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These notes consider Levin’s (2003) paper on relational incentive con-
tracts, which studies how self-enforcing contracts can provide incentives in
agency settings. The principal applied motivation is that contractual rela-
tionships often function quite well without every detail of the relationship
being codified in a contingent court-enforceable contract. There are many
reasons for this: information may be available to the parties that is unver-
ifiable in court; writing or enforcing contracts can be time-consuming and
expensive; some contracts (such a vote-buying) may be illegal; the court
system may be non-existent or poorly functioning. The paper tries to iden-
tify the extent to which a long-term relationship sustained by goodwill or
reputation can substitute for the kind of perfect enforcement mechanisms
typically assumed in incentive theory.

The analysis uses the repeated game methods of Abreu, Pearce and
Stacchetti (1990) and Fudenberg, Levine and Maskin (1994). Relational
contracts are a special class of repeated games, however, because the ability
to make monetary transfers simplifies the structure of optimal repeated game
equilibria. Because parties can “settle up” period by period, rather than
moving to a different continuation equilibrium, the analysis becomes much
more straightforward.

1 The Model

There are a principal and an agent, both risk-neutral, who share a common
discount factor δ < 1. At each time t, they interact as follows. The principal
first offers the agent a salary wt. The parties then simultaneously choose
whether to transact or separate. If they separate, they receive period payoffs
π and u. If both choose to trade, the agent chooses an effort et ≥ 0 at cost
c(et, θt), where ce, cee > 0. Effort is not directly observed, but generated
an output yt, drawn from a distribution with density f(•|e). The principal
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receives the output, pays the salary wt and may also make a discretionary
payment bt (we also allow bt to be negative in which case the agent makes
the discretionary payment). Let Wt = wt + bt denote the total payment.

The realized payments at time t are then yt − Wt for the principal,
Wt− c(et) for the agent. The joint surplus is yt− c(et). The first best effort
level is eFB, the solution to maxe s(e) = E[y|e] − c(e). Average payoffs in
the repeated game are given by:

π = (1− δ)E

( ∞X
t=0

δt (yt −Wt)

)

u = (1− δ)E

( ∞X
t=0

δt (Wt − c (et))

)
It is useful to define s = π + u to be the average surplus in the repeated
game, and s = π+u to be the surplus realized if the agents do not transact.
We’ll assume for simplicity that s(eFB) > s > s(0).

Observe that the unique nash (and subgame perfect) equilibrium in a
one-shot game (or if δ = 0) is for the parties not to trade. Why? If they do,
the principal certainly will not make a discretionary payment, so b = 0. So
the agent has no incentive to exert effort and will choose e = 0. But then
a greater surplus would be realized by not trading, so no salary can make
trade desirable for both parties.

More is possible in the repeated game. To define repeated game strate-
gies, let ht = (y0, w0, b0, ..., yt−1, wt−1, bt−1) denote a time t history. A strat-
egy for the principal specifies a salary wt(h

t), a decision about whether or
not to trade, and a contingent bonus bt(ht, yt), A strategy for the agent
specifies whether or not to trade and an effort level et(ht, wt). A relational
contract specifies for any history ht, an effort et, a salary wt and a contingent
bonus bt(y). A relational contract is self-enforcing it corresponds to some
perfect public equilibrium of the repeated game.

A useful observation is that if there is some self-enforcing contract (or
PPE) that achieves a joint surplus s, then there are self-enforcing contracts
that achieve any individually rational split of this surplus.

Proposition 1 Suppose there is some self-enforcing contract with expected
surplus s. Then any payoff vector u, π with u+π = s, u ≥ u and π ≥ π can
be acheived with a self-enforcing contract.

Proof. Suppose the PPE that has expected surplus s gives expected
payoffs û, π̂ and involves a salary ŵ in the first period. Let u ≥ u, π =
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s−u ≥ π be given. Construct a new contract as follows. In the first period,
the principal offers a salary w = ŵ + (u − û)/(1− δ), following which play
exactly follows the PPE that gives payoffs û, π̂. If the principal deviates,
the players do not transact at date 0 or any following date. Q.E.D.

2 Stationary Contracts

A relational contract is optimal if no other self-enforcing contract acheives
a higher surplus. A key simplifying result is that in searching for optimal
contracts, it suffices to consider contracts that are stationary: i.e. that
involve the same salary, effort and contingent bonus plan in every period on
the equilibrium path.

Definition 1 A contract is stationary if in every period on the equilibrium
path et = e, wt = w, and bt = b (yt) for some (e, w, b (y)).

Notice that stationary contracts assign the same continuation payoffs
(and same continuation play) after every history on the eqm path. This is
similar to optimal equilibria in games with perfect monitoring, but in sharp
contrast to, say, equilibria in the Green and Porter model.

Proposition 2 If an optimal contract exists, there is a stationary contract
that is optimal.

Proof. Let s∗ denote the surplus achieved by an optimal contract.
Suppose there is some optimal contract that achieves payoffs u, π, with u+
π = s∗, involves a salary w0, effort e0 and bonus payments b0(y0) at t = 0
and specifies continuation payoffs u1(h1), π1(h1) starting at t = 1. Note
that for histories off the equilibrium payoff, we can without loss generality
specify that the players cease to transact forever, as this is the worst possible
punishment.

The first claim is that any optimal contract must be sequentially op-
timal. That is s(e0) = s∗ and moreover u1(h1) + π1(h

1) = s∗ for any h1

on the equilibrium path. To see why the latter must be so, notice that
increasing π1(h

1) improves the principal’s incentives to deliver on discre-
tionary payments without changing the agent’s incentives at all. Therefore
if u1(h1)+π1(h

1) < s∗ for some h1 on the equilibrium path, it would be pos-
sible to increase π1(h1) and have a new self-enforcing contract with higher
initial surplus. Therefore starting at time t = 1, any optimal contract much
achieve surplus s∗ for any history h1 on the equilibrium path. Clearly a
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higher surplus is not possible starting at t = 1 as s∗ is the highest possible
equilibrium surplus. But then to achieve s∗ on average from date t = 0, it
must be the case that s(e0) = s∗.

Having established sequential optimality, we now use the (possibly non-
stationary) optimal contract to construct a stationary contract that achieves
the same surplus. Let u, π be individually rational payoff vectors with u ≥ u,
π ≥ π and u + π = s∗. Let e = e0, so that s(e) = s∗. Define payments
w, b(y) to satisfy:

u = w + Ey[b(y)|e]− c(e)

b(y) +
δ

1− δ
u = b0(y0) +

δ

1− δ
u1(w0, e0, y).

Consider the agent’s expected future payoff at the point in time he
chooses his action. By construction it is the same under the stationary
contract as it is in the first period of the optimal contract. As e0 = e was
optimal in the first period of the optimal contract, the same is true in the
stationary contract.

Next consider the parties’ expected future payoff at the point in time
they choose whether or not to make the discretionary payment. The agent’s
payoff is:

b(y) +
δ

1− δ
u = b0(y0) +

δ

1− δ
u1(w0, e0, y),

i.e. identical to in the first period of the optimal contract. The principal’s
payoff is:

−b(y) + δ

1− δ
π = −b0(y0) +

δ

1− δ
π1(w0, e0, y),

i.e. identical to in the first period of the optimal contract (note we’ve used
the fact that π1 + u1 = π + u = s∗. So both parties are willing to make
the discretionary payment rather than walk away, and we have identified a
stationary contract that is self-enforcing and generates the optimal surplus
s∗ (indeed with an arbitrary individually rational split). Q.E.D.

An implication of this result is that to characterize optimal contracts,
one can consider only stationary contracts. The basic logic of the result is
very simple. In the model, the parties have two instruments to provide in-
centives: contingent transfers made today and continuation payoffs. These
instruments are perfect substitutes. If we start with an optimal contract
where the principal provides incentives using variation in continuation pay-
offs, we can always replace this variation with variation in transfers payments
today yielding a stationary contract that provides the same incentives.
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Remark 1 The optimal stationary contract constructed in the proof of Propo-
sition 2 is not renegotiation proof because observable deviations (e.g. refusal
to make specified payments) are punished with termination of the relation-
ship. Levin (2003) argues that one can construct optimal contracts that are
strongly renegotiation proof, however. The reason is that among the set of
optimal (stationary) contracts are contracts that hold each of the two parties
to their outside options, u and π respectively.

3 Optimal Contracts

The next step is to characterize optimal stationary contracts. A stationary
consists of an effort level e, a salary w and a contingent payment plan b(y).
The next result explains exactly what stationary contracts are self-enforcing.

Proposition 3 There exists a stationary contract that implements effort e
if and only if there is some payment schedule W (y) such that

e ∈ argmax
ê
Ey[W (y)|ê]− c(ê) (IC)

and
δ

1− δ
(s(e)− s) ≥ max

y
W (y)−min

y
W (y) (DE)

Proof. Note that to construct a self-enforcing contract it is natural to
punish any departure from the contract with the worst possible continuation
payoff, namely the separation payoffs u, π. Given this, a stationary contract
{e, w, b(y)} will be self-enforcing if and only if it (1) gives the principal a
period expected utility π ≥ π and the agent a period expected utility u ≥ u,
(2) satisfies the incentive compatibility constraint

e ∈ argmax
ê
Ey[w + b(y)|ê]− c(ê),

and (3) satisfies two constraints on the discretionary transfer payment b(y):
for all y,

b(y) ≤ δ

1− δ
(π − π)

−b(y) ≤ δ

1− δ
(u− u)

To prove the result, we first show that (IC) and (DE) are necessary for
there to be a self-enforcing contract that implements e. Suppose {e,w, b(y)}
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is self-enforcing. Define W (y) = w + b(y). Then e,W (y) satisfies (IC) and
(DE).

Conversely, suppose e,W (y) satisfies (IC), (DE). Let u, π be given with
u+ π = s(e), u ≥ u and π ≥ π. Construct stationary payments w, b(y) that
satisfy::

u = Ey[w + b(y)|e]− c(e)

b(y) = W (y)−min
ỹ

W (ỹ).

By construction, the stationary contract {e,w, b(y)} (1) generates individu-
ally rational payoffs u ≥ u, π ≥ π with u + π = s(e), (2) as a consequence
of (IC), satisfies the incentive compatibility constraint above, and (3) as
a consequence of (DE), satisfies the restrictions on discretionary transfers.
Q.E.D.

The result says that stationary contracts must satisfy two natural con-
straints: a standard incentive compatibility constraint for the agent’s effort
choice and a dynamic enforcement constraint. The latter requires that dis-
cretionary payments are not too small (to prevent the agent from walking
away), nor too large (to prevent the principal from walking away). This
limited variation in payments is what distinguishes optimal self-enforced
contract from optimal contracts that are court-enforced.

Given the above result, it’s pretty straightforward to characterize op-
timal contracts. To do so, it’s useful to impose two asumptions: namely
that the distribution of output as a function of effort, F (y|e), satisfies
the monotone likelihood ratio property (MLRP) and is concave in effort
(CDFC). These assumptions are strong, but fairly standard in incentive
theory. They imply that the incentive constraint above can be replaced by
a first-order condition for the agent’s optimal effort choice.

The optimal contract {e,W (y) = w + b(y)} is then the solution to the
following problem:

max
e,W (y)

s = E[y|e]− c(e)

s.t.
Z
Y
W (y)

fe
f
(y|e)dF (y|e)− c0(e) = 0

δ

1− δ
(s− s) ≥ max

y
W (y)−min

y
W (y)
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The optimal contract take a very simple form: a fixed salary plus a bonus
if output exceeds some threshold. The size of the salary can be varied to
achieve different divisions of the joint surplus.

Proposition 4 Under MLRP and CDFC, the optimal contracts are “one-
step”, i.e. there is some by with W (y) = W if y ≤ by and W (y) = W if
y ≥ by.

Proof. The marginal benefit to raising W (y) for some y is min W <
W (y) < maxW is

µ · fe
f
(y|e),

where µ > 0 is the Lagrange multiplier on the incentive compatibility
constraint. The MLRP assumption means that (fe/f)(y|e) is increasing in
y for a fixed e, so there will be some ŷ s.t. the marginal benefit is positive
for all y > ŷ and negative for all y < ŷ. The result follows immediately.
Q.E.D.

4 Comments

1. The stationarity result is more general than is outlined here. Essen-
tially it follows from two observations. The first is that the combi-
nation of risk-neutrality (quasi-linear utility) and monetary transfers
allow the parties to replace variation in continuation payoffs with vari-
ation in present transfers, i.e. to “settle up” immediately. The second
is that in a model where the principal’s actions are observable, opti-
mal contracts will be sequentially optinal, so transfers can be balanced.
More generally, for instance in some moral hazard in teams problems,
optimal contracts might involve money-burning (a deliberate destruc-
tion of surplus).

2. As a result, the only difference between standard (static) incentive
theory and relational incentive theory is the presence of the dynamic
enforcement constraint. As a consequence, many applications are pos-
sible: hidden action as above, hidden information, multiple agents
(Levin, 2002), the use of both verifiable and observable but non-
verifiable information (in Baker, Gibbons and Murphy 1993), team
production (Rayo ’01). It is also possible to incorporate explicit (payoff-
relevant) state variables.
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3. Self-enforcement has interesting implications for the use of hidden in-
formation screening contracts. To study hidden information we assume
that the agent privately observes some iid cost shock θt drawn from a
distribtion P (·) and chooses output yt at cost c(yt, θt). Levin (2003)
shows that in this setting optimal contracts either achieve the first-best
or they will involve production distortions for all cost types. More-
over, second-best contracts always involve pooling. For low discount
factors, optimal contracts require all types to pool on a single level of
effort. For medium discount factors, optimal contracts separate high
cost types but pool low-cost types. For high discount factors, the first
best separating contract is possible.

4. The last section of Levin (2003) considers a variant of the hidden ac-
tion model where output is privately observed by the principal, rather
than commonly observed. The principal can then issue a report about
the agent’s performance (a subjective evaluation). This model is much
more complicated because it involves private monitoring. Two issue
arise. The first is that an optimal contract must provide incentives for
the agent to exert effort and for the principal to monitory honestly.
As a result, equilibrium contracts cannot be sequentially optimal; joint
surplus must vary over time. The second question that arises is how
the principal should release information over time. Discounting means
that the principal cannot wait forever to make payments. But con-
cealing information makes it easier to provide incentives for the agent
(this is in insight of Abreu, Milgrom and Pearce, 1991). Levin (2003)
restricts attention to “full-review” contracts (i.e. PPE) and shows
that one-step termination contracts are optimal. MacLeod (2003) and
Fuchs (2005) provide further analyses.

5. An important early paper on relational contracts by MacLeod and
Malcomson (1989) provides a full characterization of self-enforcing con-
tracts under the assumption of perfect information. Not surprisingly,
stationary contracts are optimal, the key enforcement condition being
that s(e) ≥ δ

1−δ c(e). Their paper also goes a step further by nesting
the agency model in a market equilibrium setting where principals and
agents match to start relationships. This is a great paper that didn’t
get nearly the attention it deserved when it was published.
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