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We now investigate the idea that if there is some uncertainty about
strategic motives, a player who plays a game repeatedly may be able to
capitalize on it by building a reputation for a certain sort of behavior. As
we will see, these effects can be quite powerful in some situations – even a
small amount of uncertainty about a player’s intentions can allow the player
to completely dictate how the game will be played.

1 Examples

Reputation for Quality A firm that produces an experience good faces a
series of customers. Each decides whether or not to purchase; upon purchase,
the firm decides on high or low quality q ∈ {0, 1}. If a consumer doesn’t
purchase, both firm and customer get 0. If the customer buys, he gets vq−p,
while the firm gets p − cq. We assume that v > c, so that high quality is
efficient.

Our intuition says that the firm should be able to establish a reputation
for high quality by actually producing high quality a few times. However, in
the one-shot game or in a finite repetition, backward induction tells us that
the firm will always produce low quality, and hence that the customer won’t
buy the good. And in the infinite horizon game, the folk theorem says that
essentially anything can happen.

Chain Store Game For this model, imagine a drug company being
sued by patients who claim to have been harmed by a drug. There is a
series of potential litigants. If sued, the drug company can either fight of
settle. If a litigant doesn’t sue, she gets zero, while the company gets 2. If
she sues and the company concedes, both get 1. If she sues and the company
fights, both get −1.

Again, it seems reasonable that the drug company will fight to establish
a reputation for being hard to sue. But in a finite version of this game, it
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will settle every suit from the start. And in an infinitely repeated version,
anything can happen.

Monetary Policy Reputational models are often used to capture cen-
tral bank behavior. The canonical problem is that a central bank wants
agents to believe it will have a tight money supply (in order to keep infla-
tion down), but once agents have set prices, the bank is tempted to raise
money supply to boost output. Thus, central bankers need to establish a
reputation for being tough on inflation.

Credible Advice. Consultants, political advisors, and others would
often like to build a reputation for giving unbiased advice. However, they
may have certain biases, or may just be worried about being labeled as
biased or extremist. The question is whether such advisors can successfully
acquire a reputation for giving unbiased credible advice.

2 Reputation as Commitment

We start with a fairly general model with one long-run player facing a se-
quence of small opponents. The development here follows Fudenberg and
Levine (1989). I focus on finitely-repeated games, but the same argument
applies to infinitely repeated games if the long-run player has a sufficiently
high discount factor.

LetG be a two-player simultaneous move game. Suppose that players 1, 2
have action sets A1, A2, and sssume that BR2(a1) is unique for all a1 ∈ A1.
We consider a T -period repetition of this game with incomplete information.
Prior to play, nature chooses a type θ ∈ Θ for player 1, and then player 1
meets a sequence of player 2, in periods t = 1, 2, ..., T . Suppose that Θ
consists of:

• A “rational” player 1, who maximizes

1

T

TX
t=1

u1(a1, a2)

• For each a1 ∈ A1, a type θa1 , who plays a1 in every period.

Assume that Nature chooses θ ∈ Θ with probability µ(θ) > 0 for all θ.
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Proposition 1 For all ε > 0, there exists T such that for all T ≥ T , all
perfect bayesian equilibria of the T -period game with incomplete information
give the rational player a payoff of at least:

max
a1∈A1

u1 (a1, BR2(a1))− ε.

Proof. Define

a∗1 = arg max
a1∈A1

u1(a1, BR2(a1)).

Pick α > 0 such that if σ(a∗1) ≥ 1− α, then BR2(σ) = BR2(a
∗
1). Also, note

that following any history ht, the following identity applies:

µ2
¡
θRat|ht

¢
+ µ2

³
θa
∗
1 |ht

´
= 1

Now consider some PBE where player 2 doesn’t play BR2(a∗1) following
a history ht. It must be that σ

¡
a∗1|ht, θ = θrat

¢
< 1 − α. Consider the

updating that player 2 would do if she saw ht followed by a∗1. Using Bayes
rule,

µ2
¡
θrat|ht+1

¢
µ2
¡
θa
∗
1 |ht+1

¢ < (1− α)
µ2
¡
θrat|ht

¢
µ2
¡
θa
∗
1 |ht

¢
Let k be such that

µ
¡
θrat

¢
(1− α)k < αµ

³
θa
∗
1

´
.

If player 1 follows the strategy of playing a∗1 in every period, there can be at
most k periods in which player 2 does not play BR2(a

∗
1)because after that

point player 2 will assign probability at least 1 − α to type θa
∗
1 , and then

will play BR2(a∗1) as a best-response.
Now, pick T such that:

(T − k)u1 (a
∗
1, BR2(a

∗
1)) + kmin

a2
u1 (a

∗
1, a2) > T [u1 (a

∗
1, BR2(a

∗
1))− ε]

Thus, if T > T , player 1 can always ensure a payoff u1 (a
∗
1, BR2(a

∗
1))− ε by

deviating, and hence must get at least this in equilibrium. Q.E.D.

Note that when the game is played, player 1 does not actually “build” a
reputation. That is, as the game goes on, opponents do not put more weight
on player 1 being committed. Rather, they know that even if he is rational,
player 1 will act as if he is committed. One point to note here is that the
when Pr(θa

∗
1) is small, then we may need to pick T very large.
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You might think that it is important here for the short-run players to
be able to observe perfectly what the long-run player is doing. In fact, that
need not be the case. Fudenberg and Levine (1992) show that a version of
their “bounds” argument applies even if the long-run player’s behavior is
imperfectly observed. Basically the idea is that short-run players will be
actively learning about the long-run player’s behavior over time, with some
outcomes making it more likely that the long-run player is a Stackelberg
type and some making it less likely. A “normal” type will have an incentive
to play non-Stackelberg actions, but Fudenberg and Levine show that as
the horizon becomes sufficiently long, the normal types will still mimic the
Stackelberg type to get a payoff nearly equal to the Stackelberg payoff.
Cripps, Mailath and Samuelson (2003) study the long-run, or asymptotic,
pattern of behavior in this model.

3 Many Long-Run Players

Fudenberg and Levine’s result shows that if there is a single long-run player
and a sequence of short run players, then the possibility of building a repu-
tation completely determines how the game will be played (or at least the
payoffs). Fudenberg and Maskin (1986) show that if there are two long-run
players and both are potentially “crazy” then anything can happen. Their
result extends Kreps et al.’s (1982) famous paper showing that cooperation
was possible in a repeated prisoner’s dilemma where there was some chance
one player was committed to tit-for-tat.

Proposition 2 Let G be a two-player game. Suppose that (v1, v2) ∈ V ∗.
Then for any ε > 0, there exists T and a form of behavior for crazy types,
θc1, θ

c
2 such that in the T -period game with Pr

¡
θ1 = θrational1

¢
= Pr

¡
θ2 = θrational2

¢
=

1 − ε, and Pr [θ1 = θc1] = Pr [θ2 = θc2] = ε there exists a PBE in which the
rational players’ average payoffs are within ε of (v1, v2).

Proof. (with some loss of generality) Suppose that (v1, v2) pareto dom-
inate some Nash equilibrium s∗ of G with payoffs (e1, e2). And assume that
there is some (a1, a2) such that ui(a1, a2) = vi. Suppose the crazy types
play ai until someone plays something other than (a1, a2), and then plays s∗i
ever after. Consider the strategy for rational types:

I. In periods 1, 2, ..., T − T̂ , play a1 so long as no one deviates.

II. If someone deviated from phase I, play s∗ for the rest of the game.
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III. If no one deviated from phase I, then from T − T̂ + 1 on, play some
PBE σ∗ of the T̂ -period game, which has the property that s∗ is played
whenever players 1 and 2 are known to be rational.

We want to show this is a PBE. Clearly, there are no profitable deviations
in phase III for rational types since this is a PBE, and similarly in phase II
since this is a NE in every period. So consider phase I.

Before T − T̂ , if rational player i deviates, he gains at most v − vi for
one period, but loses vi − ei in periods t+ 1, ..., T − T̂ , and loses something
more in the last T̂ periods. How much does he lose in the last T̂ periods? In
these last T̂ periods, if the rational player has not deviated before T − T̂ , he
could follow the strategy: play ai until his opponent plays something other
than a−i, then play something random to reveal his rationality, then play
s∗i until the end. This gives a payoff of at least:

(1− ε)
³
2v + (T̂ − 2)ei

´
+ εT̂ vi

On the other hand, if rational i deviates in the first T − T̂ period, he will
get T̂ ei in the last T̂ periods. The loss in the last T̂ periods from deviating
in Phase I is thus at least:

εT̂ (vi − ei)− (1− ε)2(ei − v)

Taking T̂ large enough, we can ensure that this is greater than or equal
to v − vi. Then rational i will not deviate in phase I. Finally, since T̂ is
now fixed, we can simply take T large enough to make the payoffs from this
equilibrium be within ε of (v1, v2). Q.E.D.

1. The result says that even in long finite games, essentially “anything can
happen” if there is a small chance players aren’t rational. It suggests
that (i) the backward induction solution to these games may not be
“robust” to the introduction of particular types of irrationality, and
also that long finite games may behave much like infinitely repeated
games.

2. Of course, the full strength of the result depends on being able to find
just the right kind of crazy type. The result depends crucially on this.
FM suggest that some kinds of craziness may be more reasonable than
others.
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3.1 Extensions

The two results we have shown have an interesting contrast in that the
equilibrium payoffs are sharply constrained if there is just a single long-run
player who may be committed, but not constrained at all if there are two
long-run players who may be committed. A natural question is whether
there are situations where payoffs can be pinned down by reputation even
with two long-run players.

• Schmidt (1993) observes that with two long-run players, it is hard
to use reputation to pin down payoffs. The reason is that once both
players have revealed to be rational, the folk theorem kicks in and
anything can happen. The problem spills over to situations where one
player has revealed rationality. Schmidt identifies a class of games
with conflicting interest payoffs where a Fudenberg-Levine type result
applies when one player is much more patient than the other.

• Abreu and Pearce (2003) consider infinitely repeated two-player games,
where at the outset players can announce a repeated game strategy
and with ε→ 0 probability remain committed to it. They ask whether
in such a game, there exists a payoff profile (v1, v2) such that if, in all
subgames where rationality has been revealed, play yields (v1, v2), then
(v1, v2) will be the payoff that results from the start of play. They show
that there is exactly one such payoff vector, which remarkably, coin-
cides with the solution to the Nash demand game with endogenous
threats.

4 Bad Reputation

Our analysis suggests that a long-run player interacting with a sequence of
a short-run players will typically benefit from reputation effects since he has
the option of acting committed to a certain strategy. But this need not be
the case if there is imperfect monitoring! We now consider an example of
Ely and Valimaki (2003) in which reputation has perverse consequences.

The main character is a mechanic who interacts with a motorist. The
motorist’s car needs either a tune-up or an engine replacement with equal
probability. Denote these possibilities as θ ∈ {θt, θe}. The motorist can’t
tell which is needed, but if he hires the mechanic, the mechanic will be able
to tell. The mechanic will then choose a repair a ∈ {t, e}. The motorist’s
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payoff depends on the treatment and the state:

θt θe
t u −w
e −w u

We assume that w > u > 0 and that the motorist has some outside option
that gives a payoff zero.

Let (βt, βe) denote the probability hte mechanic will perform the right
repair in each of two states, i.e. βa is the probability of repair a in state θa.
The motorist’s payoff from hiring is then:

−w + 1
2
(βt + βe)(u+ w)

The motorist can get ensure zero by not hiring, so a necessary condition for
hiring is that βt, βe ≥ β∗ = w−u

w+u .
In the benchmark case, we assume the mechanic is “good” and has the

same preferences as the motorist. In the unique sequential equilibrium of
the one-shot interaction, the motorist will hire the mechanic and he’ll do
the right repair. This remains essentially correct even if there is a small
probability µ that the mechanic is a “bad” type who always replaces the
engine. Given that the good mechanic does the right thing, the motorist’s
expected payoff is:

−w + (1− µ)(u+ w) + µ
1

2
(u+ w) = u− µ

1

2
(u+ w).

Thus if µ ≤ p∗ = 2u
u+w , the motorist will hire the mechanic in a one-shot

interaction and the good mechanic will do the right thing.
We now investigate the idea that even if motorists assign only a small

probability of the mechanic being bad, this can distort the reputational
incentives of a good mechanic in such a way that the motorist may not want
to hire. To model this, we imagine an infinite sequnce of motorists who
decide in turn whether to hire the mechanic after observing earlier repairs
(but not what was actually needed).

In this game, a bad mechanic always chooses a = e. The good mechanic
maximizes his average payoff using discount factor δ ∈ (0, 1). His strategy
specifies for each date k and history hk the probabilities βkt (h

k) and βke(h
k)

of doing the right repair.
Since each motorist is a short run player, motorist k will want to hire

given history hk if she expects the right repair with sufficient probability. Her
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decision will be based on the probability µk(hk) she assigns to the mechanic
being bad and the expected behavior βkt , β

k
e of the good mechanic. Of course

if µk(hk) > p∗, she will certainly choose not to hire, and if µk(hk) ≤ p∗ a
necessary condition for her to hire is that βkt , β

k
e ≥ β∗.

EV’s surprising result is that if the mechanic is sufficiently patient, then
he will be unable to realize positive profits over the course of the game
even if µ is quite small. Specifically, let V (µ, δ) denote the supremum of
the mechanic’s Nash equilibrium average payoffs in the game with discount
factor δ and prior µ.

Proposition 3 For any µ > 0, limδ→1 V (µ, δ) = 0.

Proof. To begin, note that if µ > p∗, there is a unique Nash equilibrium
in which the mechanic is never hired. The first motorist does not hire, so
beliefs are not updated. The second motorist then doesn’t hire and so on.

Suppose that µ ≤ p∗ amd consider a Nash equilibrium in which the
mechanic is hired in the first period. The updated probability of being bad
depends on the first period behavior. In particular,

µ1(t) = 0

and
µ1(e) =

µ

µ+ (1− µ)
¡
1
2βe +

1
2(1− βt)

¢ .
Recall that the mechanic will only be hired if βt ≥ β∗ > 0. So µ1(e) > µ >
µ1(t) = 0. Note that µ1(e) is lower (i.e. the motorist has a better opinion
of the mechanic following an engine replacement) when either βt is low or
βe is high. Letting βt = β∗ and βe = 1, define

Υ(µ) =
µ

µ+ (1− µ)(1− 1
2β
∗)

to be the smallest possible posterior probability of a bad mechanic given an
engine replacement and prior µ. We know that Υ(µ) > µ for all µ ∈ (0, p∗).
Also Υ is continuous and strictly increasing in µ.

Now, let p1 = p∗ and define pm such that Υ(pm) = pm−1. Under this
definition, if the prior µ ≥ pm+1, and an engine replacement is observed,
then the posterior will be at least pm. The sequence p1, p2, ... is strictly
decreasing and limm→∞ pm = 0. We will now use an induction argument on
m to bound the mechanic’s Nash equilibrium payoffs as δ → 1.

We have already seen that if the prior µ exceeds p∗, the mechanic gets
zero payoff. For the induction step assume that if the prior µ exceeds pm, the
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mechanic’s payoff is bounded above by some V m(δ) with limδ→1 V m(δ) = 0.
To complete the induction argument, assume that the prior µ exceeds pm+1
and consider a Nash equilibrium where the mechanic is hired in the first
period (this is wlog since if he isn’t hired until the second period, the game
starting in the second period has the same prior and a higher payoff).

Since in the first period the mechanic must be choosing the correct action
with probability at least β∗ in each state (otherwise the motorist wouldn’t
hire him), his payoff is bounded above by his payoff from choosing the correct
action with probability 1 in each state (either this is his optimal strategy or
he mixes in which case it’s one of his best responses). Letting z(a|τ) denote
the continuation payoff if the state is τ and the good mechanic chooses action
a:

V (µ, δ) ≤ (1− δ)u+ δ
z(e|e) + z(t|t)

2
(1)

We have assumed that µ > pm+1, so if the mechanic chooses e, then µ1(e) >
pm and hence by the induction assumption:

z(e|e) ≤ V m(δ).

Now, consider the incentive compatibility constraint for the mechanic.
He must be willing to choose e when the state is actually e rather than
deviating to t. So

(1− δ)u+ δz(e|e) ≥ −(1− δ)w + δz(t|e)

or, re-arranging:

z(t|e) ≤ 1− δ

δ
(u+ w) + z(e, e) (2)

Combining the inequalities:

V (µ, δ) ≤ (1− δ)
3u+w

2
+ δV m(δ) = V m+1(δ).

Since limδ→1 V m(δ) = 0, then evidently limV m+1(δ) = 0. By induction,
this holds for all m, so we have shown that limδ→1 V (µ, δ) = 0 for any µ
that is greater than some pm. Since infm pm = 0, the proof is complete.
Q.E.D.

Intuitively, the problem is that once there is a sufficiently high belief that
the mechanic is bad, motorists will stop hiring and the game will effectively
end. This means that if beliefs are such that the mechanic is only one
engine replacement away from this region, and he cares about future payoff
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enough, he will be exceedingly averse to doing a replacement today even
if one is needed – unless the continuation payoff from a tune-up is also
exceedingly low. The dilemma is that if the mechanic is not willing to do a
replacement, the motorist will anticipate this and refuse to hire him because
she only wants to hire if he’s willing to do engine replacements when they’re
needed. Thus the only way the mechanic will be hired when she’s one e
away from being fired forever is if the continuations from a tune-up are also
close to zero. If δ is high, this means the overall expected payoff in this
region must be very low. But now, this expands the region of beliefs that
the mechanic wants to avoid and creates a new region where he’s just one
engine replacement away from a bad belief region. Sadly for the mechanic,
this unraveling continues until we’ve shown that his payoffs must be low for
any prior belief!

4.1 Comments

• The result doesn’t imply the motorist will never get hired. For in-
stance, if µ < p∗, there is a Nash equilibrium in which the first motorist
hires the mechanic, but no future motorist ever hires him regardless of
what he does with the car. Since future motorists ignore his behavior,
the mechanic will do the right thing in the first period. The problem
with this equilibrium is that if the second motorist see t, she’ll be-
lieve with probability 1 that the mechanic is good. So it seems quite
unreasonable for her not to hire.

• A key problem here is that each motorist is a short-run player. She
does not internalize the benefits she creates for later motorists if she
hires and gives the mechanic a chance to signal his goodness by per-
forming a tune-up. EV show that if there is a single long-run motorist,
there is an equilibrium that essentially gets the first-best outcome, even
if the bad mechanic may be a strategic player who can try to imitate
a good mechanic rather than automatically choosing e each period.
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