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Abstract

We examine the consequences of lobbying and vote buying, assuming this prac-

tice were allowed and free of stigma. Two “lobbyists” compete for the votes of

legislators by offering up-front payments to the legislators in exchange for their

votes. We analyze how the lobbyists’ budget constraints and legislators’ prefer-

ences determine the winner and the payments. When lobbyists are budget con-

strained then the preferences of all legislators can matter, and a lobbyist’s relative

strength increases more steeply with a budget increase than with an increase of

equal magnitude to the legislators’ original preferences for this lobbyist’s positio.

When lobbyists are not budget constrained then only the preferences of "near"

median legislators matter and the preferences of these legislators and the budget

enter equally in determining the winner.
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1 Introduction

Consider a legislature that will vote over two alternatives, where two opposing lobbyists

compete by bidding for legislators’ votes. We study how the legislative outcome depends

on the lobbyists’ budgets and preferences and the legislators’ preferences. We show that

the outcome generally fails to fully reflect legislators’ preferences. Moreover, we find that

lobbyists’ budget constraints can change the outcome in interesting and significant ways

from situations where lobbyists’ budgets exceed their maximal willingness to pay.

We model the lobbying process via a complete-information game in which lobbyists

alternate in increasing their offers to legislators. Legislators care about how they cast

their vote, and any payments they receive from lobbyists, rather than about the eventual

outcome. The idea is that legislators care about how their voting record is perceived by

their constituency, regardless of the actual outcome.1

Naturally the difference in the budgets of the lobbyists plays a critical role in de-

termining which lobbyist is successful when lobbyists are budget constrained, and the

difference in their maximal willingness to pay plays an important role when they are not

budget constrained. However, legislators’ voting preferences enter into the determination

of the winner in subtle ways, and are markedly different in how they matter depending

on whether or not lobbyists are budget constrained.

The main analytical result (Proposition 2 in section 3.1) concerns the case where

lobbyists are budget constrained. There we show that a lobbyist wins if her budget

plus half of the total value that legislators attach to voting in her favor exceeds the

corresponding magnitude for the other lobbyist. The result that preferences are weighed

half as much as budgets in determining the outcome stems from the strategic aspects of

the vote-buying game. In making a bid for any given legislator’s vote, the lobbyist cares

not only about how much he or she must promise to pay, but also about how much this

offer will free up for the other lobbyist to use in bidding for other votes.

In contrast, when budgets are unbounded, the role of legislator preferences is very

different. What matters then are the lobbyists’ valuations and the intensity of preferences

1The extent to which legislators care about outcomes would matter only when they are pivotal.
However, as discussed in section 2.1, the probability of being pivotal is often negligible, especially in the
context of vote buying where the lobbyist can intentionally make the legislators non-pivotal by buying
slightly more than the minimal number of votes they need (see Dal-Bo (2007)). This would render

the legislators’ preferences over outcomes unimportant and they would thus be willing to tender their
vote to the highest bidder. In contrast, the extent to which legislator cares about how the vote is cast
significantly affects the outcome (both payments and who wins).
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of a particular “near-median” group of legislators. The lobbyist with a-priori minority

support wins when its valuation exceeds the other lobbyist’s valuation by more than a

magnitude that depends on the preferences of that near-median group (Proposition 3).

Thus, the voting preferences of the legislators have quite different effects in the two

scenarios. When budget constraints are important, the intensity of the preferences of all

legislators can matter; when budgets do not constitute the important constraints, only

the intensity of preferences of a particular near-median group of legislators matter.

The discussion in section 4 collects a number of additional issues, among them the

case of unknown legislators’ preferences, welfare implications and related literature. It is

noted there that, in general, the outcome of the vote buying game need not be efficient

and might involve higher or lower total surplus than what will arise in its absence. It

is also claimed that, when lobbyists’ budgets are raised by a certain donation game in

which all of the population participates, then the lobbyists’ budgets reflect the population

preferences and the overall outcome is efficient.

Much of the formal literature on lobbying is concerned with influencing a single de-

cision maker (e.g., a regulator). Our works belongs to a somewhat different strand of

the literature that examines the lobbying of a voting body like a legislature. This strand

begins with the Colonel Blotto game, which in the context of lobbying has lobbyists

making simultaneous offers of payments to legislators. Beyond the notorious difficulties

in solving even the very simplest cases, the one-bid simultaneous mixed strategy nature

of the game is not appropriate in most applications and that makes it unclear that the

Colonel Blotto game provides much robust insight into lobbying. In the fundamental

contribution of Groseclose and Snyder (1996) the lobbyists move sequentially and each

makes only one final offer. This makes the game much more tractable than the original

Colonel Blotto setting. The Groseclose and Snyder analysis focuses on the advantage

that this asymmetric procedure confers on the second mover–the first mover can win

only by buying a sufficiently significant supermajority.2 Although the game is tractable

and in some scenarios some formal procedure may create such an asymmetry, there are

other situations there is no such formal structure and the lobbying process resembles

more a repeatedly reactive bidding process like the one we model. Our analysis shows

that this changes the strategic interaction and outcomes significantly, and so even though

our model is also highly stylized, it is still important to characterize how allowing lobby-

ists to react to each other’s bidding behavior affects lobbying outcomes. We contrast the

implications of the our model from that of Groseclose and Snyder (1996) and the rest of

2See also the subsequent article by Banks (2000) that develops a finite version of that model.
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the literature in more detail in Section 4.6.

Our paper is also related to Dekel, Jackson and Wolinsky (2008), henceforth DJW

(2008), that models a general-election scenario rather than a legislative setting. The main

difference is that, in the lobbying setting that we examine here, legislators care about

how they cast their vote, whereas in DJW (2008) voters care only about the outcome.

This change is more natural for the scenario of lobbying in a legislative setting compared

to more general elections.3 A second difference is in the focus here on the effect of budget

constraints, which does not appear in DJW (2008).4 These differences in setting lead to

very different conclusions regarding the structure of equilibria. Finally, the vote-buying

model itself differs: in DJW (2008) we consider a uniform-offer model where the vote

buyers cannot make different offers to different voters.5

2 A Model of Vote Buying

Two lobbyists, X and Y , try to influence the voting of a legislature with an odd number,

N , of legislators by directly buying votes of legislators prior to the vote. To simplify

matters, we assume that vote buying is an ordinary transaction: the lobbyist gets full

control of the vote in exchange for an up-front payment to the legislator.6

2.1 The Lobbying Game

The lobbyists alternate in making offers. Lobbyist k in its turn announces an up-front

offer pki ≥ 0 to each legislator i for her vote. There is a small additional cost, γ > 0, in-

curred each round in which a lobbyist makes an offer. A fresh offer (or promise) made to

a legislator cannot be lower than those previously made by the same lobbyist to the same

legislator. It is not obvious whether this assumption is more or less realistic than the

3Voters in a general election might also care significantly about how they cast their votes, which is,

of course, suggested by the fact that people vote despite it being costly and their pivot probability being
negligible. To the extent that the voting preference are more important than preferences over outcomes,
the present paper provides a more relevant model for general elections.

4Budget constraints do not have the same impact in settings where voters care only about outcomes,
and so their role is only interesting in this paper.

5In situations where voting preferences do not matter, targeting specific voters is less consequential.
In the legislative application, lobbyists have strong incentives to target certain legislators.

6In Section 4.5 below we also consider the possibility of offering indirect promises to legislators that
are only contingent on the outcome of the vote.
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opposite assumption that allows offers to be withdrawn at the end of each round. How-

ever, our assumption circumvents technical difficulties familiar from the “Colonel Blotto”

literature. The combination of sequential bidding and irreversible promises simplifies the

analysis and allows us to incorporate heterogeneity of the voters and the lobbyists that

would be very hard or even impossible to analyze if offers could be withdrawn arbitrarily.

The utility that legislator i gets from selling to lobbyist k at the price pki is p
k
i + V k

i ,

where the parameters V k
i are the utility Legislator i gets from voting for the outcome

supported by lobbyist k = X,Y .. Thus, if the bidding ends with prices pki , it is a dominant

strategy for Legislator i to sell her vote to Lobbyist X if and only if

pXi + V X
i > pYi + V Y

i . (1)

To simplify the discussion, we will assume from now on that the legislators play their

dominant strategy. Thus, given the outstanding offers at any stage, for each legislator

there is a unique lobbyist to whom that legislator would tender her vote if the process

were to stop at that stage. Let Ikt denote the set of legislators who would tender to

lobbyist k = X,Y if the process were to stop at the beginning of period t:

Ikt = {i : pki + V k
i > pji + V j

i }.

The bidding ends at the beginning of period t with a win by k if both |Ikt | > |Ijt | and
|Ikt−1| > |Ijt−1|, i.e., if j passed up an opportunity to outbid k.

Once the bidding process ends, legislators simultaneously tender their votes to the

lobbyists. The lobbyist who collects more than half the votes wins.

The lobbyists finance their payments out of budgets denoted BX and BY . The total

payments that lobbyist k would have to pay at any stage of the game, assuming that the

game were to end at that stage, cannot exceed Bk. That is, at the beginning of every

period t it has to be that
P

i∈Ikt
pki +γτk(t) ≤ Bk, where τk(t) is the number of periods in

which k has made an offer up to the beginning of t. It is important that at each stage the

budget constraint has to hold only with respect to those obligations that are still relevant

at that stage. If lobbyist k’s up-front offer pki has been outbid by the other lobbyist, so

that at that point legislator i would sell her vote to the other lobbyist, then lobbyist k

does not have to count this up-front offer against its budget.

Each lobbyist has a value W k for winning. If the game ends in period t < ∞ then

lobbyist k’s payoff isW k−
P

i∈Ikt
pki −γτk(t) if k wins, and −

P
i∈Ikt

pki −γτk(t) if k loses.

The payoff is −∞ if the game never ends.

Assuming that the legislators always follow their dominant strategy, the game we

analyze is between the lobbyists. This is a game of perfect information. The lobbyists’
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budgets and valuations and the legislators’ preferences are commonly known to the lob-

byists. When a lobbyist makes offers, he or she observes the past offers and promises

received by each legislator.

The lobbyists’ strategies are defined in the obvious way–they specify how much

more is offered to each legislator over past offers, contingent on the history of offers. The

solution concept is subgame perfect equilibrium.

The focus is on the legislators’ voting preferences rather than on their preferences

over outcomes, since it is natural to assume that for re-election considerations legislators

care a great deal about how they vote regardless of what the actual outcome is.7 It is

natural to think of the V k
i ’s as being related to the preferences of i’s constituency over

the actual outcome. We will indeed make this connection later when discussing efficiency

in Section 4.2.

Notice that, even if legislators have direct preferences over the outcomes, those would

probably be of secondary importance as they would matter only when the legislator’s

vote is pivotal which might occur only with low probability. Furthermore, in a vote

buying scenario, pivot considerations are even less prominent than in other scenarios, as

the vote buyers can effectively eliminate them by offering to buy slightly more than the

minimal number of votes they need (see Dal-Bo (2007) for a discussion of this issue).

2.2 Further Assumptions and Notation

Let Vi = V X
i − V Y

i . The analysis that follows depends on the V
k
i ’s only through Vi and

we will therefore represent the preferences in terms of Vi. We order the i’s so that Vi
is nonincreasing and let m be the median legislator (m = (N + 1)/2). Without loss

of generality we assume Vm > 0, so that the median prefers to vote for X. Therefore

without any vote-buying X would prevail. Let n = argmax {i : Vi > 0}, i.e., n has the
weakest preference for X over Y from among all those who prefer X over Y .

There is a smallest money unit ε > 0. Both the offers and the budgets are whole

multiples of ε. To avoid dealing with ties, which add nothing of interest to the analysis,

we assume that the Vi’s and W k’s are not whole multiples of ε.

Given a number z, let dzeε denote the minimal multiple of ε greater than z, and

bzcε the maximal multiple of ε smaller than z. Assuming as above that each legislator

votes for X (respectively Y ) if and only if Vi plus the amount of money that legislator

7The related lobbying literature (Grosclose and Snyder (1996) and Banks (2000)) also assumes voting
preferences.
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Figure 1: Preferences and parameters: dVieε, V̄ , m, n.

receives for that vote is strictly positive (respectively negative), then Y must spend at

least V̄ =
Pn

i=m dVie
ε to obtain a majority. We assume that both BY and W Y are

greater than V̄ as otherwise the solution is trivial.

In Figure 1 the solid step function is dVieε, the line crosses the axis at n, the long
dashed vertical segment is at m, and the marked area is V̄ .

3 Vote-buying

The vote-buying game is a sort of a multi-unit auction with a special form of comple-

mentarity (only a bundle of more than half the units is valuable). It resembles an all-pay

auction in that the loser may end up paying for some votes. But it is not a pure all-pay

auction, since at most one lobbyist ends up paying for any given vote. If there were only

one legislator, then this would be a complete-information English auction (that allows

jump-bidding).

We start with the following observation that applies to both constrained and uncon-

strained bidders.
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Proposition 1 Assume γ > 0. The vote-buying game has an equilibrium in pure strate-

gies. In every equilibrium the same lobbyist wins, and the losing lobbyist never makes

any offers.

The existence of a unique winner when budgets are binding follows because this

is a finite game of perfect information and ties are ruled out by assumption. In the

unconstrained game, since offers are nondecreasing, they eventually reach a point where

they must be greater than the value. While it is possible in principle that the bidder

at that point expects to be outbid by the opponent and hence does not expect to pay

that full amount, the fixed cost of making an offer (γ > 0) implies that such an offer

will never be made. Thus the game is equivalent to a finite truncated version, and hence

has a unique outcome. That the loser never makes offers also follows from the positive

bidding cost γ.

3.1 Budget-constrained lobbyists

In this part the budgets are the relevant constraints on the lobbyists. That is, W k > Bk

for k = X,Y , and so each lobbyist is willing to spend up to the budget in order to

win. The winner is determined by a combination of the relative strengths in terms of

the budgets and the intensity of the legislators’ voting preferences. Roughly speaking, Y

wins if its budget advantage, (BY −BX ), exceeds a measure of the preference advantage

of X measured by one half of the total utility advantage of X over Y , i.e.,
P

i Vi/2. To

understand why the utilities of all legislators matter, but only count half as much as the

size of the budgets, it is useful to understand the structure of the winning strategies. The

following example helps developing the intuition for this problem by pointing out that

the natural least expensive majority, LEM, strategy, which secures the least expensive

minimal majority at each stage, may not be optimal.

Example 1 Optimal versus Naive Strategies - Why Utility has a Shadow Price of 1/2.

There are three legislators with V1 = V2 = 0.5 and V3 = −30.5. The grid size is ε = 1.
Budgets are BX = 100 and BY = 80.

Note that BX − BY = 20 < 29.5 = −
P

i Vi, so the total utility advantage for Y

is greater than the absolute budget advantage of X. Nevertheless, as we show below in

Proposition 2, X should win, becauseX’s budget exceeds Y ’s budget plus half of the total

utility difference. That is, basically what matters is the budget advantage relative to one
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half the total preference advantage (setting aside small corrections that are explained in

the proof of the result). Let us see how X should play to win.

Suppose that X follows the naive LEM strategy of always spending the least amount

necessary to guarantee a majority at any stage. Suppose (just for the purpose of illus-

tration) that at the first stage Y makes offers of 55 to legislator 1 and 25 to legislator 3.

The cheapest legislator for X to buy back is legislator 1 at a cost of 55. Assume Y now

offers 55 to legislator 2. At this point X has 45 left in her budget, and cannot afford to

buy back either legislator 2 or 3.

What was wrong with this strategy? The problem is that, while X bought the

cheapest legislator in response to Y ’s offer, X also freed up a large amount of Y ’s budget

for Y to spend elsewhere, while X’s budget was committed. X needs to worry not only

about what she herself is spending at any given stage, but also about how much of Y ’s

budget is freed up. Effectively, freeing up a unit of Y ’s budget is “just” as bad for X as

spending an extra unit of X’s budget.

So, instead of following the naive LEM strategy of buying the cheapest legislators, let

X always follow a strategy of measuring the “shadow price” of a legislator as the amount

that X must spend plus the amount of Y ’s budget that is freed up. If X had followed

that strategy, then in response to Y ’s first stage offer above, X would have purchased

legislator 3 at a price of 56. Then Y would have 25 free, and could only spend it on

legislators 1 and 2. Regardless of how Y spends this budget, X can always buy legislator

2 at the next stage at a price of at most 25, against which Y has no winning response. ¥
The example shows that keeping track of the shadow price is a good strategy. In

fact, for large budgets it guarantees a win for the winning candidate characterized in

Proposition 2 below. Let us see how we get from this understanding of “shadow prices”

to the expressions underlying Proposition 2.

Under the strategy suggested in the above example, X keeps track of the offer that

X has to make to buy a legislator given the current offer of Y , plus the amount of Y ’s

budget that is freed up. The amount that X has to offer to buy a given legislator i when

Y has an offer of pYi in place is p
Y
i − Vi. The amount of Y ’s budget that is freed up is

pYi . So the “shadow price” of buying legislator i is 2p
Y
i −Vi. Dividing through by 2 gives

us pYi − Vi/2. In the proof this translates into the “strength” of Y being Y ’s budget less

the sum of Vi/2 over legislators that prefer Y , X’s “strength” being X’s budget plus the

sum of Vi/2 over those legislators that prefer X, and the winner being approximately the

stronger lobbyist.
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This is captured in Proposition 2 below, which includes some slight modifications to

account for the grid size and some other details that are covered in the formal proof. The

result requires that budgets be sufficiently large as specified next.

BX >

¯̄̄̄
mV1
2

¯̄̄̄
−
PN

i=m+1 Vi

2
− VN
2
+mε (2)

BY >

¯̄̄̄
mVN
2

¯̄̄̄
+

Pm−1
i=1 Vi
2

+
V1
2
+mε. (3)

Proposition 2 If the budgets are large enough so that (2) and (3) are satisfied, then,
for sufficiently small γ, X wins at no cost if

BX > BY −
X
i

Vi/2− VN/2 + (2m+ 1) ε (4)

and Y wins at cost V̄ paid to the legislators m (median) through n (almost-indifferent) if

BY > BX +
X
i

Vi/2 + V1/2 + (2m+ 1) ε. (5)

The interesting feature is that, very roughly, increasing a legislator’s preference for a

given lobbyist by $1 is equivalent, in terms of who wins, to increasing the budget of that

lobbyist by $0.5. Thus money is worth much more to a lobbyist than having its bill being

liked, as might be expected due to the use of funds being more flexible. Nevertheless,

one of the implications of Proposition 2 is that a lobbyist with strong minority support

can win despite having a lower budget than the opposition.

The result says that a lobbyist, say X, benefits from a dollar spent on buying votes

twice as much as from effecting a change in a legislators’ preferences that increases Vi
(the relative preference for X) by one dollar. How might this translate into lobbyist

behavior? As noted in the introduction it is natural to view legislator’s preferences

for voting as determined by the constituency preferences.8 So the result is informative

about the optimal investment by lobbyists (or the interest groups whom they represent)

on influencing constituent’s preferences. (This can be achieved by investing in local

public goods, advertising, etc.). At the optimum the marginal dollar spent on influencing

8It might also be that the legislator does not fully internalize constituents’ preferences, in which case
Vi is proportional to the constituents’ valuations and the discussion below holds with an appropriate
rescaling.
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constituents should translate into the equivalent of two dollars spent directly on the

legislator.9

Another interesting aspect (which contrasts with the unrestricted-budgets case, dis-

cussed subsequently) is that the outcome can depend on all the legislators’ preferences.

This dependence is not immediate as Proposition 2 is not a complete characterization.

First, there is the measurement unit, ε; but clearly as ε→ 0 this effect disappears. Sec-

ond, even with ε = 0 it is possible that neither equation (4) nor equation (5) holds. If

BX ∈
£
BY −

P
i Vi/2− V1/2, B

Y −
P

i Vi/2− VN/2
¤
, which can be non empty since in

general V1 > VN , then the result does not specify the winner. However, as V1 and VN

become small relative to
P

i Vi then clearly the characterization becomes tighter. More-

over, given any preferences for the legislators and any budgets such that one position

wins, then — if the budgets are large enough — one can change the preferences of any

single legislator, a fortiori any subset of legislators, by enough to reverse the winner.10

In this sense all the preferences matter.

Note that if voting preferences are relatively unimportant, i.e.,
P

i Vi is negligible

relative to the budgets, then the comparison boils down to a comparison of the budgets.

That is, the lobbyist with the highest budget wins. When this is the case, the optimal

strategy simplifies to the strategy that seeks to obtain the least expensive majority at

each point (LEM strategy), which is not optimal in general. A scenario with negligible

voting preferences would arise, if legislators cared only about outcomes (and not how

they vote) and the probability of being pivotal were negligible (as it would be in many

plausible cases), since then the preferences over outcomes essentially do not affect the

vote tendering considerations of the legislators.

As the proof makes clear, in fact only one large-budget condition is needed in each

case. That is, X wins if equations (2) and (4) hold, and Y wins if (3) and (5) are satisfied.

When budgets are not large enough (as given by (4) and (5)) the game becomes quite

complex and the formula for determining the winner is involved. As we see little insight

and great complication in such an analysis, we do not pursue it. The following example

serves to show that an assumption of large enough budgets is necessary.

9The model might suggest very little direct investment by interest groups in public opinion. Exam-
ining a richer dynamic and multi-agent model in which public opinions are relevant for more than one
legislator and more than one vote, while payments to legislators apply to one legislator’s vote, could lead
to more significant investments in public opinion and in legislators.
10The budgets must be large enough so that after the change equations (2) and (3) must continue to

be satisfied.
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Example 2 Large versus Small Budgets

Let BY = 0, BX = 30.2, ε = 0.1, N = 3, V1 = −10, V2 = −20, and V3 = −30. Here
X can win by buying legislators 1 and 2 at prices of 10.1 and 20.1.

In this example

BX +

P
i Vi
2

+
V1
2
= −5 < BY − (2m+ 1) ε = −1,

and so if we applied the expressions from Proposition 2, we would mistakenly conclude

that Y should win. ¥
If we did not assume small costs of making offers (i.e., if γ = 0), then the characteri-

zation of the winning lobbyist would be unchanged. There could potentially be multiple

equilibria which differ from one another with respect to the total payments made by the

winner and the identities of their recipients. The loser would still make no payments in

equilibrium, but by making bids that will be outbid by the winner, the loser could force

the winner to spend more than the minimum sum necessary to obtain a majority in the

absence of active opposition.

3.2 Unconstrained lobbyists

We now analyze the case in which the budgets are not binding. The identity of the

winner depends on the relative magnitudes of the lobbyists’ valuations and the intensity

of the voting preferences of the legislators whose index i falls between m (median) and

n (weakest supporter of X). Recall that V̄ is the sum that Y has to commit to the m

through n legislators in order to outbid X in the first step in the least expensive way.

Roughly speaking, Y wins at the cost V̄ when Y ’s valuation, W Y , exceeds WX by a

magnitude related to V̄ ; since X enjoys a preference advantage, it wins at zero cost when

WX > W Y ; in the intermediate range in which W Y exceeds WX but is not sufficiently

larger, the identity of the winner depends on who moves first.11

Proposition 3 There exists λ ∈ [
¥
WX

¦
ε
,
¥
WX

¦
ε
+ V̄ ] such that, for sufficiently small

γ > 0, in any equilibrium:

11The proof of the following result (in the appendix) is somewhat related to the proof of Proposition
3 in Dekel, Jackson and Wolinsky (2007), henceforth DJW (2007), which studies single-object all-pay-
auctions, though the vote buying game of the present paper is not a pure all-pay auction. That result
in DJW in turn was preceded by a similar result due to Leininger(1991).
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1. If
¥
W Y

¦
ε
> λ, then Y wins at cost V̄ paid to the legislators m (median) through n

(almost-indifferent).

2. If
¥
W Y

¦
ε
<
¥
WX

¦
ε
then X wins at no cost.

3. If
¥
W Y

¦
ε
∈
¡¥
WX

¦
ε
, λ
¢
then Y wins at cost V̄ if it moves first , and X wins at

positive cost if it moves first.

The cutoff level λ has the following meaning. Suppose thatX moves first and commits

the maximal sum that does not exceed its value,
¥
WX

¦
ε
, in a manner that makes it as

costly as possible for Y to obtain the majority. Then λ is the minimal sum that Y would

have to commit to voters in order to obtain a majority. The precise characterization of

λ in terms of the parameters of the model is provided in the proof.

4 Discussion

4.1 Budget Constraints

At a first glance one might conjecture that the only difference between the scenarios

with and without budget constraints is that in the constrained scenario the budgets play

the same role that the valuations play in the unconstrained scenario. In some auction

models this is indeed the case. However, it turns out that the outcomes of the two vote-

buying scenarios with and without binding budget constraints are markedly different

from one another. When the budget constraints are not binding only the preferences of

the legislators whose index i falls between m (median) and n (weakest supporter of X)

matter for the determination of the winner. These are the legislators whom Y must buy

in order to outbid X in the least expensive way. In contrast, when budget constraints

are the decisive element, the preferences of all the legislators can (as explained in Section

3.1) affect the outcome. The weight given to the preferences that matter also differ

across these two cases. In the case of budget-constrained lobbyists, the preferences of

the legislators enter with half the weight given to the budgets of the lobbyists. In the

unconstrained case the preferences of the legislators indexed m to n enter with same

weight as the lobbyists’ valuations.12

12The reader might wonder if the one-half weight on legislator preferences results from the simple
majority rule considered above, rather than primarily from the budget constraint as we argue. At
the end of the proof of Proposition 2 we observe how the result would change if a supermajority were

required, and show that the Vi/2 part of the calculation remains, multiplied by a factor that depends
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The important difference between budget constraints and valuations is that the former

constitute hard constraints on the outstanding commitments while the latter can be

exceeded despite it being unprofitable. In static scenarios, this distinction might not

matter because bids in excess of the valuation are dominated. However, in a dynamic

scenario in which past bids become sunk, the distinction between budgets and valuations

might become very meaningful for behavior off the equilibrium path. When the budget

constraints bind, a central strategic consideration concerns how much budget is being

freed up for the opponent. Therefore, the most effective strategy does not necessarily

minimize the payments promised to legislators at each stage and the preferences of those

who are not the least expensive to acquire also enter the calculations. When the budget

constraints do not bind, this consideration is irrelevant, as past offers are essentially sunk

costs and the most effective strategy entails acquisition of the least expensive votes at

each stage.

4.2 Efficiency

In the absence of any mechanism for buying and selling votes, the outcome of voting will

in general be inefficient. There is simply nothing to make legislators take into account

the effect of their vote on others. A natural hypothesis is that allowing the lobbyists

to compete for the votes will help align the outcome with overall societal values for the

alternatives, presuming that the lobbyists’ budgets represent the utility of some (possibly

unmodeled) agents. Our analysis shows that this is not always so.

Under what circumstances will vote buying result in efficiency? If budgets are binding,

then equilibrium will be (approximately) efficient if for some reason the budgets are

proportional to the true surpluses of the agents in the society, and the legislators’ voting

preferences are too. That is, let V X =
P

i dVie
ε, and V Y =

P
i d−Vie

ε, then the equilibria

will be efficient if BX/V X = BY /V Y , and V X and V Y represent the preferences of the

legislators’ constituents. If budgets are raised by a donation game with forward-looking

donors who can anticipate the willingness to pay in favor of each alternative, then the

game essentially becomes an all-pay auction one of raising donations, where one side

begins with an initial advantage. This is a variation on the games studied in DJW

(2007). While certain such games could lead to an efficient outcome, it is clear that

the set of circumstances in which the outcome would necessarily maximize total societal

utility are quite stringent.

on the super-majority required.
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4.3 The role of bidding costs

The following example clarifies the role of the bidding cost γ in Proposition 3. With

γ = 0 there are equilibria in which the higher value lobbyist, say Y , loses since, if Y tries

to win, the other lobbyist, X, can make Y pay out substantial sums without X incurring

any cost itself. This is accomplished by offers made by X that are later outbid by Y .

Even though this does not directly benefit X in the subgame where X is eventually

outbid, it makes it less attractive for Y to reach such a subgame and thus can change

bidding behavior earlier in the game, and ultimately can even change who wins the game.

Example 3 Bidding Costs

W Y = 12.5, WX = 9.5, ε = 1, N = 3, V1 = V2 = V3 = 0.5, γ = 0. Thus, V̄ = 2 and,

if γ were positive, then by Proposition 3 Y would win at the cost 2. To see that with

γ = 0 the situation might be different, suppose that X starts with pX1 = 9 (the full offer

is pX1 = 9, p
X
2 = pX3 = 0 but for brevity here and hereafter we will often specify in each

stage only the part of the outstanding offer that is being increased). We claim that there

is an equilibrium in the ensuing subgame in which Y quits immediately, since it can win

in the continuation only by paying more than 12.5. To construct such a continuation,

observe that in any equilibrium continuation Y would never commit more than W Y in

one step. This is because the expected incremental sum of payoffs of X and Y from

that point on would be negative which is inconsistent with any equilibrium continuation.

Thus, Y responds to pX1 = 9 with one of the following profiles of promises: (i) p
Y
1 = 10,

pY2 = pY3 = 1; (ii) p
Y
1 ≥ 10, pY2 = 1 or 2, pY3 = 0 (or the same with the roles of 2 and 3

interchanged). (iii) pY1 = 0, p
Y
2 ≥ 1, pY3 ≥ 1 s.t. pY2 + pY3 ≤ 12. The following is a SPE

in the subgame following (i). X regains the majority with pX2 = 2, p
X
3 = 2, to which Y

responds with pY2 = pY3 = 3 and X quits. If Y deviates to a cheaper offer like pY2 = 3,

then on the path of the continuation X responds with pX2 = 9 to which Y responds with

pY2 = 10 and X quits. If, after pX2 = 9, Y continued instead with pY3 ∈ [2, 9], it would
not save anything, since X would respond with pX3 = 9 to which Y would respond with

pY2 = 10 or pY3 = 10. Thus, if Y continues according to (i) and wins, it would end up

spending more than W Y . A SPE continuation after (ii) is essentially the same as in (i).

That is, X responds with pX2 = 2, p
X
3 = 2 to which Y responds with pY2 = pY3 = 3 and

X quits, etc. A SPE continuation following (iii) is as follows. Assuming that pY2 ≤ 9, X
responds with pX2 = 9 (otherwise, p

Y
3 ≤ 9 and X would respond with pX3 = 9) to which Y

would respond with pY2 = 10. If at that point p
Y
2 + pY3 > 12.5, then X would quit. If not,

X would continue with pX3 = 9, to which Y would respond with pY3 = 10 and X would
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quit. If after pX2 = 9, Y continued instead with pY3 ∈ [2, 9], it would not save anything,
since X would respond with pX3 = 9 to which Y would respond with p

Y
2 = 10 or p

Y
3 = 10.

Thus, if Y continues according to (iii) and wins, again it would end up spending more

than W Y .¥

Notice that, at any point along the continuations described in the example, X be-

haves optimally, since it expects to be relieved from any commitments that it makes by

subsequent promises by Y . This is why this construction requires γ = 0. With positive γ,

X would not want to continue bidding when it is certain to lose, even if its commitments

would be later annulled.

4.4 Unknown preferences

Our analysis so far has assumed that legislators’ voting preferences are known. This

seems reasonable in the lobbying scenario. Nevertheless, it is worthwhile exploring the

effect of lobbyists’ uncertainty over legislators’ voting preferences.

Suppose that, for all i, Vi is an independent draw from a continuous distribution F .

We assume that F has a connected support and a continuous and positive density on its

support, and is such that z + F (z)/f(z) and z + (F (z)− 1)/f(z) are both increasing on
the support of F . There are many prominent distributions satisfying this, such as the

uniform distribution. Let V̂ = F−1(0.5) be the median of the distribution F . In this

environment we impose the constraint that the expected costs of lobbyists’ offers must

be within their budgets at each point in the game, assuming it ends at that point.

Proposition 4 For any δ > 0, there is N(δ) and ε̄ such that for all N > N(δ) and all

grids with ε ∈ (0, ε̄) the following hold.

• If BY > BX + V̂ N/2 + δ, then Y wins with probability of at least 1− δ.

• If BX > BY − V̂ N/2 + δ, then X wins with probability of at least 1− δ.

The result is almost a complete characterization of equilibria for large N , as the

conditions cover budget differences except those that fall in an interval of size 2δ. The

legislature, N , needs to be large to apply the law of large numbers. Specifically, the

proof is based on an argument that a lobbyist can obtain an expected share that is greater

than 1/2 if the stated conditions hold, and then by the law of large numbers for large

N that almost surely guarantees winning. How large N has to be depends on δ and the

distribution.
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When δ is sufficiently small, the lobbyist who is likely to lose will not enter the

bidding and the winning lobbyist will bid the minimum necessary to secure majority

with sufficiently high probability. The reason for the minimum payment in equilibrium

is clear. As in all other cases, the loser would like to avoid payment.13,14

Although the result is derived here only for the case of bounded budgets, the proof

provides a key step for analyzing the case of unbounded budgets. Namely, it shows that

the lobbyists should still use "flat" strategies that make the same offer to all legislators.

Then the game resembles a simple dynamic all-pay auction. The analysis of such an

auction would require significant work and go beyond the scope of this paper, but with

the preliminary result we obtain it seems clear how to proceed to solve the unbounded

budgets case.

4.5 Indirect promises

Due to legal or ethical reasons or plainly because the voting is confidential, it might

be the case that lobbyists cannot acquire legislators’ votes directly or make payments

contingent on how the legislator actually votes. Instead, a lobbyist can influence the

voting only by making promises that will be fulfilled if and only if this lobbyist wins.

To model this, suppose that, in its turn to propose, Lobbyist k promises Legislator i

a payment cki (instead of the bribes p
k
i ) that will be paid out if k wins, independently of

how i voted. Again the process ends if two rounds go by without a change in who would

be the winner.

Since the winner must pay all the promises it made, at any point along the process, it

has to be that
PN

i=1 c
k
i ≤ Bk. This is in contrast with the up-front buying scenario where

the payment offered to i counts against k’s budget only if i prefers to tender to k. The

payoff to Lobbyist k is W k −
PN

i=1 c
k
i if k wins; 0 if k loses (and −∞ if the game never

ends). Thus, the winner honors its promises to all legislators regardless of how they cast

their votes, while the loser is not making any payments.

Since they are not directly paid for their votes, they are assumed to vote according

to their voting preferences V k
i . Thus, Legislator i votes for Lobbyist X’s proposal if and

only if V X
i > V Y

i .

13In this case the loser would avoid bidding even if γ = 0, since, owing to the uncertainty, it cannot

be sure that all of its offers will be outbid.
14As explained in the remark following the proof of this proposition, the 1/2 here results from the

simple majority rule (and not from the shadow price of the budget constraint that led to a factor of 1/2
on legislators’ preferences in Proposition 2.
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In the most compelling interpretation of this scenario, the lobbyist makes the promises

to the constituency of legislator i. If, for example, the lobbyist can influence the struc-

ture of the bill being voted upon, the cki ’s could represent “pork” to a given legislator’s

district. The V k
i ’s are derived from the preferences of i’s constituency over the actual out-

comes including the promises (be it because the legislator cares about the constituency’s

benefit or because of reelection considerations). To formalize the connection between

the promises and legislators’ voting preferences, let Uk
i measure the benefit to i’s con-

stituency of Lobbyist k’s win. The simplest way to think about it is that all the voters

in i’s district share the same preferences over the outcomes. We assume that V k
i is an

increasing function of cki + Uk
i .Thus, legislator i will support Lobbyist X if and only if

cXi + UX
i > cYi + UY

i (6)

The above is of course just an interpretation. Alternatively, one may simply think of

Uk
i as Legislator i’s personal utility of k’s win and of the c

k
i ’s as promises that benefit i

directly.

Other than the above, the game remains essentially as before. It is important to

emphasize that the main difference is that here the legislator maintains control of the

vote and payments are contingent only on the outcome, whereas in the up front buying

scenario considered before payments were contingent on the individual’s vote but not on

the outcome of the vote.

Let Ui = UX
i −UY

i and relabel legislators so that Ui is non-increasing in i. Under this

labeling, let m = (N + 1) /2, suppose (w.l.o.g) that Um > 0 and let n = |{i : Ui > 0}|.
Also assume that for all i and k, the values Ui and W k are not multiples of ε. Recall

that, given a number z, dzeε is the smallest multiple of ε greater than z, and let U =Pn
i=m dUieε > 0 be the minimal sum that Y has to promise to legislators in order to

secure the support of a minimal majority, in case X does not promise anything.

The analysis is now the same as in the case where voters (legislators) care only about

outcomes and not how they cast their vote. This is similar to the model in DJW (2008)

where the case of non-binding budgets is considered. Further details of the game and

proofs of the subsequent results are not provided here as they follow immediately from

DJW (2008).

Result: There exists an equilibrium in the indirect-promises game. In any equilibrium

Y wins if and only if min
©
BY ,

¥
W Y

¦
ε

ª
≥ min

©
BX ,

¥
WX

¦
ε

ª
+ U .

The idea behind this result is easily explained. Lobbyist Y must spend at least U in

order to secure a majority. After that, X could try to obtain some of these votes back
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(or others, if Y has overspent on these marginal votes), with the competition back and

forth leading to the winner being the lobbyist with the largest budget (or willingness to

pay) once an expense of U has been incurred by Y .

This game has many equilibria because the loser’s behavior is not pinned down, as it

is certain to lose and will not have to honor the promises it makes. The introduction of

uncertainty over the other lobbyist’s budget (or value) and of an equilibrium refinement

singles out equilibria where the lobbyists in turn purchase a winning majority in the least

expensive way possible, provided that their total commitment does not exceed their bud-

get (or value). The identity of the winner would still be the same as above, but the total

payment of the winner would be the smaller of the loser’s budget and its value adjusted by

the magnitude U . That is, If Y wins then Y promises exactlymin
©
BX ,

¥
WX

¦
ε

ª
+U and

if X wins then X promises exactly max
©
min

©
BY ,

¥
W Y

¦
ε

ª
− U + ε, 0

ª
. Moreover, only

"near-median" voters, between m̂ = {min i : dUieε = dUmeε} and n̂ = {min i : Ui > −ε},
receive positive payments.

To sum up, the lobbying competition with indirect promises has the flavor of an Eng-

lish Auction. Focusing on the refined equilibria of the perturbed game, the winner ends

up paying the second highest budget or value (adjusted by a measure of the preference

advantage that one has over the other among the legislators). Only the intensity of the

preferences of a group of near median legislators affect the outcome and only members

of this group get promises in equilibrium. Notice that the significant sum that ends up

being paid is in contrast to the minimal sums paid out by the winner in the upfront

purchase scenarios.

4.6 Related literature

The most closely related work is Groseclose and Snyder (1996) that models the lobbying

of a legislature by a targeted offers game where each vote-buyer gets to move only once,

and in sequence. A subsequent paper by Banks (2000) modifies their continuum voters

model to one with a finite number of voters. The conclusions of Propositions 2 and 3 are

quite different from theirs. Their model provides a significant second-mover advantage,

which contrasts sharply with the open-ended sequential nature of our game. Specifically,

in their game, in order to win, the first mover needs to be able to bid in such a way

that it would be unprofitable for the second mover to buy any majority. In a game

without an exogenously determined last mover, as the one we analyze, if one lobbyist is

(temporarily) outbid for some legislator, it can remobilize those resources, which places

lobbyists on a more equal footing. Also, owing to the single move that each lobbyist has
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in the Groseclose and Snyder model, the distinction between budgets and values has no

importance in their model, while in our model budgets and values have rather different

effects on the outcome. It is conceivable that in some scenarios a formal procedure indeed

creates asymmetry of the sort on which the work of Groseclose and Snyder focuses.

However, in many other situations there is no such formal structure and the lobbying

process resembles more a continuing bidding process like the one we model. Our analysis

shows that this changes significantly the strategic interaction and the results.

It is worth emphasizing that the contrast of our results with those of Groseclose

and Snyder (1996) provides an illustration of some of the empirical implications of our

model and how they are distinct from others in the literature. The Groseclose-Snyder

model leads to equilibria that either have a structure where the first lobbyist makes very

substantial bids (more than the second lobbyist can afford), or where the first lobbyist

drops out and the second wins with the minimal necessary bids. Such a model predicts

quite substantial payments to be made in a nontrivial fraction of cases. In contrast,

our model predicts that payments will generally be minimal, as the lobbyists need not

preemptively outbid one another, given their ability to react to each other’s bids and

also to forecast the outcome of the equilibrium. At least in broad terms, our model’s

predictions are in line with the seemingly low amounts spent in various aspects of vote

buying as pointed out by a number of authors, including Tullock (1972), Lamont and

Thaler (2003), and Ansolabehere, de Figuieredo and Snyder (2003). Our model also

differs in terms of the other testable hypothesis noted by Groseclose and Snyder (op.

cit., p. 308): in contrast to their results, in our model lobbyist a would not make an

offer to a legislator who favors the lobbyist’s position, and a lobbyist whose position has

a definite majority without purchases would not make any offers. And of course, in our

model lobbyists would not obtain supermajorities. (The existence of supermajorities can

be explained in other ways, as noted by Groseclose and Snyder (op. cit. p. 303) and

one purpose of our model is to highlight that supermajorities due to competitive bidding

would only result in cases where one lobbyist has a last-mover advantage, a period after

which no one else can make offers.) Note also that despite the ability of lobbyists to bid

multiple times, they will not do so in equilibrium. So the different nature of our model

would not be directly evident in terms of bidders exercising their ability to bid multiple

times, as that should not occur in equilibrium, even though that option has important

consequences in terms of the predicted equilibrium structure.

Baron (2006) analyzes a game in which two competing lobbyists can make offers to

legislators in repeated rounds. Given the difference in game structure and focus, his work
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and ours are complementary.

There are also related papers on lobbying that have roots in the common agency lit-

erature, such as Bernheim and Whinston (1986), Grossman and Helpman (1994), Dixit

(1996), Le Breton and Salanie (2003), and Martimort and Semenov (2008), among oth-

ers.15 As such models generally look at a single voter (the politician or agent), the com-

plete information solutions result in efficient outcomes (e.g., see Bernheim and Whinston

(1986) and Le Breton and Salanie (2003)).16 In particular the politician as well as each

lobbyist ends up being pivotal; because some lobbyist is making a payment that is not

pivotal in swaying the politician, then they could lower their payment and not affect the

outcome. This reinforces the idea that the inefficiencies that we uncovered are due to

the fact that in many contexts at least some players end up not being pivotal in a vote

buying game when the vote is not by unanimity.

Buchanan and Tullock (1962) discuss the rationale for the prohibition of vote buy-

ing. They observe that under a unanimity voting rule, free trade in votes would lead to

efficiency. They suggest however that this might not be the case when a simple majority

rule is in force. They do not model the market for votes formally, but argue intuitively

that a perfect market for votes would lead to efficiency, but that imperfections are likely

to arise and might preclude efficiency. Our analysis can be seen as providing a particular

formal interpretation to these ideas. Neeman (1999) points out that, with some uncer-

tainty over legislators’ behavior, pivot considerations are of marginal importance and

hence vote buying (by a single buyer) need not result in efficiency.17 Our own analysis

of efficiency focuses on the next step–it inquires about the efficiency consequences of

competition between vote buyers.

15There are also studies of how the structure of the political system interacts with lobbying to de-
termine policy choices, such as Helpman and Persson (2001) and Bennedsen and Feldmann (2002); but

those works do not have head-to-head competition between lobbyists and they focus on variation in the
political system, and so there is little relationship between those papers and the insights from our work.
Similarly, there are papers by Lizzeri (1999) and Lizzeri and Persico (2001) who study games where
candidates make policy choices in addition to redistribution; these too are far from issues we study.

16As such, the focus of many of these models has been on various distributional issues such as taxation
and redistribution, or the politics of protectionism and international trade.
17This and the point made by Buchanan and Tullock regarding efficiency of vote trading under una-

nimity are just alternative statements of the observation we made above that trading results in efficiency
when every legislator is pivotal.
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6 Appendix

Proposition 1: The vote-buying game with up-front payments has an equilibrium in

pure strategies. In every equilibrium the same lobbyist wins, and the losing lobbyist never

makes any offers.

Proof of Proposition 1: The facts that the budget-constrained vote-buying game has
an equilibrium in pure strategies follows from the fact that this is a finite game of perfect

information, and hence we can find such an equilibrium via backwards induction.

The fact that in every equilibrium the same lobbyist wins, also follows from a back-

ward induction argument. Each terminal node has a unique winner (as the Vi’s are not

a multiple of ε and so legislators are never indifferent), and lobbyists prefer to win re-

gardless of the payments necessary. Thus, in any subgame, working by induction back
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from nodes whose successors are only terminal nodes, there is a unique winner. It then

follows directly that the losing lobbyist never makes any offers, as they could otherwise

deviate to offer nothing and guarantee no payment.

In the unconstrained game each period the offer to each legislator has to weakly

increase, and it must strictly increase for at least one i. Therefore, after lN periods the

minimal offer made to some legislator is (l + 1) ε, and eventually is greater thanmaxkW k.

An offer greater than W k is made only if k is certain that j 6= k will outbid k, but in

equilibrium it cannot be that both X and Y are certain they will be outbid by the other.

So in equilibrium both players quit in every period after some finite period, and hence

the equilibrium is the same as if the game were truncated at any such period. Having

reduced the game to a finite game we can complete argument as in the constrained case

above.

Proposition 2: If the budgets are large enough so that (2) and (3) are satisfied, then,
if γ is small enough, X wins if

BX > BY −
X
i

Vi/2− VN/2 +mε (4)

and Y wins if

BY > BX +
X
i

Vi/2 + V1/2 +mε. (5)

Proof of Proposition 2
We prove the following result assuming γ = 0.

Lobbyist X has a strategy that guarantees winning at cost bounded by BX if

BX −BY ≥ −
X
i

Vi/2− VN/2 +mε and (4’)

BX ≥
¯̄̄̄
mV1
2

¯̄̄̄
−
PN

i=m+1 Vi

2
− VN
2
+ (2m+ 1) ε (2)

and lobbyist Y has a strategy that guarantees winning at cost bounded by BY if

BX −BY ≤ −
X
i

Vi/2− V1/2−mε and (5’)

BY ≥
¯̄̄̄
mVN
2

¯̄̄̄
+

Pm−1
i=1 Vi
2

+
V1
2
+ (2m+ 1) ε. (3)

This immediately implies Proposition 2 because then for small enough γ when the in-

equalities are strictly satisfied the same strategies guarantee a win within the budget

constraint.
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Lobbyist X can guarantee a win using the strategy we describe next. Have X allocate

offers as follows. Let t be the period. X will identify a set of legislators St to “ buy” that

has cardinality exactly m. X will make the minimal necessary offers to buy these votes.

To complete the proof we need only describe how X should select St, and then show

that if X has followed this strategy in past periods, then X will have enough budget to

cover the required payments regardless of the strategy of Y .

Let pYi be the current offer that Y has to legislator i. Set this to 0 in the case where

Y has never made a viable offer to the legislator, or in a case where X already has the

best standing offer to the legislator. Similarly define pXi .

X selects to whom to make offers by looking for a set that minimizes the sum of

what X has to offer in order to beat Y , plus the offers of Y that X thereby frees up.

In particular, let St be the set of m legislators that minimizes
P

i∈St 2p
Y
i − Vi. This is

equivalent to choosing the m legislators that have the smallest values of

pYi −
Vi
2
.

In the case where there are some i’s that are tied under the above criterion, let X

lexicographically favor legislators with lower indices. To complete the proof, we simply

need to show that this strategy is withinX’s budget in every possible situation, presuming

that X has followed this strategy up to time t.18

Notice that the cost of a legislator i ∈ St to X is at most

max{
§
pYi − Vi

¨ε
, 0}+ ε. (7)

The expression max{
§
pYi − Vi

¨ε
, 0} captures the fact that it could be that pYi < Vi in

which case no offer is necessary.

The amount that must be offered to a legislator can only rise or stay constant over

time, and so if some legislators were “purchased” by X in the past and have not been

subsequently purchased by Y , then these legislators are still among the cheapest m avail-

able in the current period time and would still be selected under X’s strategy (including

the lexicographic tie-breaking).

Let i∗ denote the most “expensive” i ∈ St in terms of the “adjusted price” pYi −
Vi
2
. If there are several such legislators, pick the one with the lowest index. So, i∗ ∈

argmaxi∈St
©
pYi − Vi

2

ª
, and let St be the union of {i∗} with the complement of St.

18This implies the proposition, as it means that either Y will not respond and the game will end with
X the winner, or else X will get to move again and can again follow the same strategy. As the game
must end in a finite number of periods, this implies that X must win.
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Given the algorithm followed by X, we know that

pYi −
Vi
2
≤ pYi∗ −

Vi∗

2

for every i ∈ St. This can be rewritten as

pYi ≤ pYi∗ −
Vi∗

2
+

Vi
2

(8)

for each i ∈ St.

Equations (7) and (8) imply that the amount required by X to follow this strategy

at this stage is at most X
i∈St

»
pYi∗ −

Vi∗

2
− Vi
2

¼ε
+mε (9)

If we can get an upper bound on the expression pYi∗ − Vi∗
2
, then we have an upper

bound on how much X has to pay. So we want to maximize pYi∗ − Vi∗
2
subject to the

following constraints:

(a) pYi − Vi
2
≥ pYi∗ − Vi∗

2
for every i /∈ St,

(b) pYi ≥ αVi + pXi , and

(c)
P

i∈St p
Y
i ≤ BY .

To get an upper bound, we ignore (b), and relax (c) by replacing BY with B̄Y =

max
n
BY ,

¯̄
mV1
2

¯̄
+

m
i=1 Vi
2

o
. The solution then involves spending all of B̄Y in a manner

that equalizes pYi − Vi
2
with pYi∗ − Vi∗

2
for each i /∈ St. (This is feasible due to the lower

bound imposed on B̄Y ; it is not necessarily feasible for BY , but still gives a bound.)

Thus, we end up with

pYi = xY
¡
St

¢
+ Vi/2,

for each i ∈ St, where

xY (St) =
B̄Y −

P
i∈St

Vi
2

m
(10)

From (9), for X’s strategy to be feasible it is sufficient that

BX ≥
X
i∈St

§
xY
¡
St

¢
− Vi/2

¨ε
+mε.

Substituting for xY from (10), this becomes

BX ≥ B̄Y −
X
i

Vi/2− Vi∗/2 + (2m+ 1) ε,
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which has an upper bound when i∗ = N , and which then yields the claimed expressions

by substituting the definition of B̄Y .

Remark 1 It is easy to see the effect in the proof above of requiring a supermajority
of k > m votes. Specifically the denominator in equation 10 would be N − k + 1, and

substituting this would give

BX ≥ k

N − k + 1
B̄Y − k

N − k + 1

X
i∈S̄t

Vi/2−
X
i∈St

Vi/2 + (2m+ 1) ε

≥ k

N − k + 1
B̄Y − k

N − k + 1

NX
i∈k

Vi/2−
k−1X
i=1

Vi/2− VN/2 + (2m+ 1) ε.

We see that now some of the Vi terms are multiplied by a factor greater than 1, that

depends on the majority needed, but the 1/2 factor remains as well.

Proposition 3: There exists value λ ∈ [
¥
WX

¦
ε
,
¥
WX

¦
ε
+ V̄ ] such that, for sufficiently

small γ, in any equilibrium

1. If
¥
W Y

¦
ε
> λ, then Y wins at cost V̄ paid to the legislators m (median) through

n (almost-indifferent).

2. If
¥
W Y

¦
ε
<
¥
WX

¦
ε
then X wins at no cost.

3. If
¥
W Y

¦
ε
∈
¡¥
WX

¦
ε
, λ
¢
then Y wins at cost V̄ if it moves first , and X wins at

possibly non-zero cost if it moves first.

Proof of Proposition 3: Define ı̃ and z̃ as the solutions to
Pn

i=ı̃ (z̃ − dVie
ε) =

¥
WX

¦
ε

where z̃ ∈ [Vı̃, Vı̃−1) and where V0 =∞. Now d =
¥
WX

¦
ε
−
Pn

i=ı̃ (bz̃cε − dVie
ε), and let

κ = d/ε, where by construction 0 ≤ κ ≤ n− ı̃. Let λ ≡ min {n−m,n− ı̃− κ} × bzcε +
max {0, ı̃+ κ−m} dzeε. To understand this notation observe that if X initially offers

z̃−dVieε to all legislators in [̃ı, n] then X would exhaust the value of winning. Moreover,

subject to not offering more than the value, these offers maximize z̃ × m, the amount

that Y would need to obtain a majority. However, z̃ − dVieε is not a feasible offer as it
is not a multiple of ε. If X offers only bz̃cε − dVie

ε to those legislators then X would

have left over an amount d. Therefore to d/ε of these legislators X could offer ε more,

i.e., dzeε − dVieε, without exceeding his value of winning. Then the minimal cost to Y
to obtain a majority would be exactly λ.

Consider any node at which k must offer an additional amount that is more thanW k

to obtain a majority. At such a node k will make such an offer only if both lobbyists are
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certain j 6= k will overbid, which j will do only if both are certain j will win, in which

case k looses γ > 0 by making the offer instead of quitting. So at any node where k must

offer at least W k to obtain a majority, k will quit.

Now assume w.l.o.g. that
¥
W k
¦
ε
< bW jcε. We argue by induction that, at any node

where k must spend a strictly positive amount to obtain a majority, k will quit. Assume

the inductive hypothesis that k will quit at any node where the minimal offer needed to

obtain a majority is W k − lε. Consider a node α at which k must spend W k − (l + 1) ε.
If k makes such an offer, leading to node β, consider a response of j of mirroring k’s last

bid and adding ε to m of the offers, leading to node α0 at which the minimal required

for k to obtain a majority becomes W k − lε and hence k will quit at α0. Thus at β the

continuation equilibrium must be one at which j wins, and hence k’s offer at α leads to

an additional loss to k of at least γ. Hence k would prefer to quit at α.

Thus we have the following.

1. If
¥
WX

¦
ε
>
¥
W Y

¦
ε
then Y will not make an initial move and X wins without

making any offer.

2. If
¥
W Y

¦
ε
>
¥
WX

¦
ε
and Y is first to move and Y makes an offer of V̄ to obtain a

majority then X quits and Y wins.

3. If
¥
W Y

¦
ε
>
¥
WX

¦
ε
+ V̄ and X is the first to move, and X makes any offer less

than WX then Y can reply (at cost below W Y ) by mirroring X’s offer and adding

V̄ . At that point X will quit since a positive amount is required for a majority.

Hence X’s opening offer was not optimal, and the only outcome is for X not to

make an initial offer or to make an initial offer greater than WX , which as already

argued cannot be part of an equilibrium. Thus Y wins.

4. If
¥
WX

¦
ε
<
¥
W Y

¦
ε
<
¥
WX

¦
ε
+ V̄ and X is the first to move, and can force Y to

subsequently pay more than
¥
W Y

¦
ε
for a majority, and if X can do so at a cost

less than WX , then X will do so and win. When can this be done by X? Exactly

when
¥
W Y

¦
ε
< λ. Thus, if λ is greater than W Y then X wins since, as argued

above, Y must spend more than
¥
W Y

¦
ε
to obtain a majority after such an initial

move by X and would prefer to quit. (The amount that X must spend to win will

typically be less than WX ; we do not specify the exact amount as it is even more

notationally cumbersome and not of great interest.) If Y moves first then after

making an offer of V̄ and thereby obtaining a majority we are in case 2 above. On

the other hand if λ is less than W Y then, whatever X does in the first move (so
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long as it is at a cost under WX), Y can subsequently obtain a majority at a cost

underW Y whereupon X will need to spend a positive amount to obtain a majority

while W Y > WX . Hence X will quit at this point, so that at any equilibrium X

will not make any initial offer when
¥
W Y

¦
ε
> λ.

This complete the proof of the proposition. ¥

Proposition 4: For any δ > 0, there is N(δ) and ε̄ such that for all N > N(δ) and

all grids with ε ∈ (0, ε̄) the following hold.

• If BY > BX + V̂ N/2 + δ, then Y wins with probability of at least 1− δ.

• If BX > BY − V̂ N/2 + δ, then X wins with probability of at least 1− δ.

Proof of Proposition 4:

Lemma 1 Suppose that lobbyist Y offers a constant price x to all voters, such that 1 >

F (x) > 0. The least expensive way for lobbyist X to assure itself an expected share

σ ∈ [0, 1] of the vote would be offering a constant price to all voters. The same is also
true if the roles are reversed.

Note that we do not assume here that the constant price offered by X is a multiple

of ε. If that constraint were added, then the cost to X of obtaining a share σ would be

at least as high (and might involve a different strategy).

Proof of Lemma 1: The problem of finding bids pXi that lobbyist X can make to assure

expected share σ at minimum cost is

min
{pXi }

X
i

pXi [1− F (x− pXi )] s.t.
X
i

1− F (x− pXi ) ≥ Nσ, pXi ≥ 0. (11)

The first order conditions to (11) can be written as

pXi f(x− pXi ) + 1− F (x− pXi )−
λ

N
f(x− pXi )− μi = 0. (12)

where λ and μi are nonnegative multipliers.

Given that the support of F is connected and f is positive on F ’s support, we have

three possible ranges for solutions to (12): one where f(x− pXi ) = 0 and F (x− pXi ) = 0,

one where f(x − pXi ) > 0 and 0 < F (x − pXi ) < 1, and one where f(x − pXi ) = 0 and

F (x − pXi ) = 1. The first order conditions cannot be satisfied in the first case, unless
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μi = 1 in which case the non-negativity constraint is binding and pXi = 0. However,

by hypothesis, 0 < F (x − 0), which is a contradiction of the presumption of the case
that F (x − pXi ) = 0. In the third case, for f(x − pXi ) = 0 and F (x − pXi ) = 1 to hold,

since 1 > F (x) it must be that pXi < 0. However, this cannot be a solution given the

non-negativity constraint. Thus all possible solutions must fall in the second case. In the

second case, in order to satisfy the first order conditions, it must be that pXi ≤ λ
N
. [If

μi = 0 then this is clear since (1−F ) > 0. If μi > 0, then the constraint that pXi ≥ 0must
be binding, in which case pXi = 0 and again p

X
i ≤ λ

N
.] For this case, since f(x− pXi ) > 0,

we rewrite (12) as

x− pXi −
1− F (x− pXi )

f(x− pXi )
− (x− λ

N
) +

μi
f(x− pXi )

= 0. (13)

Suppose that there are two solutions, pXi and pXj to (13) in this range. Without loss of

generality, letting zi = x− pXi > zj = x− pXj , we have

zi − 1− F (zi)

f(zi)
− (x− λ

N
) +

μi
f(zi)

= 0 = zj − 1− F (zj)

f(zj)
− (x− λ

N
) +

μj
f(zj)

.

Since z − (1 − F (z))/f(z) = z + (F (z)) − 1)/f(z) is increasing (in this range where
f(z) > 0), it follows that 0 = μi < μj. (Note that μi takes on only two values.) But this

implies pXj = 0 < pXi , which contradicts the fact that z
i > zj.

Thus we have shown that any solution to (11) necessarily has identical prices offered

to all agents.

The proof for Lemma 1 with the roles reversed for the lobbyists has (11) replaced by

min
{pYi }

X
i

pYi [F (p
Y
i − x)] s.t.

X
i

F (pYi − x) ≥ Nσ, pXi ≥ 0,

with corresponding first order conditions

pYi f(p
Y
i − x) + F (pYi − x)− λ

N
f(pYi − x)− μi = 0.

Working through similar cases as those above, and this time using the fact that z +

F (z)/f(z) is increasing on the support of F , yields the same conclusion. ¤

Lemma 2 If (0.5+η)N [ BX

(0.5−η)N +F−1(0.5−η)] < BY , then Y can obtain expected share

(0.5+η) of the vote at each stage. Similarly if, (0.5+η)N [ BY

(0.5−η)N −F−1(0.5+η)] < BX,

then X can obtain a share of (0.5 + η) at each stage.
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Proof of Lemma 2: We show the first claim, as the second is analogous. We show that
there is a strategy that Y can follow through the whole game that guarantees at each

stage an expected share of at least (0.5+ η) of the vote. Suppose that it is Y ’s turn and

throughout the game so far Y has always offered the identical prices across voters.

Assume that X’s current offer is a constant price pX and X’s expected share is σX .

If σX ≤ 0.5 − η then Y does not need to make any offer to obtain σY > 0.5 + η. If

σX > 0.5− η then pX ≤ BX/ [(0.5− η)N ]. This is because if more than share 0.5− η

in expectation sell to X at price BX/ [(0.5− η)N ] then X’s budget is exhausted, so no

higher price for X is possible.

Now, if Y offers all voters the price pY = BX/ [(0.5− η)N ] + F−1 (0.5 + η) ≥ pX +

F−1 (0.5 + η) then Y will get an expected share of at least (0.5 + η) of the vote. We

must therefore verify whether such an offer is feasible for Y . For small enough η,

BX 0.5+η
0.5−η + (0.5 + η)NF−1(0.5 + η) < BY . Therefore the price pY is feasible for Y when

Y ’s expected share is only slightly above 0.5 + η. If at pY more than expected share

0.5+η want to sell to Y then Y has an alternative offer p0Y under which only 0.5+η want

to seel to Y , and clearly p0Y is feasible since (0.5 + η)Np0 < (0.5 + η)Np < BY . If p0Y is

not a multiple of ε then for any ε small enough there is a p00Y that is slightly larger than

p0Y that also gives Y an expected majority of (0.5 + η)N which establishes the claim.

Now consider the case that X’s current offer is not a constant price, say it is piX for

legislator i, and X’s expected share is σX > 0.5−η, and that Y offers all voters the price
p00Y . We know that against this offer of Y the best that X can do is pX , and that then

Y obtains an expected share of (0.5 + η), hence pY against (piX)
N
i=1 achieves at least this

expected share. ¤
We now show (1) and (2) of the proposition. We concentrate on (1), as the other case

is analogous, given the lemmas above. For δ > 0, there exists sufficiently small η > 0 such

that (0.5 + η)N [ BX

(0.5−η)N + F−1(0.5− η)] < BX + αV̂ /2 + δ. Therefore, if η is sufficiently

small, BY > BX + V̂ /2+ δ together with Lemma 2 imply that Y can obtain an expected

share of (0.5 + η). When N is made sufficiently large (here we mean that BX and BY

increase proportionately with N), an expected share of (0.5 + η) means an arbitrarily

large probability of winning. Therefore, there exists N(δ) such that, for N > N(δ), Y ’s

winning probability is above 1− δ. Moreover, the savings in expenses that result from

an offer that obtains a smaller share yet that wins with probability above δ is converging

to 0 with N , and hence Y will make an offer that wins with probability converging to 1

with N . This complete the proof of Proposition 4.

Remark 2 In this result changing the threshold from simple majority to a supermajority
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of proportion ρ for X would not change Lemma 1, and in Lemma 2 would require changing

0.5 − η to ρ − η and changing 0.5 + η to 1 − ρ + η. The overall statement of the first

part of Proposition 4 would change to the following: If BX > BY −F−1 (ρ) ρN + δ, then

X wins with probability of at least 1 − δ. Thus the factor of 1/2 here is driven by the

majority rule (in contrast to Proposition 2).
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