stop growing, or grow only very slowly after a small number of initial observationsﬂ

Recall that o2 tr[M?] was shown to be the sum of Var[g;| X, \] over all observations i. Since
this quantity stops growing or grows only very slowly in N, the average variance of g; must be
decreasing. Thus, the first condition for consistency is that A must be greater than zero. Second,
tr[M?] must grow less quickly than N, which occurs so long as not every new observation leads to
a relatively unique column of K (and thus another large eigenvalue). For large enough N, tr[M?]
slows in growth and eventually converges to a constant, and the average variance of g; is thus
%2 tr[ M2}

Note that in general the “curse of dimensionality” is not too severe for KRLS as it is not a

strictly local method. However, higher dimensional data are more costly in terms of the variance

IThe finite number of large eigenvalues as N grows, and thus the limited size of tr[M] as N grows is not only
an empirical regularity, but also a result of the construction of K and the choice of ¢2. The only way for new
observations to generate a large new eigenvalue is for that observation to be very different from the existing ones,
thus producing a unique column of K. However, since we standardize the data in X after seeing all the data (and
choose 02 to ensure a reasonable average distance between exemplars), we effectively bound the number of ways in
which observations can differ. Put differently, as N grows large, each new z; is increasingly likely to be similar to
one already observed and thus the column of K it creates will be similar to one already present, so the corresponding
eigenvalue is increasingly likely to be small.

2The above analysis treats A as fixed, and indeed the diminishing variance depends on A\ not being reduced too
fast as N grows. In the way it has been written throughout the paper, A should not depend heavily on N. Indeed
in practice, the A\ chosen by cross-validation does not generally diminish with N (given a fixed o2).
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and its rate of convergence. Even after re-scaling the similarity metric using the rule derived above
for o2, higher-dimensional spaces allow for a greater number of ways in which exemplars can be
different from each other. The matrix K will thus have more dissimilar columns (with lower degrees
of linear dependence between them), and can support more large eigenvalues. Regularization still
ensures that the model is not over-fit on this set of relatively less dependent basis functions; however,
the cost is borne in the variance. Under high-dimensionality, N must grow much larger before the
number of eigenvalues of K effectively stops growing. This prolonged growth of the number of large
eigenvalues implies that tr[M] continues to grow as well, and thus the average variance of each g,

%62 tr[M?], will shrink slower than < until N becomes sufficiently large.

8. PROOF OF THEOREM 4: NORMALITY IN FINITE SAMPLES

Here we establish the normality of the KRLS estimator around its expectation at a given point.
First, we establish that the estimator is normally distributed in finite samples when the elements

of € are i.i.d. normal.
ASSUMPTION 5 (NORMALITY) The errors are distributed normally, €; Y N(0,0?).

Theorem 4 states that under assumptions [IH5] § ~ N (y*, (0. K (K + AI)~1)?).
The proof is as follows. For observation ¢ the difference between the predicted and expected estimate,
Ui — y7, is given by the i'th element of K (K + AI)~'e. Taking the data as fixed, this quantity is
simply a linear combination of the i.i.d. normal elements of ¢, and is thus also normally distributed.

Therefore, when € is i.i.d. normal, g is normally distributed in finite samples, with mean y* and

standard error as given above, o K (K + \I)~!.

9. PROOF OF THEOREM 5: ASYMPTOTIC NORMALITY

Next, we establish that the normality also holds asymptotically even when the distribution of the

residuals is not known to be normal.

AssuMPTION 6 (REGULARITY CONDITION I1 ) Let (i) the errors be independently drawn from a dis-
tribution with finite mean and variance and (ii) the standard Lindeberg conditions hold such that

the sum of variances of each term in the summation Y ;[K(K + M) € goes to infinity as



N — 0o and that the summands are uniformly bounded, i.e. there exists some constant a such that

[K (K + M) €] < a forall j.

Theorem 5 states that under assumptions and |§|, T N(y*, (0. K(K+X)™1)?) as N — co.

The proof is as follows. Consider the gap between the estimated and expected value of ¢ for a given

observation, §; — yf = [K(K + Al)'¢);. This quantity can be thought of as

D K (K 4+ M) e (12)

J
where [K (K + M )7Y ;) gives the i j% element of K(K + A)~'. In this sum of weighted ¢;
each element remains independent and has finite mean and variance. Under standard regularity

conditions, this summated quantity is normally distributed by the Lindeberg-Feller central limit

theorem Pl

10. CoMPARING KRLS ON INTERPRETABILITY AND INFERENCE

As noted, this paper is designed to introduce KRLS to social scientists as a potential addition to
their toolbox and to extend the method analytically and computationally to make it more effective
for social science inquiry. Thus while we have compared the performance of KRLS to several
other approaches in the text (e.g. Table 3) and found it performs very favorably, we are primarily
interested in how interpretation and inference with KRLS compares to other useful and important
approaches.

We begin with the supposition that most social science investigators, when interpreting their
fitted data, seek measures that quantify the magnitude and uncertainty of the marginal effects of
the input variables or functions thereof. Ideally, the output of such a procedure would appear
similar to a regression table, with effect estimates and variances allowing for hypothesis tests or
the construction of confidence intervals around estimated marginal effects. This requirement rules

out many otherwise powerful approaches, including k-Nearest Neighbors (k-NN), neural networks

(though marginal effects can generally be simulated, e.g. Beck et al.| (2000)), Support Vector

Machines (though their predictive performance is similar to KRLS, see Rifkin et al,| (2003); Zhang|

3The so-called Lindeberg condition is both sufficient and necessary for this result (Feller; [2008). In the regularity
conditions cited here we have used a slightly stronger but more easily stated set of conditions (Grinstead and Snell;
1997).




and Peng] (2004)), classification and regression trees (CART), random forests, or Bayesian Additive
Regression Trees (BART), to name a few. While it may be possible in these cases to estimate partial
derivatives with respect to each input variable and at each observation through repeated simulations,
this would require extensive time, computation, and additional effort. If that procedure is not
already difficult enough or computationally prohibitive, re-iterating that whole process hundreds or
thousands of times to estimate bootstrap based variances of partial derivatives is even more likely
to be infeasible. Even where possible, these procedures are certainly not convenient as a stepping
stone for current GLM users.

Generalized Additive Models (GAMs, |Hastie and Tibshirani| (1990)) deserve further discussion as
perhaps the best known non-GLM model among social science researchers. GAMs provide graphical
plots of E[y|z\)] for covariate j, from which a sense of % for each covariate can be gleaned A
major concern with GAMs is that while they are very useful in many cases and the underlying
theory is well developed (see e.g. [Wood; [2006)), the additivity constraint is likely too restrictive for
many social science problems: we often expect the marginal effect of one variable to change across
levels of other variables (see simulations for examples). While GAMs can answer this concern by
allowing some variables to be “smoothed together”, this requires the user to know in advance what
(small) set of variables should be smoothed together. Our general supposition is that the user does
not have this information, and in many cases, should not be given the latitude to guess and choose
among the most favorable resultsﬂ Nevertheless, in cases where the investigator has strong reason
to suspect that most or all variables act additively, then GAMs are a good choice.

Remaining approaches that allow the marginal effects to be directly read off include linear
models and expansions of them to include transforms of the independent variables to add flexibility.
A promising approach in this family is to allow the user to implement a large number of expansions of

the columns of the predictor matrix. The expansions may include polynomial functions of individual

4Though it is not convenient and we have never seen this done by applied researchers, some choices of basis
functions for the smoothing of each separate covariate make it possible mathematically to compute partial derivatives,
which could then be summarized as suggested here.

For certain choices of multidimensional basis functions, and particularly the thin plate spline regression basis
functions (which do not require selecting knots), fitting GAMs by penalized least squares over these bases is similar
to conducting KRLS with a different kernel. However, while GAM uses a truncated set of basis functions to regress
on, and has computational difficulties in smoothing over more than a few variables, KRLS with a thin-plate spline
kernel would instead utilize inner-products of the associated expansions via the kernel trick. Moreover, appropriate
interpretational machinery would also need to be added to current implementations to make it usable in ways similar
to KRLS.

10



variables, multiplicative or tensor product interactions, piecewise constants or linear components (as
in Multivariate Adaptive Regression splines), trigonometric functions, or other choices of feature
mappings. Linear models can then be fit directly in the column space of these expanded bases,
even when their dimension exceeds N, using a regularization approach such as ridge regression or
“LASSO” (least absolute shrinkage selection operation) (Tibshirani; 1996). The LASSO is, like
KRLS, a least squares, regularized model, but uses a penalty term that results in sparsity (i.e. it
drives some of the coefficients to exactly zero rather than just shrinking them). The hope is that,
if this selects a small number of coefficients to have non-zero values, interpretation follows, as these
coefficients give the marginal effects of the corresponding bases.

This “explicit-expansion-then-LASSO” type approach has some advantages and may be a par-
ticularly useful alternative, especially for problems that require quickly choosing a (sparse) linear
model from among a large number of input variables. However, it also has some drawbacks. First,
the mapping from the input variables to the basis expansion must be done explicitly. This requires
considerable guessworkﬁ and unfortunately, in practice LASSO is not generally stable to different
choices of these expansions (the basis functions that survive often depend on which other functions
are included). Related, if some input variables are highly correlated, the LASSO will often select
one from the group, the choice of which may be unstable against small perturbations of the data.
Moreover, while polynomials expansions and multiplicative interactions offer added flexibility, there
is no reason to expect they are generally appropriate basis functions to use. As we have argued
here the KRLS basis functions are motivated in terms of the “similarity view”, ensuring its suitab-
ility to many problems in social science where smoothness (high correlation of nearby points, lesser
correlation of distant points) is a minimal reliable assumptionﬂ

In this sense the KRLS approach to modeling and interpretation is fundamentally different from
the “explicit-expansion-then-LASSO” approach. In KRLS the goal is to “get the CEF right” first

(using the mapping of X to K and then running a ridge regression which penalizes more complex

SFor example, should first, second, third, or even higher order interactions of all independent variables be included?
What order of polynomials should be included for the continuous covariates?

7A Taylor expansion view may justify the use of polynomial functions of the inputs as allowing it to model a
generic smooth function of the inputs. However, this is applicable only in the neighborhood around the point of
expansion. Typically, explicit polynomial expansions are taken only around 0. Introducing a lattice of “knots”
throughout the covariate space and expanding around these would solve this (effectively by producing splines) but
this adds considerably to the complexity and the difficulty of interpretation, and is rarely done in practice in the
context of the expansion-then-LASSO approach.
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functions), and then to read off the (possibly nonconstant) partial derivatives with respect to the
original input variables X. This is straightforward, since KRLS guarantees that the model will map
onto a set of pointwise partial derivatives and these marginal effects are readily interpretable as in
a simple linear regression. This approach has the benefit of avoiding the need to make arbitrary
decisions about the number and nature of terms to include in the explicit basis expansion of X,
thus prohibiting the user from manipulating the results through such choices.

Second, while sparsity is often equated with interpretability, sparsity is neither sufficient nor
necessary for interpretability. Suppose that - as can be quite common in practice - the LASSO
produces non-zero coefficients for a series of terms that include second- or third-order interactions,
but not the main effects. Or suppose it comes back with fourth- or higher-order interactions.
Both are difficult to interpret. In addition, an interpretation of how substantial such interactions
are requires also considering the densities of the variables involved—a consideration automatically
accounted for in the KRLS summaries. LASSO approaches would also not have the benefits of
KRLS in terms of protecting against extreme counterfactuals.

Finally, since LASSO does both selection and model fitting together, inference is considerably
more complicated. Had a different sample been drawn (or the original sample re-sampled in a
bootstrap), a different set of variables may have been (and oftentimes are) selected to have non-
zero coefficients. This implies that inference must include uncertainty as to variable selection as
well. Indeed, the limiting distribution of the LASSO estimator is fairly complicated and researchers
typically use a bootstrap to estimate variances, despite the fact that standard bootstrap method
for the lasso estimator are known to be inconsistent (Knight and Fuj; [2000; |Chatterjee and Lahiri;
2010). This contrasts with KRLS, where the variances for the marginal effects can be conveniently
estimated in closed form and the estimator is asymptotically normal so confidence intervals can also

be easily constructed.

11. STANDARD ERRORS FOR FIRST-DIFFERENCE ESTIMATOR

While the estimated marginal effects at the observed exemplars are always available in closed-form,
averaging over these provides a poor measure for the marginal effect of binary predictors, d € {0, 1}.
This is because the marginal effect of going from d = 0 to d = 1 is not well characterized by %

measured at d = 0 and d = 1 alone. We thus characterize the marginal effect of binary predictors

12



through first differences. Consider a dataset with a binary predictor, d, other predictors X, and
outcome variable y. We train the model on the actual data, (y, [X,d]);, obtaining ¢ and the full
matrix Var[¢]. We now wish to compute the sample analog to the expected first-difference over the

distribution of the data,

J

— 1 . 1 "
FD:ﬁz[yp(:xj,d:1]_N2[y\xzxj,d:0] (13)
J

First construct two new test sets: X, in which X takes its natural values but d always equals 1; and
Xo, in which always X takes on its natural values but d = 0 everywhere. From these we compute
the test kernel matrix (measuring similarity of each of these test observations to the original training
observations), K corresponding to X; and K corresponding to Xj.

Next, construct FAD, the vector of estimated first differences indexed by i. This can be computed

easily:

FD = (4i|X;,d = 1) — (4| X;,d = 0)

- Klé - K()é
= (Kl — Ko)é
= M¢ (14)

where M = K7 — Ky. Now, let h be a N x 1 vector where each element is 1/N. Then the average

first difference, F'D, is computed as h'M¢é. The variance of this quantity is computed from:

Var[F D] = h' M Var[¢] M'h (15)

This method produces accurate estimates of uncertainty in simulations. For example, suppose
X1 ~ N(0,1), Xy ~ bernoulli(.5), e ~ N(0,1), and y = X; + Xs+e€. The analytical standard errors
(SEs) produced for data simulated this way very closely match the observed distribution of estimated
average first differences over repeated samples, and produced accurate 95% coverage rates. Using
these SEs to construct confidence intervals (under a normal approximation) unsurprisingly requires
that N is large enough for the central limit theorem to apply. The confidence intervals produced
by this method were roughly 10-15% too small when N = 100. By N = 200, however, there was no

detectable bias. In an experiment with 1000 iterations at N = 200, the average of the analytical
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SEs over these runs was very close to the standard deviation of point estimates, differing by only
3%. Moreover, the 95% confidence interval (using a normal approximation and the analytical SE)

had a true coverage rate of 95.1%.

12. ADDITIONAL ILLUSTRATIONS AND SIMULATION RESULTS

12.1. High and Low Frequency Functions

A key assumption motivating the use of regularization is that we prefer smoother, less complicated
functions. There are several motivations for this. First, we argue that in social science research, we
often believe that the conditional expectation function characterizing the data-generating process is
relatively smooth. We would not often believe conditional expectation functions that vary erratically
(with the possible exception of those produced by sharp discontinuities in laws or policies). Second,
though we traditionally assess goodness-of-fit based on the predicted values at observed points, the
generalizability of a relationship is determined by how it behaves between observations. It seems
reasonable then to prefer functions that do not imply wild oscillations in the outcome value at points
located in-between the observed (training) points. This can be achieved by preferring functions that
are less “wiggly” as measured by some norm over the entire function.

Put another way, for most social science inquiry we think that “low-frequency” relationships —
in which y cycles up and down fewer times across the range of a given x — are theoretically more
plausible and useful than “high-frequency” relationships. We illustrate this in figure The
dotted line shows a higher-frequency relationship between a predictor x and an outcome y, which
we would not believe to be an accurate representation of reality. The more generalizable, stable,
or “true” relationship we believe to underly these data would likely be a lower-frequency function,

such as the solid line, fitted by KRLS.

12.2.  Example of Fitting a Non-linear Function and its Derivatives

As an illustration, consider a simple case such as y = 100 + 3z*, and its derivative, % = 1223,

These two functions are shown in [A.3] We draw X ~ Unif(—4,4) for three sample sizes 10, 50,
and 100 and simulate observed outcomes using y = 100 + 3z* + ¢ where € ~ N(0, 1). The resulting
fits from the KRLS estimator (averaged across 500 simulations) are reported in the left subplots

of Figure . The fitted values from KRLS accurately reproduce both the target function (black
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dots) and its derivative (gray triangles) across all three sample sizes.

Note that no model specification search or specific functional form assumption is required. Users
simply pass y and X to the estimator; o2 is determined by the rule described above and \ is found
by cross-validation. The subplots on the right show the biased estimates from the OLS regression

for comparison.

12.3. Modeling Common Interactions

KRLS is well suited to fit target functions that are non-additive and or involve more complex
interactions as they may arise in social science research. We consider three types of functions: those
with one “hill” and one “valley”, two hills and two valleys, or three hills and three valleys. These
functions, especially the first two, are often represented by “two-by-two” tables, and correspond to
rather common scenarios in the social sciences where the effect of one variable changes or dissipates
depending on the effect of another. For example, left wing parties might lead to good economic
outcome when labor organizations are strong, but poor outcomes when labor is weak (Alvarez et al.;
1991)).

In figures[A.4HA.6 we simulate the one hill/one valley, two hills/two valleys, and three hills/three
valleys examples. In each case we use 200 observations, x1,z5 ~ Unif(0,1), and noise given by
e ~ N(0,.25). We then fit these data using KRLS, OLS, and GAMs. Results are averaged over 100
simulation. As summarized in table 2 in the text, KRLS outperforms GAMs and OLS on both in-

and out-of-sample fits for all three functions[]

13. ADDITIONAL APPLIED EXAMPLE: BRAMBOR ET AL. 2006

At the suggestion of an anonymous reviewer, we also applied KRLS to an empirical example previ-
ously cited in Brambor et al.| (2006)), a paper well known for its discussion of the appropriate uses
of multiplicative interaction terms in linear models. The example used in that paper, drawn from
Golder| (20006), is a test of the “short-coattails” hypothesis, which states that “temporally-proximate

presidential elections will reduce the effective number of legislative parties if and only if the number

8We note that interpretational concerns aside, GAMSs could perform suitably on these tasks as well, if the user
knows in advance which two variables to “smooth together”, which allows a multi-dimensional spline to be fit similar
to KRLS, though the behavior of such functions outside the support of the data differ from KRLS. However, our
general supposition is that the user may not know in advance which variables to interact in this way and the approach
of smoothing together various predictors typically runs into numerical problems as the number of predictors increases.
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of presidential candidates is sufficiently low.” That is, suppose parties is the number of legislative
parties in a given country and proxrimity measures how closely in time legislative elections occur

to presidential elections. Then the short-coattails hypothesis states that more recent presidential

Oparties

dproximity will

elections will reduce the number of legislative parties due to a coattail effect (i.e.

be negative), but only when there are relatively few presidential candidates. In the presence of

Oparties

too many presidential candidates the effect is expected to be weak or even reversed (i.e. Sprovimity

should approach or exceed zero as the number of candidates grows). The modeling approach in

Brambor et al.| (2006) is based on a specification with a linear interaction term given by:

Electoral Parties = By + (1 Proximity + P Presidential Candidates+
(16)
Bs(Proxzimity - PresidentialCandidates) + f,Controls + €

The marginal effects from this model are shown in the top panel of Figure [A.7 The find-

ings strongly supports the short-coattails” hypothesis: at low numbers of presidential candidates,

Oparties

50—~ is negative and highly significant; at high levels it comes back towards zero. The maximum
proximity

negative effect is observed when the effective number of presidential candidates is zero.

Note that this approach to thinking about and modeling interactions by including multiplicative
terms is highly constrained. In this case, the specification only allows the marginal effect to vary
according to % = (1 + B3PresidentialCandidates. The KRLS approach does not begin
with such a specification, but instead fits a smooth model of minimal complexity which allows

Oparties

Oproximity as

the marginal effect to vary across the covariate space. The pointwise estimates for
estimated by KRLS are shown in the bottom panel portion of Figure [A.7]

The results reflect some similarities with the original findings from the linear interaction model,
but also important differences. When there are over two presidential candidates, the results of
KRLS look strikingly like those from the linear interaction model. However, with two or fewer
presidential candidates, the results differ markedly. The KRLS model suggest that the marginal
effect % is close to zero when the number of presidential candidates is zero, and it becomes
slightly more negative as we move to the cases with one or two presidential candidates. This is in
stark contrast to the linear interaction model which implies that the maximum effect is obtained

at zero presidential candidates.

This difference in what the models reveal is important, given that 62% of the observations have
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zero presidential candidates. While we are not experts on the electoral systems studied in |Golder
(2006)), the results also seem plausible: systems with zero one, or at most two presidential candidates
may experience little or no coattail effect, as the number of legislative parties is likely to be largely
unaffected by presidential campaigning or electoral results. Moreover, countries with zero presiden-
tial candidates are likely to be of a different typeﬂ In this sample, as an anonymous reviewer noted,
those with zero presidential candidates appear to be largely parliamentary democracies, making it
somewhat awkward to pool them together with other countries having presidential elections in a
single model. While problems related to the pooling of different types of units should perhaps be
considered at an earlier level, KRLS proves valuable in revealing such problems by flexibly estim-
ating heterogneous marginal effects. Finally, with the insight suggested by the KRLS analysis, we
can return to OLS analysis, but allow for the marginal effect to vary, by fitting different models to

where there are two or fewer presidential candidates versus more than two. The results of such an

analysis support the insight suggested by KRLS: at two or fewer candidates, % is close to
zero and slightly decreasing in the number of candidates. At more than two candidates, %

follows the pattern previously found: it is increasing in the number of candidates, reaching approx-
imately zero when the number of candidates reaches its maximum. Accordingly, the coefficient on
the interaction term is slightly negative (-0.12) when run on data with two or fewer presidential
candidates, but when there are more than two, it is almost identical to the point estimate in the
original finding (0.28, compared to original of 0.29). Figure shows the results graphically.

An important point here is that while adding multiplicative interaction terms to linear models
only allows marginal effects to vary linearly, KRLS allows marginal effects to vary in virtually any
smooth way — a difference that can be critical to the substantive inferences, as shown here. It is
important to emphasize that we do not intend this replication to be a critique of Brambor et al.
(2006)). Instead, it again highlights that finding the correct functional form by adding interactions
or higher order terms is difficult, and may not allow enough flexibility in the way marginal effects

are allowed to change. We thank the reviewer for suggesting this interesting example.

9Golder notes that a country might have few presidential candidates for two reasons: (a) “the demand for
presidential candidates is low because there are few social cleavages”, and (b) “the demand for presidential candidates
is high but the electoral system is not permissive.”
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14. ADDITIONAL FIGURES, SIMULATION RESULTS

Figure A.1: Fitting a Simple Function with KRLS

..........................

< |
I
o~
I
. . « Scaled Gaussians

@ ‘ - Unscaled Gaussians @ I .t — KRLS Fit (Superposition)

T T T T T T T T

1 2 3 4 1 2 3 4

X X

Note: Left Panel: Unscaled Gaussians placed over each of the four data points. Right Panel: Gaussians scaled
by the choice coefficients obtained from KRLS. The choice coefficients for the data points (from left to right) are
¢ =1[-3.06,2.68,—1.12,0.97]
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Figure A.2: Example of High- and Low-Frequency Functions

0.0 0.2 0.4 0.6 0.8 1.0

X
Note: The solid line represents a “good” explanation of the relationship between x and y. The dashed line represents
a “bad” one, which is both considered more likely to be noise and is also much less useful in a theoretical way. For

most social science inquiry, we are interested in recovering conditional expectation functions that look like the solid,
low-frequency line, not the dashed, high-frequency line.
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Figure A.3: KRLS Fits Non-Linear Functions and their Derivatives
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Note: Simulation to recover the non-linear function y = 100 + 3z* (black solid line) and its derivative % = 1223
(gray dashed line). The sample sizes are 10, 50, and 100, X ~ Unif(—4,4), and observed outcomes are simulated
as y = 100 + 3z* 4+ ¢ where e ~ N(0,1). In the left figures, the black dots show the fitted values for g, and the grey
dy

triangles show the fitted values for 5% from the KRLS estimator (average across 500 simulations). The estimates in

the right figures show the estimates from the OLS estim%té)r accordingly.
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Figure A.4: KRLS Approximates Complex Interactions: One Hill, One Valley

True f(x1,x2) KRLS fit f(x1,x2)

OLS fit f(x1,x2) GAM fit f(x1,x2)

Note: Simulation to recover the target function given by y = e=2(1=#1)"+(1-22)* _ o=5(1-22)*+(21)* y5ing simulations
with 200 observations drawn from x1,ze ~ Unif(0,1) and random noise € ~ N(0,.25). The top right figure shows
the true target function. The top left, bottom right, and bottom left figures show the fitted functions from the

KRLS, OLS, and GAM respectively.
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Figure A.5: KRLS Approximates Complex Interactions: Two Hills, Two Valleys

True f(x1,x2) KRLS fit f(x1,x2)
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OLS fit f(x1,x2) GAM fit f(x1,x2)

Note: Simulation to recover the target function given by y = e~2(1=71)°+(@2)* 4 ¢=5(21)*+(1-22)* yging simulations
with 200 observations drawn from x1,z2 ~ Unif(0,1) and random noise € ~ N(0,.25). The top right figure shows
the true target function. The top left, bottom right, and bottom left figures show the fitted functions from the

KRLS, OLS, and GAM respectively.
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Figure A.6: KRLS Approximates Complex Interactions: Three Hills, Three Valleys

True f(x1,x2) KRLS fit f(x1,x2)

OLS fit f(x1,x2) GAM fit f(x1,x2)

Note: Simulation to recover the target function given by y = sin(x1)*cos(x2) using simulations with 200 observations
drawn from z1,22 ~ Unif(0,27) and random noise & ~ N(0,.25). The top right figure shows the true target
function. The top left, bottom right, and bottom left figures show the fitted functions from the KRLS, OLS, and

GAM respectively.
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Figure A.7: The marginal effect
number of electoral parties

of temporally proximate presidential elections on the

Thomas Brambor et al.

95% Confidence interval

Marginal Effect of Temporally Proximate
Presidential Elections

Effective Number of Presidential Candidates

Marginal Effect of Temporal Proximity

Effective Presidential Candidates

effective

Note: Top Panel: Figure 3 from Brambor et al.| (2006). More temporally proximate presidential and legislative
elections lead to fewer effective electoral parties. However, this is true only when there are relatively few presidential
candidates, and the effect vanishes when there are large numbers of presidential candidates. Bottom Panel: Scatter-

plot of pointwise marginal effects of temporal proximity on the number of parties (

Oparties
Oproximity

), with lowess estimates

super-imposed. The plot looks similar to the Brambor et al.| (2006) model only when there are 3 or more presidential
candidates. By contrast, with zero presidential candidates (which represents 62% of the observations included in the
Brambor et al. regression), the marginal effect estimates go back toward zero.
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Figure A.8: OLS Results for Brambor et al. Split at Two Presidential Candidates

Marginal Effect of Proximity
0
|

Marginal Effect of Proximity
0
|

T T T T T T T T T T
0.0 0.5 1.0 15 2.0 2 3 4 5 6

Presidential Candidates Presidential Candidates

Note: Results from OLS models identical to those in the previous figure, but split at observations with two or
fewer presidential candidates and those with more than two. The KRLS estimates differ from the original |Brambor
et al.| (2006|) results , suggesting that % takes values near zero when PresidentialCandidates is zero
(indicating no “coat-tail effect” there) and, if anything, decreases as PresidentialCandidates rises to two and then
reverses direction and follows the pattern suggested by Brambor et al. (2006]) thereafter. Here, we split the sample
and conduct OLS analyzes separately when PresidentialCandidates < 2 and when PresidentialCandidates > 2.

As shown, the OLS results from the split samples reflect the KRLS results.
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