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Abstract

We examine the informal exchange of favors in societies such that any two individ-
uals interact too infrequently to sustain exchange, but such that the social pressure of
the possible loss of multiple relationships can sustain exchange. Patterns of exchange
that are locally enforceable and renegotiation-proof necessitate that all links are “sup-
ported”: any two individuals exchanging favors have a common friend. In symmetric
settings, such robust networks are “social quilts”: tree-like unions of completely con-
nected subnetworks. Examining favor exchange networks in 75 villages in rural India,
we find high levels of support and identify characteristics that correlate with support.

Keywords: Social Networks, social capital, favor exchange, support, social quilts,
renegotiation-proof

JEL Classification Codes: D85, C72, L14, Z13

1 Introduction

Human beings rely on cooperation with others for their survival and growth. Although some

forms of cooperation and behavior are enforced by social, religious, legal, and political in-

stitutions that have emerged throughout history, much of development, growth, and basic

∗We gratefully acknowledge financial support from the NSF under grants SES–0647867, SES–0752735,
and SES–0961481. The data were gathered in collaboration with Abhijit Banerjee, Arun Chandrasekhar,
and Esther Duflo, whom we thank for making the data analysis here possible. We are also grateful to
the Abdul Latif Jameel Poverty Action Lab (J-PAL) and the Centre for Microfinance at the Institute for
Financial Management and Research in Chennai (CMF at IFMR) for support and help in the data collection.
We thank Scott Altman, Nicolas Carayol, Avner Grief, Ian Jewitt, Mihai Manea, Markus Mobius, Larry
Samuelson, Sudipta Sarangi, Giancarlo Spagnolo, and three anonymous referees for helpful comments and
suggestions.

†All three authors are at the Department of Economics, Stanford University, Stanford, California
94305-6072 USA. Jackson is also an external faculty member at the Santa Fe Institute. Emails: jack-
sonm@stanford.edu, trodrig@stanford.edu, and xutan@stanford.edu.



day-to-day functioning relies on a society’s ability to “informally” encourage cooperative

behavior. This sort of informal enforcement of cooperation ranges from basic forms of quid-

pro-quo (or tit-for-tat in game theory parlance) to more elaborate forms of social norms

and culture, all of which must function without enforceable contracts or laws.1 Indeed, con-

tracting costs are prohibitive for many day-to-day favors that people exchange, ranging from

offering advice to a colleague, a small loan to a friend, or emergency help to an acquaintance.

Such informal favor exchange and cooperative behaviors, in one form or another, underly

much of the literature on social capital.

Although there is a large literature on social capital, there is a paucity of work that

provides careful foundations for how social structure relates to such favor exchange and

cooperative behavior. Moreover, as we show here, favor networks do not necessarily exhibit

the suggested patterns predicted by some of the previous literature. These points are related

to each other since some standard network measures have emerged loosely from the literature

discussing the role of networks in fostering cooperation. In particular, the importance of

social pressures on fostering cooperation has deep roots in the sociology literature including

seminal work by Georg Simmel (1950), James S. Coleman (1988) and more recently by David

Krackhardt (1996), among others (see the literature discussion below). Standard measures

of network clustering and transitivity have grown in part out of those works. Clustering

measures examine the extent to which two friends of a given agent are friends of each other.

In the data on favor exchange networks in rural India that we examine here, clustering

is on the order of ten to thirty percent. A puzzle emerges as to why one sees that level

of clustering, and not some other higher level, and even whether clustering is really the

appropriate measure for capturing social pressures. In contrast, the concept of “support”

that emerges from our theoretical analysis measures the number of pairs of friends that have

some other friend in common. As we shall see in the data, support is several times higher

than clustering, and indeed this distinction is consistent with the theory presented here.2

To be specific, in this paper we provide a game theoretic foundation for social enforce-

ment of informal favor exchange, and also examine network patterns of favor exchange from

75 rural villages. In particular, we consider settings where simple bilateral quid-pro-quo

enforcement is insufficient to sustain favor exchange. Some bilateral interactions may be

infrequent enough that they fail to allow natural self-enforcement of cooperation or favor ex-

change. However, when such interactions are embedded in a network of interactions whose

functioning can be tied to each other, then individuals can find it in their interest to co-

1In fact, the term “ostracism” (which has Greek origins based on a practice of banishments that originated
in the Athenian democracy) has come to embody the idea of individuals cutting ties with members of society
who do not perform properly.

2This does not imply that clustering might not emerge from other models of favor exchange, and clustering
remains an important network statistic - but one that is conceptually distinct from support. Also, numbers
of friends in common are reported in various network case studies (e.g., for an early discussion see James
A. Barnes (1954)), which is a form of support - for which our theory now provides a foundation. Friends in
common have also been used in modeling network formation (e.g., see Matthew O. Jackson and Brian W.
Rogers (2007)) and prediction of relationships (e.g., see David Liben-Nowell and Jon Kleinberg (2007)).
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operate given (credible) threats of ostracism or loss of multiple relationships for failure to

behave well in any given relationship. We provide complete characterizations of the net-

work patterns of favor exchange that are sustainable by a form of equilibrium satisfying two

robustness criteria.

The setting that we examine is such that opportunities for one agent to do a favor

for another agent arrive randomly over time. Providing a favor is costly, but the benefit

outweighs the cost, so that it is efficient for agents to provide favors over time. However,

it could be that the cost of providing a favor today is sufficiently high that it is not in

an agent’s selfish interest to provide the favor even if that means that he or she will not

receive favors from that person again. Thus, networks of relationships are needed to provide

sufficient incentives for favor exchange, and it may be that an agent risks losing several

relationships by failing to provide a favor. We characterize the network structures that

correspond to robust equilibria of favor exchanges. The criteria that we examine are twofold:

first, the threats of which relationships will be terminated in response to an agent’s failure

to deliver a favor must be credible. Credibility is captured by the game theoretic concept

of “renegotiation-proofness”.3 After an agent has failed to deliver a favor, that relationship

is lost, but which additional relationships are lost in the continuation equilibrium, must be

such that there is not another equilibrium continuation that all agents prefer to the given

continuation. This sort of renegotiation-proofness rules out unreasonable equilibria such as

the “grim-trigger” sort of equilibrium where once anyone fails to provide a single favor the

whole society grinds to a halt and nobody provides any favors in the future. At that point,

it would be in the society’s interest to return to some equilibrium where at least some favors

are provided. Renegotiation-proof equilibria can be complex, but have some nice intuitions

underlying their structure as we explain in detail. The second criterion that we impose is

a robustness condition that we call “robustness against social contagion.” It is clear that

to sustain favor exchange, an agent must expect to lose some relationships if the agent fails

to deliver a favor. Those lost relationships can in turn cause other agents to lose some of

their relationships since the incentives to provide favors change with the network structure.

This can lead to some fragility of a society, as one agent’s bad behavior can ripple through

the society. The robustness against social contagion requires that the ripple effects of some

agent’s bad behavior be confined to that agent’s neighbors and not propagate throughout

the network.

In symmetric settings, the combination of renegotiation-proofness and robustness require

a unique type of network configuration of favor exchanges. We call those configurations

“social quilts.” A social quilt is a union of small cliques (completely connected subnetworks),

where each clique is just large enough to sustain cooperation by all of its members and where

the cliques are laced together in a tree-like pattern. One of our main theoretical results shows

that configurations of favor exchange that are sustained in robust equilibria are precisely the

3Although there are several definitions in the literature for infinitely repeated games, our games have a
structure such that there is a natural definition which has an inductive structure reminiscent of that of Jean
Pierre Benoit and Vijay Krishna (1993).
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social quilts.

We then extend the model to allow heterogeneity in the cost, value, and arrival rates

of favors to various individuals. In the more general setting, we prove that any robust

equilibrium network must exhibit a specific trait: each of its links must be “supported”.

That is, if some agent i is linked to an agent j, then there must be some agent k linked to

both of them. This is related to, but quite distinct from, various clustering measures.

With the theoretical underpinnings in hand, we then examine social networks in 75 vil-

lages in southern rural India.4 Using these data5 we can examine the networks of various

forms of social interaction including specific sorts of favor exchange. In line with the theoret-

ical predictions, we find that the number of favor links that have this sort of social support is

in the range of eighty percent in these villages. Moreover, the level of support is significantly

higher than what would arise if links were formed at random (even with some geographic bias

to formation), and significantly higher than levels of clustering. We analyze various aspects

of the levels of support and also find that it is significantly higher for favor relationships

than other sorts of relationships. Our research contributes to the understanding of informal

favor exchange as well as social networks in several ways:

• We provide an analysis of repeated interactions where individual’s decisions are influ-

enced by the network pattern of behavior in the community, and this provides new

insights into repeated games on networks.

• Our model includes dynamic choices of both favor provision and relationships and

provides new insights into the co-evolution of networks and behavior, and in particular

into the phenomenon of ostracism.6

• Our analysis suggests a new source of inefficiency in informal risk and favor sharing,

showing why individuals may have to limit the number of relationships in which they

take part.

• A by-product of our analysis is an operational definition of social capital that is more

specific and tighter than many existing definitions, and it makes tight predictions about

how relationships in a society must be organized.

4Although we apply some of our findings to favor relationships in Indian Villages, such informal favor
exchange is clearly not limited to developing countries. For example, a recent New York Times/CBS News
poll (reported in the New York Times, December 15 2009) found that 53 percent of surveyed unemployed
workers in the U.S. had borrowed money from friends or family as a result of being unemployed.

5These data are particularly well-suited for our study as they provide network structure for various favor
relationships, and moreover have this for many separate villages. We are not aware of any other data
set having these attributes. In particular, in these data we have information about who borrows rice and
kerosene from whom, who borrows small sums of money from whom, who gets advice from whom, who seeks
emergency medical aid from whom, and a variety of other sorts of relationships, as well as gps data.

6As we shall see, ostracism has further consequences in terms of lost relationships, beyond those directly
involving the individual being punished.
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• We identify a necessary property of such favor exchange networks that we call “support”

and show how this is distinguished from clustering measures.

• We examine data that include many sorts of interactions and cover 75 different villages,

and find that the networks exhibit substantial and significant distinctions between our

measure of support and standard measures of clustering.

1.1 Related Literature

As mentioned above, there is a large literature on social capital that studies the ability of

a society to foster trust and cooperation among its members.7 Although that literature is

extensive and contains important empirical studies and many intuitive ideas, it has struggled

in providing firm theoretical foundations and the term “social capital” has at times been used

very loosely and as a result has lost some of its bite.8 Part of the contribution of our paper is

to provide an explicit modeling of how societies can enforce cooperative favor exchange and

how this is linked to the social network structure within a society. In this way, our paper

provides a concrete definition of social capital that is embedded in three components: a

notion of equilibrium that embodies notions of ostracism and social expectations of individual

behaviors, implications of this for resulting social network structure, and individual payoffs

from the resulting behaviors.

Coleman (1988) discusses closure in social networks, emphasizing the ability of small

groups to monitor and pressure each other to behave. Here we provide a new argument for,

and a very specific variety of, closure. A specific form of minimal clique structures emerge

because of a combination of renegotiation-proofness and a local robustness condition, rather

than for informational, monitoring, or pressuring reasons. Minimal sized cliques offer credible

threats of dissolving in the face of bad behavior, and in terms of minimal contagion for a

society. Our analysis also formalizes this in terms of support and contrasts it with clustering.

The most closely related previous literature in terms of the theoretical analysis of a

repeated game on a network is a series of papers that study prisoners’ dilemmas in network

settings, including Werner Raub and Jeroen Weesie(1990), S. Nageeb Ali and David A. Miller

(2009), Steffen Lippert and Giancarlo Spagnolo(2011), and Maximilian Mihm, Russell Toth,

Corey Lang (2009).9 In particular, Raub and Weesie(1990) and Ali and Miller (2009) show

how completely connected networks shorten the travel time of contagion of bad behavior

7For example, see George C. Homans (1958), Glenn Loury (1977), Pierre Bourdieu (1986), Coleman (1988,
1990), Michael Woolcock (1998), Partha Dasgupta (2000), Robert D. Putnam (1993, 1995, 2000), Edward L.
Glaeser, David Laibson, and Bruce Sacerdote (2002) Luigi Guiso, Paola Sapienza, and Luigi Zingales (2004),
Guido Tabellini (2009), among others.

8See Joel Sobel (2002) for an illuminating overview and critique of the literature.
9Other studies of network structure and cooperative or various forms of risk-sharing behavior and the

relationship to social network structures include Marcel Fafchamps and Susan Lund (2003), Joachim De
Weerdt and Stefan Dercon (2006), Yann Bramoullé and Rachel Kranton (2007), Francis Bloch, Garance
Genicot, and Debraj Ray (2007, 2008), Dean Karlan, Markus Mobius, Tanya Rosenblat and Adam Szeidl
(2009), and Felipe Balmaceda and Juan F. Escobar (2011).
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which can quicken punishment for deviations. Although cliques also play a prominent role

in some of those papers, it is for very different reasons. In those settings, individuals do not

have information about others’ behaviors except through what they observe in terms of their

own interactions. Thus, punishments only travel through the network through contagious

behavior (or word-of-mouth), and the main hurdle to enforcing individual cooperation is how

long it takes for someone’s bad behavior to come to reach their neighbors through chains

of contagion.10 Our analysis is in a very different setting, where individuals have complete

information. The quilts in our setting emerge because they do not lead to large contagions

but instead compartmentalize the damage from an individual’s defection. Moreover, the

quilts consist of minimal sized cliques because only those sorts of implicit punishments are

immune to renegotiation.

Matthew Haag and Roger Lagunoff (2004) provide another reason favoring small cliques:

heterogeneity. In their analysis large differences in preferences can preclude cooperative

behavior, and so partitioning a group into more homogeneous subgroups can enable coop-

erative behavior which might not be feasible otherwise. Although our reasoning behind

cliques comes from different sources, when we examine heterogeneous societies we do find

assortativity in who exchanges favors with whom. Here, it is not because of direct reciprocity

considerations, but because robustness requires balanced cliques and so agents need to have

similar valuations of favors in order for their cliques to be critical. In this way, we provide

new insights into homophily, where relationships of agents are biased towards others who

have similar characteristics in terms of their values and arrival rates of favors.

Finally, our analysis of the data not only provides support for the support measure,

but also uncovers significant differences between different sorts of relationships, as might be

expected based on the different ways in which links might form across applications (e.g.,

see Matthew O. Jackson (2008)). Here we add a new angle to this understanding, finding

statistically distinct patterns of support in various sorts of favor and social networks. These

suggest some interesting questions for future research.

2 A Model of Favor Exchange

2.1 Networks, Favors, and Payoffs

A finite set N = {1, . . . , n} of agents are connected in a social network described by an

undirected11 graph. Given that the set of agents N is fixed throughout the analysis, we

represent a network, generically denoted g, simply by the set of its links or edges. Let gN

be the set of all links (so the set of all subsets of N of size 2), and let G = {g | g ⊂ gN} be

the set of all possible networks. For simplicity, we write ij to represent the link {i, j}, and

10That approach builds on earlier work by Avner Greif (1989), Michihiro Kandori(1992), Glenn Ellison
(1994), Masahiro Okuno-Fujiwara and Andrew Postlewaite(1995) among others, who studied the ability of
a society to sustain cooperation via threats of contagions of bad behavior.

11This is not necessary for the analysis, and we comment later on possible extensions to directed networks.
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so ij ∈ g indicates that i and j are linked under the network g. We write g − ij to denote

the network obtained from g by deleting a link ij. For an integer k, 0 ≤ k ≤ n(n− 1)/2, let

Gk be the set of all networks that have exactly k links, so that Gk = { g ∈ G : |g| = k}.
The neighbors of agent i are denoted Ni(g) = {j | ij ∈ g}. We follow a convention that

rules out self-links, and so all agents in Ni(g) are distinct from i. The degree of agent i in

the network g is the number of his or her neighbors denoted by di(g) = |Ni(g)|.
Time proceeds in discrete periods indexed by t ∈ {0, 1, . . .} and in any given period, there

is a chance that an agent will need a favor from a friend or will be called upon to grant a

favor to a friend. In particular, an agent i who is connected to an agent j (so that ij ∈ g)

anticipates a probability p > 0 that j will need a favor from i in period t and a probability

p that i will need a favor from j. It is assumed that at most one favor will be needed across

all agents in any given period, and so we require that n(n− 1)p ≤ 1, and we allow the sum

to be less than one to admit the possibility that no favor is needed in a given period.

This is a proxy for a Poisson arrival process, where the chance that two favors are needed

precisely at the same moment is 0. By letting the time between periods be small, the chance

of more than one favor being called upon in the same period goes to 0. Thus, when applying

the model it is important to keep in mind that periods are relatively small compared to the

arrival rate of favors.

A restriction of this formulation is that p does not depend on the network structure.

More generally, the chance that i needs a favor from j will depend on many things including

how many other friends i has. We characterize the equilibrium networks for the more general

case in Section 5. We begin with the current case since it more clearly provides the basic

intuitions, but the results have very intuitive analogs for the general case that are easy to

describe once we have presented the simpler case.

Doing a favor costs an agent an amount c > 0 and the value of the favor to an agent is

an amount v > c. Receiving a “favor” can embody many things including getting advice,

borrowing a good, borrowing money, or receiving some service. The important aspect is that

the value of a favor to the receiving agent exceeds the cost to the providing agent, so that

it is ex ante Pareto efficient for agents to exchange favors over time. However, we examine

settings where it is impossible (or too costly) for agents to write binding contracts to perform

favors whenever called upon to do so. This applies in many developing countries, and also in

developed countries where it is prohibitively costly and complex to write complete contracts

covering the everyday sort of favors that one might need from friends. Thus, we examine

self-enforcing favor exchange.

Agents discount over time according to a factor 0 < δ < 1. Thus, if there were just two

agents who always performed favors for each other, then they would each expect a discounted

stream of utility of
p (v − c)

1− δ
. The more interesting case from a network perspective is the

one that we examine, where

c >
δp (v − c)

1− δ
.
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In this case, favor exchange between two agents in isolation is not sustainable. When called

upon to perform a favor, the agent sees a cost that exceeds the future value of potential

favor exchange (in isolation) and so favor exchange cannot be sustained between two people

alone, but must be embedded in a larger context in order to be sustained. Sustaining favor

exchange between two individuals requires a high enough frequency of arrival coupled with

a high enough marginal benefit from a favor and sufficient patience. In a marriage, there are

generally sufficiently many opportunities for each spouse to help the other out with some

task or need that bilateral favor exchange can be sustained. However, in other contexts,

where such needs are rarer - such as a need to borrow cash due to an emergency, or a need

for medical advice, etc., one might need a multilateral setting to sustain favor exchange.

A society is described by (N, p, v, c, δ).

2.2 The Game

The favor exchange game is described as follows:

• The game begins with some initial network in place, denoted g0.

• Period t begins with a network gt−1 in place.

• Agents (simultaneously)12 announce the links that they are willing to retain: Li ⊂
Ni(gt−1). The resulting network is g′t = {ij | j ∈ Li and i ∈ Lj}.

• Let kt be the number of links in g′t. With probability 2pkt need for a (single) favor

arises and with probability 1 − 2pkt there is no need for a favor in the period. If a

favor is needed, then it could apply to any link in g′t with equal likelihood and then go

either direction. If a favor is needed, then let it denote the agent called upon to do the

favor and jt the agent who needs the favor, where itjt ∈ g′t.

• Agent it chooses whether or not to perform the favor. If the favor is performed then

it incurs the cost c and agent jt enjoys the benefit v. Otherwise no cost or benefit is

incurred.

• The ending network, denoted gt, is g′t − itjt if the need for a favor arose and it was not

performed, and is g′t otherwise.

People make two sorts of choices: they can choose with whom they associate and they

can choose to do favors or not to do favors. Opportunities for favor exchange arise randomly,

as in a Poisson game, and people must choose whether to act on favors as the need arises.

Choices of which relationships to maintain, however, can be made essentially at any time.

In the model this is captured by subdividing the period into link choices and favor choices,

12Given the equilibrium refinements that we use, whether or not the link choices are simultaneous is
effectively irrelevant.
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so that agents have a chance to adjust the network after any favor choice, and before the

next potential favor arises.

This structure embodies several things. First, favor relationships can either be sustained

or not. Once a favor is denied, that relationship cannot be resuscitated. Thus, at any point

in time an agent’s decision is which relationships to maintain. This simplifies the analysis

in that it eliminates complicated forms of punishment where various agents withhold favors

from an agent over time, but then eventually revert to providing favors. It can be motivated

on various behavioral (e.g., emotional) or pro-social grounds and effectively it acts as a sort

of refinement of the set of all possible punishments that might occur, as it requires that one

of the ostracizing agents be the one who failed to get the favor. Eventually, one would like

to extend the analysis to situations where after some period of time forgiveness is possible,

but this simplification allows us to gain a handle on sustainable network structures as the

problem is already complex, and it appears that much of the intuition carries over to the

more flexible case, but that is a subject for further research.

Second, we do not consider the formation of new links, but only the dissolution of links.

This embodies the idea that the formation of new relationships is a longer-term process and

that decisions to provide favors and/or ostracize an agent can be taken more quickly and

are shorter term actions. It is important to note that we cover the case where society starts

with the complete network, so we do not a priori restrict the links that might be formed,

and so our results do make predictions about which networks can be formed/sustained in a

society. The important wedge that we impose is that an agent who has lost a relationship

cannot (quickly) replace it with a newly formed one.

One other aspect of the model is important to mention. Agents do not exchange money

for favors even though, hypothetically, favor exchange could be monetized. Of course we do

not see monetization of all favors in reality, as when a colleague asks to borrow a book we

tend not to charge her or him a rental fee; but that empirical observation does not explain

why we do not charge our friends and acquaintances for every favor that we perform. One

explanation is a behavioral one: that monetizing favors would fundamentally change the way

in which people perceive the relationship, and this explanation is consistent with people no

longer viewing a monetized relationship as a long run relationship. More discussion of this

point is given by David M. Kreps (1997). The specifics of why at least some favors are not

monetized is outside of our scope.

For now, we consider a complete information version of the game, in which all agents

observe all moves in the game at every node. We discuss limited information variations in

Section 7.

An agent i’s expected utility from being in a network g that he or she expects to exist

forever13 is

ui(g) =
di(g)p (v − c)

1− δ

13This applies at any point within the period other than at the a time at which the agent is called to
receive or produce a favor.
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If an agent i is called to do a favor to j and chooses to perform the favor and expects a

network g to be played in perpetuity thereafter, then he or she expects a utility of −c+δui(g).

Similarly if agent i is called to receive a favor from agent j and expects to receive the favor and

then anticipates a network g to be played in perpetuity thereafter then his or her expected

discounted stream of utility is given by v + δui(g).14.

We note that although we work with favor exchange as the building blocks of our model,

the analysis here directly extends to supporting cooperation more generally, and the same

results apply to the play of a prisoners dilemma between agents, or other forms of trust and

cooperation games with free-rider or short-term deviation challenges.

2.3 Equilibrium

In this setting, any network of favor exchange g can be sustained in perpetuity as a pure

strategy subgame perfect equilibrium if

c < di(g)
δp (v − c)

1− δ

for every agent i. One way in which this is sustained is by a sort of “grim-trigger” strategy

where all relationships are sustained and favors are provided as long as no agent refuses a

favor, and once any favor is denied then all agents delete all their links and never expect to

receive any favors again in the future. Thus, if each agent has enough relationships that he

or she might lose, then favor exchange can be sustained. So, for instance, if

c < (n− 1)
δp (v − c)

1− δ

then the complete network with the most efficient favor exchange could be sustained.

2.3.1 Renegotiation-Proofness

While the above conclusion offers some optimism regarding a society’s ability to efficiently

sustain favor exchange, it rests upon drastic threats that are not always credible. If for

some reason a favor was not performed and some link disappeared, a society might wish

to reconsider its complete dissolution. Indeed, the idea that if some person in a society

acts selfishly and fails to provide a favor, the whole society collapses and no favors are

ever exchanged again is drastic and unrealistic. This sort of observation is not unique to

14For ease of expression, we assume that the discounting parameter δ enters the agents’ calculations
between the announcement stage and the favor stage in any given period. This is purely for expository
ease. Effectively, it ensures that whenever an agent is either making a decision of which links to announce
or whether to follow through on a favor, any potential future favors that might be influenced by the decision
are discounted. If discounting happens after the favor period, then when making link choices agents would
not discount one round of future favors, but when making favor decisions they would. This simply makes
sure that all future favors are discounted in the same way.
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this setting (e.g., see the discussion in B. Douglas Bernheim, Bezalel Peleg and Michael D.

Whinston (1987)). The issue is that if agents have some chance to communicate with each

other (and perhaps even if they cannot), then when beginning some phase of equilibrium

which involves low payoffs, if there is some other equilibrium continuation, in which all

agents are better off, then they have an incentive to change to the play that gives them all

better payoffs. Even though this sort of “renegotiation” problem is well known, it is rare

for researchers to do more than to acknowledge it and forge ahead. The reason for this is

that properly accounting for renegotiation becomes quite complicated, especially in infinite

settings where it is not even clear how to define equilibrium in the face of renegotiation (e.g.,

see Joseph Farrell and Eric Maskin (1989), B. Douglas Bernheim and Debraj Ray (1989),

and Dilip Abreu, David Pearce and Ennio Stacchetti (1993)). Thus, there are few analyses

of renegotiation-proofness outside of some of the original papers working out the definitions,

although some instances of it appear in other forms (e.g., repentance strategies in Lippert

and Spagnolo (2011)).

Our setting has a structure that makes it relatively easy to provide a natural definition

of renegotiation-proofness and to characterize such equilibria. Before moving to the formal

definitions, we present an example that illustrates the ideas.

Example 1 The Logic of Renegotiation-Proofness

Let there be 4 agents and consider a case such that

2
δp(v − c)

1− δ
> c >

δp(v − c)

1− δ

Here, no link is sustainable in isolation, since the value of providing a favor c is greater than

the value of the future expected stream of giving and receiving favors: δp(v−c)
1−δ

. However, if

an agent risks losing two links by not performing a favor, then links could be sustainable

depending on the configuration of the network, since c < 2 δp(v−c)
1−δ

.

In this case, note that networks where each agent has exactly two links, for example,

g = {12, 23, 34, 41}, can be sustained as a subgame perfect equilibrium. If any agent ever

fails to perform a favor, then a link will be lost. For example, suppose that 1 fails to deliver

a favor to 2, and so the link 12 is lost. At this point, agent 1 only has one relationship

left: 14. It is now clear that agent 1 will never perform future favors for 4 and so the link

14 is effectively useless as well. The same is true of 23. Iterating on this logic, there is no

subnetwork that could be sustained as a subgame perfect equilibrium. As such, an agent

realizes that if he or she fails to provide a favor, then that will lead to a collapse of all

favors and so the network of favor trading is sustained in equilibrium, as failing to provide

one favor induces a loss of two relationships. So, starting with such a minimal network

there is no difficulty with renegotiation, as following any deviation from the prescribed favor

exchange the equilibrium continuation is unique. So, favor exchange sustaining this network

is renegotiation-proof as an equilibrium (to be defined shortly).

The problematic subgame perfect equilibria come with k = 5 or more links. Consider the

10



Figure 1: A five link network that is not sustained as a renegotiation-proof equilibrium

network g′ = {12, 23, 34, 41, 13} as pictured in Figure 1. Agents 1 and 3 each have three links

and agents 2 and 4 have two links. There is a subgame perfect equilibrium sustaining this

network: if any link is ever cut, then all agents cut every link in the future. However, there is

no renegotiation-proof equilibrium sustaining this network. To see this, suppose that agent

1 is called upon to do a favor for agent 3. If agent 1 does not do the favor, then the resulting

network is g = {12, 23, 34, 41}. Note that g is sustainable as a subgame perfect equilibrium

as argued above (and in fact is sustainable as part of a renegotiation-proof equilibrium).

The logic is now that if g is reached, then it will be sustained rather than having agents

delete all links, since it is not credible for agents to destroy these links as they are all strictly

better off sustaining g than going to autarchy. Thus, when reaching g, in the absence of some

exogenous commitment device, the agents’ previous threat to delete all links lacks credibility.

As a result of this, agent 1 can cut the link 13 and still expect the network g to endure, and

so this is the unique best response for agent 1 and so g′ is not sustainable as an equilibrium

if we require that continuations not be Pareto dominated by another (renegotiation-proof)

equilibrium continuation.�
We define renegotiation-proof networks to be networks that are sustainable via pure

strategy renegotiation-proof equilibria. It is easiest to define the networks directly, in a way

that simultaneously implicitly defines renegotiation-proof equilibrium and explicitly tracks

the networks that are sustainable via those equilibria.

We define the set of pure strategy renegotiation-proof equilibria inductively.15,16 The

induction operates via the number of links in the starting network. In terms of notation, it

will be useful to keep track of the set of all networks that have exactly k links and can be

sustained in perpetuity as part of a pure strategy renegotiation-proof equilibrium if we start

15Our analysis concentrates on pure strategy equilibria. As will become clear, considering mixed strategy
equilibria would not add much to the insights regarding sustainable network structures.

16Our definition is in the spirit of Pareto perfection of Bernheim, Peleg, and Whinston (1987), but instead
of induction with respect to the stages of the game, we work with induction on the size of the networks as
our game is infinitely repeated.
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at that network.

We let RPNk denote the set of renegotiation-proof networks with k links.

• Let RPN0 = {∅}

• Let RPNk denote the subset of Gk such that g ∈ RPNk if and only if beginning with

g0 = g implies that there exists a pure strategy subgame perfect equilibrium17 such

that

– on the equilibrium path g is always sustained (all favors are performed and all

links are maintained), and

– in any subgame18 starting with some network g′ ∈ Gk′ with k′ < k, if g′′ is

reached with some probability19 and then played in perpetuity in the continuation,

then g′′ ∈ RPNk′′ for some k′′ and there does not exist any g′′′ ⊂ g′ such that

g′′′ ∈ RPNk′′′ and ui(g
′′′) ≥ ui(g

′′) for all i with strict inequality for some i.20

The concept is fairly straightforward even though the definition is inductive. It requires

that any continuation equilibrium (e.g., a threat of what will happen if some agent deviates)

not be Pareto dominated by some other continuation equilibrium. Thus, if society gets to

some point where they are supposed to follow through with some equilibrium continuation,

they should not all find it better to follow some other (feasible) continuation. The self-

referential nature of the definition comes from the fact that we want society only to view some

continuation as a feasible option if it is renegotiation-proof itself - as otherwise that should

not be expected to be stable either.21 The self-referential logic is what generally provides

difficulties in identifying an unambiguously “correct” definition in an infinite setting. Here,

despite our infinite horizon, we can define renegotiation-proofness cleanly since relationships

can be severed but not resuscitated and so there is a natural induction on the number of

links.

We say that a network g is renegotiation-proof or a renegotiation-proof network if there

exists some k such that g ∈ RPNk. As further illustration of the definition, let us return to

Example 1 and characterize all of the renegotiation-proof networks.

Example 2 Renegotiation-Proof Networks

17That the equilibrium is in pure strategies requires that agents (other than nature) use pure strategies
at all nodes on and off the equilibrium path.

18This includes subgames starting at any node, not just beginning of period nodes.
19Even though agents use pure strategies, nature randomly recognizes favors, and so there can be some

randomness in a continuation path.
20Note that this condition implies that in any subgame starting with a network g′ ∈ RPNk′ , g′ is played

in the continuation.
21Thus, the definition is inductive, since the logic of renegotiation-proofness requires that a network

sustained in some continuation not be Pareto dominated by any other continuation that itself is renegotiation-
proof.

12



Let there be 4 agents and consider a case as in Example 1 such that

2
δp(v − c)

1− δ
> c >

δp(v − c)

1− δ
.

Here, RPN1 = ∅ since no isolated links are sustainable.

Similarly, RPN2 = ∅ since any agent who only has one link will never perform a favor.

RPN3 = {g = {ij, jh, ih} : for some distinct h, i, j}. Thus, triads are sustainable, since

if any agent severs a link, then that will lead to a two-link network which is not sustainable,

and so becomes an empty network. Thus, not performing a favor leads to an empty network,

and so it is a best response to perform a favor, anticipating favors by other agents.

RPN4 = {g = {ij, jh, h`, `i} : for distinct h, i, j, `}. This is an obvious extension of the

logic from three-link networks.

Following the argument in Example 1 it is easy to check that there are no five-link

renegotiation-proof equilibria. Thus RPN5 = ∅.
Next, note that RPN6 = ∅ as well. To see this, note that if some agent i deletes a

link ij, then a continuation must result in a pure strategy renegotiation-proof equilibrium,

which would be either a triad, four link network (with a cycle), or the empty network. The

remaining four link network that has a cycle Pareto dominates any other continuation. Thus,

if an agent i severs a link ij, then the agent is sure that he or she will still have two links in

the continuation and so only loses one link.22�
Given this example, let us re-emphasize an aspect of our model that simplifies the anal-

ysis. Renegotiation-proofness serves as as a natural and plausible way to limit potential

punishments, which tightens predictions of which networks of favor exchange are sustain-

able. However, its tractability relies in part on our assumption that when an agent fails to do

a favor for another agent the relationship in question is deleted. By assuming that the link

in question must be part of the punishment that ensues, the analysis can move forward, as

renegotiation can be anchored via an induction argument avoiding the substantial difficulties

associated with non-inductive, self-referential definitions.

In terms of justifying this approach, it is important to note that clearly some punishment

must occur following a failure to provide a favor if favors are to be sustained. Thus, the

assumption may be viewed as focusing on equilibria where the relationship in question is

necessarily involved in that punishment. Let us offer two possible justifications for this focus,

without explicitly expanding the model. One justification is that there is a behavioral or

emotional response that induces an agent whose favor is denied to place a sufficiently negative

weight on the deviator’s utility so as not to want to do any favors for the deviator in the

future, even if that means losing some other relationships in the continuation. Justifications

22This conclusion depends on the way in which renegotiation is defined. Here we have defined it taking all
agents into account. Another possibility is to only take the non-deviating agents into account, in which case
the complete network can be sustained by having the three remaining agents sever all ties to any deviating
agent. We explore this variation in the supplementary appendix.
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for such other-regarding preferences generally rely on psychological evidence or evolutionary-

style arguments, and are well-debated in the behavioral literature and so we do not discuss

them here.23 Effectively, this redirects the justification of the assumption to a well-trodden

discussion in behavioral economics. Another avenue for rationalizing this behavior is that

there is a relationship specific type variable for each agent (some sort of “compatibility”)

that agents learn about over time by observing others’ behaviors. If one agent fails to

deliver a favor for another agent it could signal that the agent has a bad “type” for the

compatibility of that relationship, and so will also fail to be able to perform favors in the

future in that particular relationship, leading that relationship to no longer function. Having

this be relationship-specific is important as then subsequent deletion of other relationships

need not be tied to subsequent inferences of a player’s type in further relationships (just

because i and j are incompatible, it does not necessarily imply that j and k will also be

incompatible). Independence of types across relationships allows further deletions to be

based on the viability of the remaining network structure, and not further inference about

types.24

3 Characterizing Renegotiation-Proof Networks

In this section we provide a complete characterization of renegotiation-proof networks. We

begin by providing some intuitive sufficient conditions that give insight into the structure of

renegotiation-proof networks.

Let m be the whole number defined by:

m
δp(v − c)

1− δ
> c > (m− 1)

δp(v − c)

1− δ
(1)

It is clear that there is at most one such m and that m ≥ 1. We work with the generic

case, ignoring exact equality on either side above. The parameter m captures how many

relationships, each with a future value of δp(v−c)
1−δ

, an agent has to risk losing in the future in

order to have incentives to perform a favor today at the cost of c. Throughout the remainder

of the paper, the definitions will all be relative to m, and so we take it to be fixed and defined

by (1) and omit explicit mention of it in some of the definitions. We begin with a formal

23See Colin F. Camerer (2003), Ernst Fehr and Klaus M. Schmidt (2006), and David J. Cooper and John
H. Kagel (2009) for background discussion and evidence on other-regarding preferences.

24Note that expanding the model in this direction would allow for an analysis of favor exchange along our
lines for some period of time; but after agents’ had sufficiently learned about each other’s types, then we
would face an issue that agents would have an incentive to deviate and ask for forgiveness. Thus, analyzing
the full long-term dynamics of such a model, and not just the short to medium run, would involve enriching
the model to allow for some occasional deviations and potential forgiveness. That again complicates the
analysis, so that the results presented here would hold for some period of time, but we do not have firm
conjectures for what would happen in the very long run when types may be learned, and forgiveness is
allowed.
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statement of the proposition on subgame perfect equilibria that motivates our analysis of

renegotiation-proof equilibria.

Proposition 1 A network is sustainable in perpetuity on the equilibrium path of a pure

strategy subgame perfect equilibrium of the favor exchange game if and only if each agent has

either 0 links or at least m links.

The proof of Proposition 1 is obvious and thus omitted. Now we examine renegotiation-

proof networks.

3.1 Critical Networks and Renegotiation-Proofness

Before proceeding to the complete characterization, we examine a natural class of renegotiation-

proof equilibria.25 These sufficient conditions provide an intuitive look at equilibrium struc-

ture and help motivate the complete characterization.

Let G(m) = {g | ∀i, di(g) ≥ m or di(g) = 0} denote the set of networks in which each

agent has either at least m links or 0 links. So G(m) is the set of networks sustainable as

subgame perfect equilibria. Note that any renegotiation-proof network must be in G(m)

and since any network sustained in any off-equilibrium path continuation must also be a

renegotiation-proof network it must also be contained in G(m).

Following the argument above, one way to build a sustainable network is to offer proper

incentives for sustaining favors: if an agent deletes a link in a network or fails to provide

a favor, it is sufficient that the agent expect to lose at least m links in the sequel. That is

captured by the following definition.

We say that a network g is m-critical, if

• g ∈ G(m)

• For any i and ij ∈ g, 6 ∃g′ ⊂ g − ij such that di(g
′) > di(g)−m and g′ ∈ G(m).

As m ≥ 2 will generally be a given in the analysis, we simply omit its reference and use

the term “critical” in what follows. An easy way to build a critical network is to have each

agent have exactly m links. However, we remark that criticality does not require all agents

to have exactly m links. It only requires that any possible continuation equilibrium after

some agent fails to provide a favor be such that the agent lose at least m links. To see how

this can allow agents to have more than m links, consider the left network in Figure 2, which

pictures such a critical network for a case with m = 3 where agent 1 has four links.

There is no proper nonempty subnetwork in which all agents have 0 or at least 3 links

each. Thus, if agent 1 (or any other agent) severs any link, the entire network would have

to collapse since any proper subnetwork that is nonempty will have some agent with fewer

25Additional classes of renegotiation-proof equilibria are discussed in the supplementary appendix.
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Figure 2: Left: A critical network for m = 3, but where agent 1 has 4 links; Right: A non-critical network,
but still renegotiation-proof.

than 3 links, and thus that agent will not have incentives to provide favors. Therefore, if

agent 1 fails to provide a favor on some link, then agent 1 would lose all four links.

Critical networks provide an important and nonempty class of networks that are renegotiation-

proof. In the sense of Proposition 2, they are a foundational class of networks.

Proposition 2 Any nonempty network g ∈ G(m) contains a nonempty critical network,

and any critical network is renegotiation-proof.

The last part of Proposition 2 follows from Theorem 1, but we mention the idea behind

how this can be proven directly. In order to prove this, we need to show that there exists

a pure strategy renegotiation-proof equilibrium such that for any i and ij ∈ g, if i is called

to grant a favor to j and refuses the favor, i must lose at least m links in any continuation

network g′. Renegotiation-proofness requires that the continuation g′ be a subnetwork g′ ⊂
g − ij and be sustainable as a pure strategy renegotiation-proof equilibrium and so it must

be in G(m). By the definition of criticality, it then follows that any such g′ ∈ G(m) be such

that di(g
′) ≤ di(g)−m (and there always exists at least one such g′ since the empty network

is in G(m)), and so provides the necessary incentives.

To see that criticality is not necessary for renegotiation-proofness, consider the right

network in Figure 2: let m = 2 and g = {12, 23, 13, 14, 15, 45, 26, 27, 67} is a tree union of

three triads. This is not critical since if 1 cuts the link 12, then all agents in the sub-network

still have at least 2 links. Nonetheless, we shall see that it is renegotiation-proof below.

3.2 A Complete Characterization of Renegotiation-Proof Networks:

Transitively Critical Networks

We now turn to the complete characterization of renegotiation-proof networks.

Let D(g) denote the profile of degrees associated with a network g : D(g) ≡ (d1(g), . . . , dn(g))

and write D(g) > D(g′) if D(g) ≥ D(g′) and D(g) 6= D(g′).
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We define transitively critical networks as follows. Given a whole number m satisfying

(1), let TCk(m) ⊂ Gk denote the set of transitively critical networks with k links.

• Let TC0(m) = {∅}.

• Inductively on k, TCk(m) ⊂ Gk is such that g ∈ TCk(m) if and only if for any i and

ij ∈ g, there exists g′ ⊂ g − ij such that g′ ∈ TCk′(m) for some k′ ≤ k −m, di(g
′) ≤

di(g)−m, and there is no g′′ ∈ TCk′′(m) such that g′′ ⊂ g − ij and D(g′′) > D(g′).

A network g is transitively critical if when some link ij of i’s is deleted, then the next

largest transitively critical network that is a subset of the remaining network involves a loss

to i of at least m links. Consider, for instance, starting with a critical network where each

agent has exactly m links. Now, if we start to add links for some agent to such a network, we

will have to add at least m links for that agent. This follows from renegotiation-proofness,

as otherwise the agent could delete a link and expect to lose fewer than m links in landing

at a critical network in the continuation. There are complicated interrelationships in the

ways that links must be added, as adding links must keep the incentives for all agents in

line. The definition of transitive criticality is inductive in a way that accounts for all of

those incentive constraints at the same time. Basically, starting with some network that is

transitively critical, the next superset of that network that will also be transitively critical,

will have to add minimal numbers of links for each agent that gains links.

Even though this is also an inductive definition (not surprisingly, given that renegotiation-

proof equilibria are so defined), it does not involve any incentive descriptions and is effectively

an algorithm that can identify equilibria directly from m. In fact, the equivalence set forth

by Theorem 1 can be used to calculate renegotiation-proof networks. In the supplementary

appendix we present a table with the number of non-isomorphic transitively critical networks

for small values of n and m, along with renderings of some of these networks.

Theorem 1 A network is renegotiation-proof if and only if it is transitively critical.

Although one might expect the proof to be straightforward given that both definitions are

inductive, there are some subtleties and challenges in proving Theorem 1. The main one is

that there are many strategy profiles that may hypothetically sustain a collection of networks

in a subgame perfect manner, in a way such that the collection satisfies the self-consistency

property demanded by renegotiation-proofness. The issue then is that to show that some

network is not renegotiation-proof we must be sure that none among the large number of

the different strategy profiles that could sustain it, actually work. Moreover, showing that

some network is renegotiation-proof involves first showing that some other networks are not

in the set. The way in which we tackle this difficulty is by arguing that we can avoid the

vast set of potential equilibria that could be used to sustain networks and can focus on a

nicely behaved set of strategy profiles. The details appear in the appendix.
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4 Robustness

We now turn to our criterion of robustness. The idea is that a network is robust if it relies

only on local “damage” due to a failure to provide a favor, rather than more global sorts of

damage. That is, failure to provide a favor will require some lost links and there is a question

of how far that loss of links propagates. We begin with a simple observation.

Observation 1 If (1) holds for m ≥ 2, g is a renegotiation-proof network, and ij ∈ g, then

g − ij is not a renegotiation proof network.

The observation follows since otherwise the continuation from i or j failing to do each

other a favor would only result in the loss of one link, and so they would not do each other

favors and g would not be sustainable.

The important implication of the observation is that beginning from a network that is

renegotiation-proof, if a link is deleted then the network will necessarily further degrade in

terms of what is sustainable. There may be different ways in which things could degrade.

Here is where the idea of robustness comes into play. Robustness against social contagion

seeks to minimize the extent to which the loss of links propagates beyond the original devi-

ator(s) in the network.

Example 3 Robustness

Figure 3: Two renegotiation-proof networks when m = 2 and n = 9: a non robust one and a robust one.

Suppose that (1) holds for m = 2, and there are n = 9 agents. Figure 3 lists two

renegotiation-proof networks: one is a single cycle containing all agents, {12, 23, 34, 45, . . . , 91};
the other one is a tree union of four triads, {12, 23, 13, 34, 45, 35, 46, 47, 74, 58, 59, 89}. Note

that if any link is deleted from the first network, then it completely collapses. If any link is

deleted from the second network, only two other links are deleted and they are limited to a

local neighborhood of the original link that is deleted.�
The second network in Example 3 is more “robust” than the first one in the sense that

the damage by the deletion of a link is more “local” in a sense that we now discuss.
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4.1 Robustness Against Social Contagion

We say that a network g is robust against social contagion if it is renegotiation-proof and

sustained as part of a pure strategy subgame perfect equilibrium with g0 = g such that in

any subgame continuation from any renegotiation proof g′ ⊂ g, and for any i and ij ∈ g′, if

i does not perform the favor for j when called upon and then g′′ ⊂ g′ − ij is reached with

positive probability and then played in perpetuity in the continuation, if h` ∈ g′ but h` /∈ g′′

then h ∈ Ni(g
′) ∪ {i} and ` ∈ Ni(g

′) ∪ {i}.
Robustness requires that a network be sustainable as part of an equilibrium such that

in any continuation starting from some renegotiation proof (sub-)network, if some link is

deleted then the only other links that are deleted in response must only involve the agent

deleting the link and his or her neighbors. In a well-defined sense this localizes the damage

to society.26 We now characterize the networks that are robust against social contagion, or

robust for short.

4.1.1 Social Quilts

The networks that are robust against social contagion have a particular structure to them

that is described as follows, maintaining m > 1.

An m-clique is a complete network with m + 1 nodes so that every node has exactly m

links. m-cliques are an important class of critical networks.27

We can build robust renegotiation proof networks by putting cliques together as long as

we do not end up generating any cycles involving more than m+1 nodes when we construct

the network out of more than one clique. Thus, a social quilt is a “tree union” of networks.28

26An alternative approach would be to explicitly allow nodes or links to fail with given probabilities,
and then to look for networks that are still sustainable as equilibria in the face of such failures. If failure
probabilities are high enough, then that will result in the definitions that we examine. However, for lower
failure rates, other equilibria would also be sustainable. As the contagion effects of such probabilities become
intractable quickly in a network setting, we work with the definitions as presented here, but it could be
interesting to investigate other approaches.

27Note that a clique g with m + 2 nodes (each having m + 1 links) is not renegotiation-proof. To see this,
suppose the contrary and have some i delete a link ij. In order for this not to be a valid deviation, it must
be that i loses at least m links in the continuation, which then implies that the agent must lose all links in
the continuation as having 1 link will not be sustainable, so that the continuation is such that there are at
most m+1 agents in the network and each has just m links. This is Pareto dominated by a network g′ with
all m + 2 agents such that all agents have m links except for possibly one agent. There is such a network
that is a subset of g− ij (which is such that all but i and j have m + 1 links and i and j each have m links).
It also follows that g′ is critical and thus renegotiation-proof. Thus, we have a contradiction.

28A union of several networks g1, ..., gK is a tree union if the networks can be ordered in a way g1, ..., gK

such that successive unions

U1 = g1; . . . ;Uk = Uk−1 ∪ gk; . . . ;UK =
⋃

k=1...K

gk

are such that each additional network has at most one node in common with the preceding union: |N(Uk−1)∩
N(gk)| ≤ 1.
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We say that a network g is an m-quilt if g is a union of m-cliques29 and there is no cycle in

the network involving more than m+1 nodes. The right network of Figure 2 shows a 2-quilt.

Here are some useful properties of m-quilts, where m > 1: (i) there are no bridges; and (ii)

the removal of any link increases the diameter by at most 1, so there are no “long-distance”

links.

Theorem 2 A network is robust against social contagion if and only if it is a social quilt.

Given our previous discussion of critical networks, it is a simple extension to see that

social quilts are renegotiation-proof, and the critical cliques limit contagion to be local in

nature. The subtle and difficult part of the proof of Theorem 2 is in showing that only social

quilts are robust. For example, why is a complete network not robust? This requires an

involved argument, which draws upon both the renegotiation-proofness and the local aspect

of punishments. Roughly, the intuition is as follows. First, any robust network must contain

some cliques, as an agent who cheats must lose some number of links, which must all be local.

In terms of continuation equilibria, any smallest sustainable subnetwork of a given network

must be a clique. This follows since any deviation must lead to the loss of all its links since

it is the smallest, and by locality the agents must all be neighbors. Moreover, it must be of

minimal size by renegotiation-proofness as otherwise the society could renegotiate to keep a

minimal sized clique which would contradict this being the smallest sustainable subnetwork.

The proof then works by using some graph theoretic reasoning to show that any network

that is not a social quilt has some subnetwork that is a critical network, and hence a smallest

sustainable subnetwork, but is not a clique. Thus, if a network is not a social quilt, there is

some way in which it could be broken down so that the eventual contagion in a last stage of

destruction would necessarily be non-local.

We end this section with some results that contrast the set of subgame perfect networks

with the set of robust networks. Whereas almost all networks are subgame perfect equilibria,

a fraction going to 0 of networks are robust. Thus, robustness is a very discriminating

refinement of the set of equilibrium networks providing pointed predictions.30

Proposition 3 Fix m and let n grow. Then the fraction of networks that are sustainable

as pure strategy subgame perfect equilibria goes to 1 and the fraction that are social quilts

(and thus robust networks) goes to 0.

5 Asymmetric Payoffs

Before we examine data concerning favor exchange settings, we extend the model to allow for

asymmetries in payoffs. Given the heterogeneity in characteristics of agents in the societies

29That is, for any ij ∈ g there exists a subnetwork g′ ⊂ g with ij ∈ g′ and such that g′ is an m-clique.
30See the Supplementary Appendix for some calculations concerning the number of renegotiation-proof

networks (including non-robust ones).
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we examine, it is clear that they may face different costs and benefits from favor exchange,

and so this extension is needed to provide predictions to take to the data.

In particular, suppose that the probabilities of favors, and their values and costs are

specific to relationships and can be network dependent, so they could depend on whom

else each agent is connected to, and so forth. So, doing a favor for an agent j costs an

agent i an amount cji(g) and the value of the favor to an agent i from an agent j is an

amount vij(g). Let pij(g) denote the probability that i needs a favor from j. Moreover, this

network dependence also allows us to encompass asymmetries in favor exchange, such as

pij(g) 6= pji(g), vij(g) 6= vji(g), and/or cij(g) 6= cji(g), including even directed or one-sided

relationships.

Agents discount according to a personal factor, denoted 0 < δi < 1 for agent i. Agents’

expected utilities are similarly as that in the symmetric case. An agent i’s expected future

utility from being in a network g where all favors are provided in perpetuity is

ui(g) = δi

∑
j∈Ni(g) pij(g)vij(g)− pji(g))cji(g)

1− δi

.

Thus, if agent i currently provides a favor to agent j with ij ∈ g, i’s current expected

discounted utility stream is −cji(g) + ui(g), whereas if agent i is called to receive a favor

from agent j it is vij(g) + ui(g).

Let us consider settings such that for any link ij there is at least one of the two agents,

say i, such that

cji > δi
pij(ij)vij(ij)− pji(ij)cji(ij)

1− δi

. (2)

Thus, no single link ij would be sustainable in complete isolation.31

Our definitions of renegotiation-proof networks and robustness are exactly as previously

stated. A link ij ∈ g is supported if there exists agent k different from i and j such that

ik ∈ g and jk ∈ g. So a link is supported if it is part of a triad. Support is a necessary

condition for robustness in the general heterogeneous case where bilateral relationships are

not sustainable by themselves.

Theorem 3 If (2) holds and a network g is robust against social contagion, then all links

in g are supported.

Support is distinguished from clustering measures, as illustrated in Figure 4. For example,

it is possible that a standard measure of clustering32 of a network is close to 0 while support

is close to or even equal to 1.33 In fact, as we shall see below, the support measure in the

observed networks is quite high while standard clustering measures are much lower.

31pij(ij) denotes the probability that i needs a favor from j in the network comprised by the solitary link
ij, and similar notation for vij(ij) and cji(ij).

32See Jackson (2008) for various definitions of clustering and transitivity.
33For example, consider an agent i who has many friends: Ni(g) = (j1, k1, j2, k2, . . . , jM , kM ) such that
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Figure 4: The contrast between support (left) and a standard clustering or transitivity measure (right).

An interesting case that generalizes the homogeneous case and yet is not as fully general as

the heterogeneous case examined above is one where agents may have idiosyncratic values and

costs to favors vi and ci, and discount factors δi, but where these values do not depend upon

to whom agents are linked and also where the favor probabilities are not agent dependent.

For this case, our previous results have analogs and we provide a full characterization in the

supplementary appendix.

6 Support vs. Clustering in Favor Networks in Rural

India

Along with the degree distribution, and the distribution of distances between nodes, the

clustering coefficient is one of the standard network statistics most often reported in net-

work analysis. As mentioned in the introduction, it has often been thought that clustering

coefficients reflect the ability of social groups to address social dilemmas.

Our analysis has suggested that support is a necessary condition for a society to enforce

cooperation, at least in the robust manner that we have defined here. This is a distinct

measure, and a close scrutiny reveals that clustering and support are conceptually very

different. Clustering is a property of the neighborhood of an agent while support is an edge

property. While networks with very high levels of clustering will necessarily display a high

fraction of supported links the converse is not true. For example, the social quilt in Figure 3

(right) has a support measure of 1 (all of its links are supported) and yet only has an overall

clustering of 1/2 (as only half of the pairs of links ij and ik lead to a completed triad -for

instance only 1/3 of node 3’s pairs of neighbors are linked to each other). More generally,

in any society in which agents tend to have multiple disjoint sub-neighborhoods (different

jm and km are linked to each other for each m but such that there are no other relationships between the
friends. The support measure here is 1 since every link is part of a triad. Yet, the clustering for i is very
small: M

M(M−1)/2 , which simplifies to 2
M−1 and goes to 0 as M grows.
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cliques of friends), for instance their colleagues at work, the geographic neighbors at home,

their hobby friends, etc., the fraction of supported links could be high, while the overall

clustering could be low.

Given that the theory predicts support to be high, but does not predict the same for

clustering, we investigate whether this is true empirically. In particular, we now analyze a

large data set of a variety of networks that include various forms of favor exchange. We find

that support is quite high and significantly higher than the clustering coefficient.

Our data are particularly well-suited for our study: they document network structures

for a variety of different sorts of relationships, including various sorts of favor exchange, and

do so for many separate villages.

6.1 Description of the Data

The data are from 75 rural villages in Karnataka, an area of southern India within a few

hours of Bangalore. The average population per village is 926.48. The survey was designed

as part of a study of the deployment of a micro-finance program ( see the paper by Abhijit

Banerjee, Arun Chandrasekhar, Esther Duflo, and Matthew O. Jackson (2011)).

Only half of the households were surveyed, which could bias our support measures (most

likely downwards) as we discuss below. Households were selected by a stratified random

sample in order to control for selection biases; with households stratified by religion (Hindu,

Muslim, Christian) and also by geographic sub-locations based on a full census of the villages

that was conducted just prior to and in conjunction with the survey. Each surveyed individual

was asked to name the people that he or she has various sorts of relationships with. 34

There are several potential sources of measurement error in these data. First, not all

people were surveyed and so there are missing nodes and links in the data set.35 Without

34The relationships that were queried in the survey are listed as follows:
1) Friends: Name the 4 non-relatives whom you speak to the most. 2) Visit-go: In your free time, whose
house do you visit? 3) Visit-come: Who visits your house in his or her free time? 4) Borrow-kerorice: If you
needed to borrow kerosene or rice, to whom would you go? 5) Lend-kerorice: Who would come to you if
he/she needed to borrow kerosene or rice? 6) Borrow-money: If you suddenly needed to borrow Rs. 50 for a
day, whom would you ask? 7) Lend-money: Who do you trust enough that if he/she needed to borrow Rs.
50 for a day you would lend it the him/her? 8) Advice-come: Who comes to you for advice? 9) Advice-go:
If you had to make a difficult personal decision, whom would you ask for advice? 10) Medical-help: If you
had a medical emergency and were alone at home whom would you ask for help in getting to a hospital?
11) Relatives Name any close relatives, aside those in this household, who also live in this village. —In
defining the relatives network we added the people in the same household. 12) Temple-company: Do you
visit temple/mosque/church? Do you go with anyone else? What are the names of these people? In the
borrowing and lending relationships, fifty Rupees are roughly a dollar and the per capita income in the areas
surveyed is currently on the order of three dollars per day or less, although a precise income census is not
available.

35Nodes in the networks that we construct from the surveys are individuals who were surveyed. Surveyed
individuals could name non-surveyed individuals as friends, relatives, etc., but we omit such links unless
both individuals were surveyed. Thus, the networks we work with are sub-networks of the true networks.
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any particular selection of which nodes are missing (given the random selection of house-

holds), the missing data would bias the measure of support downwards, since support looks

at observed links ij and then asks whether i and j have a common neighbor. If that neigh-

bor is missing from the data, then support can be underestimated. Second, there are the

usual measurement issues with survey data36: people may forget to mention some of their

connections, people get fatigued by interviews, and the survey did not allow individuals to

name more than five or eight other people depending on the categories (although the cap

was reached in a negligible number of cases).37We provide some analysis of measurement

error in the supplementary appendix.

In building networks, we say that agent i borrows money from agent j if and only if

either agent i reports borrowing money from j or agent j reports lending money to agent

i, and we do the same with respect to lend-money, borrow-kerorice and lend-kerorice, visit-

come and visit-go and advice-come and advice-go relationships. Note that these are all

directed relationships. In the case of friends, medical-help, relatives and temple-company

we define that agent i has a relationship of the type in question with agent j if and only

if at least one of them acknowledge so. One can also work with other variations on these

definitions, and in the supplementary appendix we report on some of these variations, which

do not significantly alter the conclusions.38 The supplementary appendix contains a variety

of statistical measures of these networks.

6.2 Measuring Support and Clustering

The data include a variety of types of relationships, which are categorized as “Favor” and

“Hedonic” relationships. 39

In our definitions of these relationships, although we call certain relationships “hedonic”

(e.g., visiting), it could be that those relationships involve various sorts of interactions,

including things like favor exchange or risk-sharing, and so forth, that are not reported

through our data. Indeed, as we shall see, although we find more support in various “favor”

relations, there is still a high level of support among the “hedonic” relationships.

36Note that the questions were worded in ways to avoid basic perception issues that are associated with
questions such as “who are your friends?” Based on wording that is more explicit about particular interactions
(borrowing rice, asking for medical advice, etc.) the relationships are more concrete.

37Out of the 12 survey questions, described in footnote 34 the caps were only ever reached in those
questions with codenames Visit-come, Borrow-money, Lend-money and Relatives. The caps were 8, 5, 5 and
8 respectively, and they were reached in less than 0.6 in 10000, 2 in 10000, 0.5 in 10000 and 2 in 10000 of
the total number of surveys.The Supplementary Appendix shows the cumulative distribution of the number
of reported relations for each relationship type.

38In particular, we re-analyze all of the data where we exclude “relative” links, among other things.
Whether or not relatives are included does not significantly change the results.

39 We group relationships as follows: 1) Hedonic = (Visit-go ∩ Visit-come)∪ Friends 2) Physical Favors =
(Borrow-money ∩ Lend-money) ∪ (Borrow-kerorice ∩ Lend-kerorice) 3) Intangible Favors = (Advice-come
∩ Advice-go) ∪ Medical-help 4) Favors = Physical Favors ∪ Intangible Favors 5) All = Favors ∪ Hedonic ∪
Relatives ∪ Temple-company.
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In order to capture the possible combinations of various relationships, we enrich our

measures of support and clustering. In particular, we can ask whether relationships of one

type are supported through relationships of another type, and analogously for clustering,

whether a pair of neighbors of a given node in a network of one type have a relationship of

a second type.

To this end, we define the support of a network g′ relative to another network g denoted

S(g′, g) as the proportion of links in g′ whose nodes have common neighbors in g. Similarly we

can define the clustering of a given network g′ relative to some other network g, Clus(g′, g):

S(g′, g) =

∑
ij∈g′ 1{∃k,ik∈g,kj∈g}∑

ij∈g′ 1
and Clus(g′, g) =

∑
ij∈g′,ik∈g′ 1{jk∈g}∑

ij∈g′,ik∈g′ 1

Note that g = g′ is allowed and this reduces these two measures to self-support, and to

the standard clustering coefficient respectively. We refer to g′ as the base network and g as

the context network.

The reason for considering variations on the support measure is that it is quite possible

that exchange of one type of favor is supported via relationships involving exchange of some

other sort of favor or some other valuable interaction. The corresponding variations on the

standard clustering coefficients are supplied in order to have appropriate benchmarks.

6.3 Support in the Data

Among the relationships in the survey, we identified those that can be accurately described as

favor relationships. In what follows we focus on the average support and clustering measures

setting g′ = Favors and g = All. 40 Figure 5 (left) shows the inverse cumulative distribution

function of support in the favor networks in our sample of 75 villages along with the plots

of the fraction of links supported by exactly k other links in the marginal village. 41

The support measure is generally well above fifty percent, and ranges from more than

50 percent to over 80 percent depending on the village. We note that this measurement is

likely to be biased downwards by the measurement error of missing nodes, as we detail in

the supplementary appendix. Moreover, when we look at certain kinds of favor relation-

ships, the support measure exceeds 85 percent on average across the villages (again, see the

supplementary appendix).

Our theory suggests that in robust favor exchange networks, that any relationship that is

not self-sustaining on a bilateral level requires support. In the data we see support that is less

than 100 percent. Of course, this could be due to some relationships having frequent enough

interaction to be self-sustaining. It could also be due to various forms of measurement error,

40We provide a similar analysis for all sorts of relationships in the Supplementary Appendix.
41The upper-most curve is the inverse CDF of the fraction of supported favor relationships in the All

network. The five curves below list the breakdown of the fraction for the marginal village by various levels
of support: “by k” indicates the fraction of links in that village that are supported by exactly k other nodes
(so that i and j have k friends in common), and so the five lines below sum to the curve above.
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such as missing nodes and also potentially missing links even within the observed networks.

We discuss the measurement error possibility in more detail in the Supplementary Appendix.

Given that the data does not include information allowing us to determine which rela-

tionships are bilaterally self-sustaining, we need to look at other things to determine whether

support is simply incidental. One way to do this is to examine pairs of nodes i and j and

then examine the extent to which they have a friend in common, and to see whether this

happens more frequently when i and j are exchanging favors compared to situations where

they are not. Formally, we do so by extending the definition of support from linked pairs of

agents to arbitrary pairs of agents.

We define the support of a collection of pairs of agents P ⊂ N ×N relative to a network

g, denoted S(P , g), by

S(P , g) =

∑
{i,j}∈P 1{∃k,ik∈g,kj∈g}∑

{i,j}∈P 1
.

So, the support measures we considered previously were those where P was the set of pairs

of agents who exchanged favors with each other. This more general measure allows us to

also measure support for the situation where P is the set of agents who do not exchange

favors. Thus, we can see whether support is something correlated with favor exchange.

The middle graph in Figure 5 shows the inverse cumulative distribution function of

support in the favor networks in our sample of 75 villages along with the plots of the support

of the pairs of agents that do not share a link in the favors network in the marginal village.

The difference is statistically significant beyond the 99.9 percent level for all villages (based

on a one-sided t-test).42

6.4 Comparing Support to Clustering

We now compare support to the clustering in the villages.

We calculate the clustering in each village and compare it to the corresponding support

measure. In both cases we work with the base of favor relationships and the context of all

relationships. Similar comparisons and conclusions hold for other variations of comparisons

as shown in the Supplementary Appendix.

The right part in Figure 5 shows that support levels are not only higher than clustering,

but by an order of magnitude. There are various ways in which we can see that support is

significantly higher than clustering in these villages. The comparison of having it be higher

42Such a test assumes independence between the support of pairs of agents that exchange favors and pairs
of agents that do not exchange favors, which is violated as some such pairs of pairs overlap, but fraction of
overlapping pairs goes to 0 in n. The largest standard error for the estimated difference of support levels
across the 75 villages computed under this independence assumption is 0.084. The analysis relies only on the
agents that were surveyed in each of the 75 villages. The sizes of the surveyed populations range from 95 to
395. The village with the smallest number of linked pairs of agents has 115 linked pairs and 4350 pairs that
do not exchange favors. The village with the highest number of linked pairs has 843, and 76972 pairs that
are not linked. One can also test across villages, where support among linked pairs is higher than among
unlinked pairs in 75 of 75 villages.
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Figure 5: The inverse cumulative distribution function of support levels in the villages: The horizontal
axis is the fraction of villages having support no more than the amount listed on the vertical axis; the left
figure includes a breakdown by how many common neighbors pairs of nodes have; the middle figure shows
the inverse cumulative distribution function of support levels of linked pairs of agents and unlinked pairs
of agents in favor networks in the villages; and the right figure shows the inverse cumulative distribution
function of both support and clustering.

in 75/75 villages has a p-value that is effectively 0. Moreover, the average ratio of support

over clustering across the villages is 2.94 with a standard error of 0.38 and this has a p-value

of effectively 0 of being significantly higher than 1.

We can also see how the two compare for various types of relationships, as seen in Table

1, where support significantly exceeds clustering. This suggests that support should be a

useful measure of social capital that is complementary to clustering, and useful in situations

where social pressures may be needed to provide incentives.

g Favors Physical Favors Intangible Favors Hedonic Relationships All

Clus(g,All) 0.234 0.257 0.249 0.236 0.222
S(g,All) 0.717 0.72 0.733 0.661 0.696

Table 1: Clustering and Support Measures for various types of relationships. In every case the All network
serves as context.

Moreover, the comparison of support over clustering could also be a useful statistic in

more general social network analysis. If the ratio is close to 1, then effectively a typical agent

would just have one group of friends, while a higher ratio would suggest that a typical agent

has several disjoint groups of friends.

6.5 Comparing Support in Different Sorts of Relationships

The data also allow us to compare the support measures of favor networks with those of

hedonic networks (HR).
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We can test whether there are statistically significant differences in support among net-

works of different types. To do this, we compare the values of any given support measure

village by village. If there were no systematic difference in support between relationships of

the types being compared, then in any given village each one would have an equal chance

to be larger than the other. Thus, under the null hypothesis that there is no difference in

support, the number of villages where one has a higher support than the other should have

a binomial distribution with equal probability on outcomes.

When we examine the data we see significant differences between the support of different

types of relationships. For example, in 72 out 75 villages, the support of intangible favors

S(IFavors, All) is higher than that of social relationships S(Hedonic, All) (both relative

to the all network). Of course the probability of a binomial random variable with equal

probability on outcomes realizing a one in 72 out of 75 trials is effectively 0.

Table 2 shows the comparison of support measures of various relationships (based on

the context of All relationships). The entry in the table is how many times out of 75, the

support measure in the row is higher than that in the column. The Supporting Appendix

has comparisons for other contexts with similar patterns.

Network g′ Favors Physical Favors Intangible Favors Hedonic All

Favors – 30∗∗ 24∗∗∗ 72∗∗∗ 60∗∗∗

Physical Favors 45∗∗ – 38 69∗∗∗ 56∗∗∗

Intangible Favors 51∗∗∗ 37 – 72∗∗∗ 57∗∗∗

Hedonic 3∗∗∗ 6∗∗∗ 3∗∗∗ – 6∗∗∗

All 15∗∗∗ 19∗∗∗ 18∗∗∗ 69∗∗∗ –

*** significant difference at 1 percent level ** significant difference at 5 percent level

Table 2: Comparison of Support Measures. Entry i, j is the number of villages for which S(g′i, All) >

S(g′j , All).

In terms of the observed differences between hedonic and explicit favor networks, a hy-

pothesis for support in explicit favor networks emerges from our theory. With regards to

hedonic relationships, there might also be some informal favor exchange as well, which would

result in similar predictions. However, hedonic relationships may also have some mutual gain

aspects to them (engaging in activities that benefit both parties), which can lead them to

be self-enforcing in the absence of support.43

6.6 Comparing Observed Support to that in a Random Network

Next, we look at whether observed support is statistically significant, even when one corrects

for geography.

43For a new field experiment that includes some discussion of how behavior varies with relationship type
see Ben D’Exelle and Arno Riedl (2010).
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This answers whether support patterns are something that arose simply because of ge-

ography, or whether the patterns really reflect social structure. For example, underlying

social processes are likely to be influenced by geography as costs of interacting will often

decrease with proximity. It is plausible that the likelihood of relationships increases with

the physical proximity of the agents.44 And, since physical proximity has some transitive

features, relationships that are geographically correlated may display completed triads and

therefore high support levels. To address this, we estimate exponential random graph models

(“ergms”) using the observed networks. In particular, we estimate ergms with the likelihood

of a link being present depend on (i) whether the link is supported, (ii) the observed density

of the network, and (iii) the physical distance of the agents involved (measured using the

GPS coordinates of their respective households).45 As should be expected, in every village

the coefficient associated to physical distance was negative and significant at well less than

the 1 percent level. Nonetheless, the coefficients on support are still large (2.4 on average)

and statistically significant in every single village.46

The Supplementary Appendix contains the full set of ergm estimates for many other

base-context pairs. The ergm estimates suggest that the observed support levels are not

merely an artifact of geographic proximity. More specifically support of a link in the All

network is a significant predictor (in the statistical sense) of the presence of that link in

the favors network, when controlling for density and for geographic proximity of the agents

involved.

44This could be for two reasons, both having links emerge because of proximity, and having people likely
to be linked locate close to each other.

45The exponential random graph model that we estimate is:

log(Pr(G = g)) = β0 + β1

∑
i<j

gij + β2

∑
i<j

gijs(g,g′)ij + β3

∑
i<j

d(i, j)gij

where, G is a random variable taking values in the space of all possible graphs on N nodes, g is a particular
network, s(g) is the associated indication of whether the link ij is supported or not (which may be calculated
relative to a related “all network” g′), and d(i, j) denotes the physical distance between i and j as measured by
the GPS coordinates of their households, and normalized by the mean distance between surveyed households
in the village. The standard method (and used in the program that we used for our estimation) is Markov
chain Monte Carlo estimation, as outlined by Tom A. B. Snijders (2002). More specifically this method
simulates the exponential random graph model using Gibbs or Metropolis-hastings sampling and the Robins-
Monro algorithm for approximating a solution to the likelihood function maximization problem. A problem
with this methodology is that the space is too vast (the collection of graphs on n nodes is of size 2(n

2)) to
reliably search, even with the most advanced algorithms. The standard errors are subject to similar noise,
and should be interpreted with appropriate caution.

46To make sense of the size of the coefficient on support being roughly 2, from the ergm specification some
simple algebra shows that

log[Pr(gij = 1|g−ij)/ Pr(gij = 0|g−ij)) = β1 + β2s(g,g′)ij + β3d(i, j),

so that having a link be supported roughly increases by 2 or more the log odds ratio that the link will be
present in the network.
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6.7 The Relation of Support to Social Characteristics

In our analysis, whether or not a link needs to be supported as part of an equilibrium

depends on whether bilateral favor exchange is enforceable in isolation (e.g., our definition

of m in the symmetric case). The payoffs to different relationships depend on the value

of favors, the cost of favors, interaction probabilities, discount factors, and various other

characteristics of the nodes. In this section we take advantage of the richness of our dataset

to relate support to various social variables of interest including population size, education

level, wealth indicators, subcaste, gender and microfinance. This is exploratory in nature,

since one can think of many hypotheses of how the relative value of favors and the frequency

of interaction would vary with demographics. Nonetheless, this information will still be

valuable in developing models that relate demographics to patterns of favor exchange; and

also provides new insights into how demographics relate to a specific measure of social capital.

6.7.1 Village Level Predictors of Support

To start, we look at how the average support of a network in a village is related to the

average characteristics of the village. Table 3 provides results for an OLS regression of the

fraction of links that are supported (separately for favor networks and hedonic networks) as

a function of various village average characteristics.47 We see that education is significantly

positively related to favor support, while population size is negatively related. The patterns

are similar for both favor and hedonic networks (which have nontrivial overlap).

Favor Support Hedonic Support
Population −.00008∗∗ −.00005
Education .02723∗∗ .02669∗∗

Rooms per person .1401 .3626∗∗∗

Electricity −.01986 −.1025
Latrine −.06683 −.09043∗

Microfinance −.06485 −.01758
(***) Significant at 1 percent, (**) Significant at 5 percent, (*) Significant at 10 percent

Table 3: OLS coefficients for the village level regressions of favor support and hedonic support. Village-level
variables are averages of the values of these variables associated with surveyed individuals in the village.

The village level data provides some insights, but given the relatively aggregated nature

of the data some variation is obscured. Thus, we next proceed to analyze things at the link

and individual levels.

47Population is in total number of people; education scale is from 0 to 15 representing years in school;
wealth indicators include average number of rooms owned by each person, and whether villagers own (2),
share (1), or don’t have electricity (0), and similarly for latrines; microfinance is the fraction of the total
eligible (women) in the village who actually participated in microfinance, and that was only in a subset of
38 villages where microfinance was offered so the results of the regressions are for that subset of the villages.
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6.7.2 Link Level Predictors of Support

The next analysis examines link-level support as a function of link demographics.

We examine the likelihood that a given link is supported conditional on the two in-

dividuals involved in the link being similar/dissimilar according to various demographics:

education,48 caste, gender, and participation in microfinance.

In order to keep track of how high the support level is, we report the ratio of support for

linked individuals compared to support for pairs of individuals who are unlinked.49 So, a ratio

of 5 indicates that the frequency of support of linked pairs of agents in a given category is 5

times higher than the average support level for pairs of agents that are in the same category

but who are not linked. The categories here relate to whether pairs of individuals both have

the same characteristic or different characteristics. For example, in Table 4 the ratio of 5.91

in the gender category of female/male means that when we look at pairs of agents with one

being female and one being male, the fraction of favor-linked pairs are supported (in the All

network) 5.91 times more frequently than favor-unlinked pairs that involve one female and

one male.

Education
Favors

Ratio Not Linked Linked
both below 5.09 26 25
above/below 5.49 3 25
both above 4.79 46 25

Subcaste
Favors

Ratio Not Linked Linked
different 6.35 0 3
same caste 3.16 75 72

Gender
Favors

Ratio Not Linked Linked
both male 3.48 75 16
female/male 5.91 0 30
both female 6.09 0 29

Microfinance
Favors

Ratio Not Linked Linked
neither belong 6.76 7 14
belong/not 6.91 5 8
both belong 3.99 26 16

Table 4: Ratios: the fractions of pairs of agents that have at least one friend in common in the All network
comparing situations where the pairs have a link in the favors network (numerator) to those where they do
not have such link (denominator); Not Linked (or Linked): number of villages in which the corresponding
similarity/dissimilarity class is the one with the highest fraction of pairs of agents that are supported across
the 3 classes (or 2 in the case of subcaste) for pairs that are not linked (or linked) in the favor network.

We see that support levels are (relatively) much more distinguished when individuals fall

in different castes compared to when they are in the same caste. We also see lower levels

of (relative) support when individuals both participate in microfinance than when they do

not. Both-male links are less supported than cross-gender or both-female links. Given that

support is related to incentives in our theory, this may be suggestive that some of these

situations require more external incentives to enforce exchange than others. Also, Table 4

presents how support differs depending on whether the individuals have the same or different

48For education, we categorize individuals as either above or below the median education level, which is 5.
49See the Supplementary Appendix for the full breakdown of all support levels.
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characteristics. In particular, the last two columns of the table shows the number of villages

in which a given categorization (row) is the one with the highest fraction of pairs of agents

who are supported among all categorizations. The columns present the results for unlinked

pairs and linked pairs separately.

The differences between the columns suggests that the patterns of support differ for

unlinked versus linked pairs of agents not only in terms of overall likelihood (as we saw

earlier in Figure 5), but also in terms of how support depends on the characteristics of the

agents. The differences across columns are significant in all cases except subcaste.50

6.7.3 Individual Level Predictors of Support

In this section we examine the relation between an agent’s characteristics and the extent to

which that agent’s links are supported, as well as the extent to which that agent’s non-links

are supported.

Table 5 presents the coefficients associated to two probit regressions relating the likelihood

of having a friend in common in the All network to gender, education, age, rooms per person

in the agent’s household and the household’s size. In the first regression, an observation

corresponds to a randomly chosen friend in the favors network of a randomly chosen agent

in one of the 75 villages in our sample. In the second regression an observation corresponds

to a randomly chosen agent unrelated to a randomly chosen agent in one of the 75 villages.
51

Linked Not Linked
Gender (Female) 0.075∗∗ −0.136∗∗

Age 0.001∗ 0.005∗∗

Education 0.0016∗∗ 0.0017∗

Rooms per person −0.058∗∗ 0.031
Household size −0.017∗∗ 0.0005∗

Intercept 0.399∗∗ −1.18∗∗

(**) Significant at 5 percent, (*) Significant at 10 percent

Table 5: Probit regressions for an individual’s support as a function of the individual’s characteristics, for
both the individuals links and non-links.

More of an agent’s links are supported if the agent is female, older, educated, and from

a smaller household (both in terms of rooms and persons). Again, we see very different

patterns of support as a function of characteristics for links versus non-links.

50Similar patterns hold for hedonic networks, and more details are presented in the supplementary ap-
pendix.

51We present similar probit regressions done at the household level in the supplementary appendix.
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7 Conclusion

Our analysis of favor exchange provides various insights. We have shown that renegotiation

results in specific critical structures and that robustness involves social quilts and, more

generally, supported links. Support is a local characteristic of networks that provides new

nsight into closure and an operationalization of a sort of social capital that emphasizes social

structure’s role in enforcement of behavior.

Our empirical analysis finds high levels of support in favor networks in rural Indian

villages. We also find that support levels are much higher than clustering, and that support

in favor networks is higher than that of more “hedonic” networks.

In closing, we discuss some issues regarding the information observed by the agents in

the society.

We have deliberately looked at a complete information setting for two reasons. First, in

many applications, including the Indian villages that we examined, word-of-mouth commu-

nication travels much faster than actions and so if someone behaves badly other people hear

about it quickly. Gossip serves a strong purpose. Second, much of the previous literature

has focused on the information as the driver of network structure in providing incentives and

so our analysis is completely complementary. Nonetheless, there is an important observation

that comes out. Our analysis ends up yielding social quilts which end up having strong

informational robustness properties in addition to the properties that we have investigated.

In particular, agents only need to know what the agents whom they are linked to directly

are doing, and for all of those agents they also have common friends - so they are both

directly, and indirectly connected at a short distance through an independent channel to all

of the agents whose behavior they have to be aware of in order to best respond. Thus, even

with very limited communication, the robust social networks that we have uncovered can be

sustained. Our analysis ends up yielding networks that might otherwise be justified for their

informational properties from a completely different perspective.
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Appendix: Proofs of Results

Proof of Proposition 2: Let g′ be a smallest nonempty network (in the sense of set

inclusion) that is a subset of g and lies in G(m). Such a network exists (possibly g itself)

and is thus critical by definition. The second statement is easily verified by construction,

but also follows as a corollary to Theorem 1 which is proven below.

Proof of Theorem 1:

We first show that if g ∈ RPNk then g ∈ TCk. We work by induction in k, with the

result being clear when k = 0. So, suppose that it holds through k − 1 and consider some

k. Given a network g ∈ RPNk, by the definition it follows that g is sustainable on the

equilibrium path. So for any i and ij ∈ g, if i is called upon to do a favor for j and does

not, then at least one possible continuation52 must lead to a network g′ ⊂ g − ij such that

g′ ∈ RPNk′ = TCk′ , di(g
′) ≤ di(g)−m, and there is no g′′ ⊂ g − ij such that g′′ ∈ RPNk′′

and D(g′′) > D(g′). If this were not the case, then if i did not perform the favor, he or she

would save the cost c and lose at most m−1 links in any continuation. Thus, i would benefit

from deviating and not performing the favor since by the definition of m, (1) holds and so

the cost of the favor outweighs the loss in future payoffs from losing no more than m − 1

links, which contradicts the fact that g is sustained as an equilibrium. Thus, for every i and

ij, there exists g′ ⊂ g − ij such that g′ ∈ TCk′ for some k′, di(g
′) ≤ di(g)−m, and there is

no g′′ ∈ TCk′′ such that g′′ ⊂ g − ij and D(g′′) > D(g′). Therefore g ∈ TCk.

Next, we show that if g ∈ TCk then g ∈ RPNk. We do this by induction on the number

of links in a network. In order to establish the result, we also need to be careful about what

happens starting at subgames that are off the equilibrium path. As such, we work with a

stronger induction hypothesis, with the induction indexed by k.

The induction hypothesis is that starting from any node and any g0 ∈ Gk, there exists

a pure strategy subgame perfect equilibrium continuation such that (i) there is a unique

network g1 ∈ RPNk1 for some k1 ≤ k that is reached and sustained in perpetuity in the

continuation, with g1 = g0 if g0 ∈ TCk, such that (ii) on the equilibrium continuation path

a favor is performed if and only if it corresponds to a link in g1, and (iii) in any subgame

starting with some network g′ ∈ Gk′ with k′ ≤ k if g′′ is played in perpetuity with some

probability in the continuation then g′′ ∈ RPNk′′ for some k′′ and there does not exist any

g′′′ ⊂ g′ such that g′′′ ∈ RPNk′′′ and ui(g
′′′) ≥ ui(g

′′) for all i with strict inequality for some

i.

As a first step in the induction note that it follows directly from the definitions that

RPN0 = {∅} = TC0. Note also that starting from g0 = ∅ there is a unique subgame perfect

equilibrium continuation (no favors can be supplied and no links can be maintained) and so

it follows directly that conditions (i)-(iii) are satisfied. So, let us presume that the induction

hypothesis holds for all k′ < k. We show that the same is true for k.

52Even though agents use pure strategies, nature picks which favors are asked in the future, so there are
potentially many continuations from any given node.
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Begin with the case such that g0 = g ∈ TCk. On the equilibrium path, have all agents

maintain all links (so Li(gt) = Ni(gt) whenever gt = g0 = g) and perform all favors. The

off the equilibrium path strategies are described as follows. If an agent i is called upon

to provide a favor for an agent j such that ij ∈ g and does not do the favor, then the

continuation is as follows. Given that g ∈ TCk, by the definition of transitive criticality,

there exists g′ ⊂ g − ij such that g′ ∈ TCk′ = RPNk′ , di(g
′) ≤ di(g) − m and there is no

g′′ ∈ TCk′′ = RPEk′′for any k′′ such that g′′ ⊂ g − ij and D(g′′) > D(g′). Denote this

network by g(i, j) = g′. Following i’s failure to provide a favor to j, have the continuation

be such that L`(g − ij) = Nk(g(i, j)) for all `. This results in the network g(i, j) ∈ RPNk′

following the link announcement phase, and so from then on there is a pure strategy subgame

perfect equilibrium sustaining g(i, j) and satisfying (i) - (iii) by the induction step, and so

have agents play the strategies corresponding to such an equilibrium in that continuation.

At all other nodes off the equilibrium path for which strategies are not already specified

we are necessarily at a network with fewer links, and so pick a pure strategy equilibrium

continuation that satisfies (i) - (iii), which is possible by the induction hypothesis.

This satisfies (i)-(iii) by construction. To check that this a subgame perfect equilibrium,

by the specification of the strategies above, we only need to check that no agent wants to

deviate from the equilibrium path, and also that following some i’s failure to provide a favor

to j, no agent ` wants to deviate from L`(g− ij) = N`(g(i, j)). We only need to check these

sorts of deviations since all other continuations were specified to be pure strategy subgame

perfect equilibrium continuations. By construction, an agent i who is called upon to do a

favor for an agent j who deviates will end up losing at least m links, and so by (1) this

cannot be an improving deviation. Next, consider, some agent `’s incentive to deviate from

L` = N`(g0) if g0 is still in play, or else from L`(g − ij) = N`(g(i, j)) following some i’s

failure to provide a favor to j. By not deviating the agent gets the payoff from g0 or g(i, j)

in perpetuity. By deviating, the agent ` will end up with a continuation starting from a

network g′′ ⊂ g0 or g′′ ⊂ g(i, j), respectively, where the agent has not gained any links and

may have lost some links. Since each link has a positive future expected value, this cannot

be an improving deviation.

Next, let us show that from any node in the continuation from some initial g0 /∈ TCk there

exists a pure strategy subgame perfect equilibrium continuation satisfying (i)-(iii). There are

two types of nodes to consider. One is a node at which some agent i is called upon to provide

a favor for an agent j such that ij ∈ g0, and another is a node where agents announce the

links they wish to sustain.

First, consider starting at g0 and a node where agents announce the links that they wish

to sustain. Find some g′ that has the maximal k′ < k of links such that g′ ∈ RPNk′ and

g′ ⊂ g0. For each ` set L′
` = N`(g

′) and then from g′ play a continuation satisfying (i) - (iii)

(by the induction step). If any agent deviates, to L such that L′
` ⊂ L, then play the same

continuation as this will not affect the network formed. Otherwise, the continuation will

lead to some g′′ with strictly fewer links for ` and the continuation will necessarily result in

a lower expected continuation payoff. This establishes the claim for this sort of node.
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Next, let us consider a node at which some agent i is called upon to provide a favor for

an agent j such that ij ∈ g0. There are two cases that can follow: one where i performs the

favor and so the resulting network is then g0. In that case, we have just shown that there

is a pure strategy subgame perfect equilibrium continuation satisfying (i) to (iii). Let g′ be

the network sustained on the equilibrium path in one of these that has the most links for i.

If i does not perform the favor, then g − ij ∈ Gk−1 is reached. By the induction hypothesis

again there is a pure strategy subgame perfect equilibrium continuations satisfying (i)-(iii),

and let g′′ be a network sustained by one of these that has the most links for i. Now, based

on those two continuations, have i choose a pure strategy best response. The claim follows.

Proof of Theorem 2:

We first prove that m-quilts, or tree unions of m-cliques53 are robust against social

contagion. The proof proceeds by induction on the size k of the tree union.

When k = 1, it is a single m-clique, and so it is renegotiation-proof since it is critical.

Note also that the only subnetwork of a clique that is in G(m) is the empty network. Thus,

it follows that any equilibrium continuation in (any) equilibrium supporting the clique is

the empty network. Thus, a clique is robust against social contagion. Suppose it is true

for all k′ < k. We show that a tree union of k m-cliques is robust against social contagion.

To do this, we show that tree unions of m-cliques and some nonempty strict subnetworks

of m-cliques cannot be renegotiation-proof. This is enough to establish that tree unions

of m-cliques are robust against social contagion, since it shows that link deletions can be

punished by deleting all links in the particular m-clique which the deleted link belonged to

and that will not be Pareto dominated by any continuation renegotiation-proof equilibrium.

Begin with a tree union of k m-cliques, g1, . . . gk. Let g0 =

( ⋃
h=1...m0−1

gh

)
∪

( ⋃
h=m0...k

g0
h

)
,

with m0 ≤ k, g0
h ⊂ gh, g0

h 6= gh ∀h ≥ m0 where at least one g0
h in the union is nonempty.

So this is the tree union of m-cliques and some nonempty strict subnetworks of m-cliques.

Suppose to the contrary that it is renegotiation-proof. Note that
⋃

h=m0...k

g0
h is a tree union of

networks, and it must therefore have some leafs. Pick one such leaf and denote it g0
h∗ . Since

g0
h∗ is a strict subset of the m-clique gh∗ and a leaf of the subtree, there is some agent i0 who

has a positive number of links, less than m, in the subtree. Suppose this agent were to fail

to provide a favor on a link i0j0 in g0
h∗ . Since by assumption g0 ∈ RPN , agent i0 would have

to lose at least m links if he or she failed to provide a favor on any link i0j0 in the subtree.

Since the agent does not have enough links to lose in the subtree, he or she would have to

lose links in
⋃

h=1...m0−1

gh. Denote the continuation by g1 which must be renegotiation-proof.

Note that g1 cannot be a strict subset of
⋃

h=1...m0−1

gh, since by the inductive hypothesis⋃
h=1...m0−1

gh ∈ RPN . Therefore g1 must have some links from
⋃

h=m0...k

g0
h. In particular

53It is straightforward to verify that a union of m-cliques is an m-quilt (has no simple cycles of more than
m + 1 nodes) if and only if it is a tree union of m-cliques.
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g1 =

( ⋃
h=1...m1−1

gh

)
∪

( ⋃
h=m1...k

g1
h

)
, where g1

h ⊂ gh, g1
h 6= gh ∀h ≥ m1 and m1 < m0. This

last inequality results from the fact that i0 lost links in
⋃

h=1...m0−1

gh. Again, any agent who has

fewer than m links in
⋃

h=m1...k

g1
h must have links in

⋃
h=1...m1−1

gh. We the derive a subnetwork

g2 from g1 analogously to the way we derived g1 from g0. Proceeding in this fashion we

produce a finite sequence of renegotiation proof networks g0, g1, ..., g`, with mx < mx−1 at

each iteration and there is always at least one link in
⋃

h=mx...k

gx
h. Continue until m` = 0.

Using the same argument with which we found i0, it can be seen that we would find some

node with less than m links in total, contradicting g` ∈ RPN .

We now prove that robustness against social contagion implies that a network must be

a social quilt. Suppose that g is robust against social contagion. If there is an m-clique,

gc ⊂ g, that has at most one node i connected with nodes outside of the clique then g− gc is

also robust against social contagion. This follows since if any agent j 6= i who is in gc does

not perform a favor, then in order for g to have been sustainable j must expect to lose all of

his or her links in the continuation (as the continuation must be in G(m) to be sustainable

and j will have fewer than m links). Then since all agents other than i in gc will have fewer

than m links in the continuation, they must all lose all links in order for the continuation

to be sustainable. Thus, the clique must disappear in the continuation, but by robustness

against social contagion no other links can be deleted. So, eliminate gc and continue with

the network g − gc. If repeating this process leads to an empty network, then g must have

been a social quilt. Suppose instead, that this elimination process leads to some nonempty g′

(and note that g′ is robust by the definition of robustness) such that g′ contains no m-clique

where at most one agent has links outside of the clique.

By the above process, any remaining m-cliques that are subnetworks of g′ must satisfy

the condition that the clique has at least two agents who have links outside of the clique. So,

identify some remaining m-clique that is a subnetwork of g′ and delete a link between a pair

of agents, say i and j, who have links outside of the clique. The remaining network is still

in G(m) since i and j necessarily had more than m links in g′. Note also that this removal

of the link ij does not change the fact that each other clique in g′ has two agents with links

outside of the clique (as if either of those agents is i or j then they still maintain m− 1 links

each in the original clique). Repeat this process once for each clique in the original network

such that at least two agents have links outside of the clique until there are no m-cliques left

in the resulting network, and let this nonempty resulting network be g′′ ∈ G(m).

Thus, a direct extension (literally word for word) of the proof of Proposition 2 implies

that there is a subnetwork of g′′ that is “minimally” critical54 and nonempty. Let that

network be g′′′. It follows from our derivation of g′′ that g′′′ cannot be a clique. However,

since g′′′ is minimally critical, then by robustness and the renegotiation-proofness of g, there

54A critical network is called minimally critical if any deletion of a link leads the collapse of the whole
network, that is if any subnetwork of the original network that lies in G(m) is the empty network.
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is an equilibrium where in any subgame starting from g′′′, it is sustained. However, starting

from g′′′ if any link is deleted then all links must be deleted in any equilibrium continuation

by the definition of minimal criticality. This contradicts the robustness of g, since g′′′ is not

a clique and hence there is some link ij and some k who is not linked to both i and j who

loses a link as a result of the deletion of the link ij.

Proof of Proposition 3: First, we analyze the fraction of subgame perfect equilibria.

Denote by SPEn the set of subgame perfect networks on n nodes. A network is a subgame

perfect network if and only if no node in the network has at least 1 and no more than m− 1

links. We set a very loose upper bound on the number of networks in which at least one

node has at least 1 and no more than m− 1 links by first picking any node and its links and

then allowing the remaining n− 1 nodes to link among themselves however they want, and

then multiplying by n to allow for any starting node. A lower bound on the cardinality of

SPEn is 2
n(n−1)

2 minus this bound. Therefore: |SPEn| ≥ 2
n(n−1)

2 −n

m−1∑
k=1

(
n− 1

k

)
2

(n−1)(n−2)
2 ≥

2
n(n−1)

2 − (m−1)n

(
n− 1

m− 1

)
2

(n−1)(n−2)
2 , where the inequality on the right holds for any m such

that n− 1 > 2(m− 1). This implies that

|SPEn|
|Gn| ≥ 1− (m−1)n(n−1

m−1)2
(n−1)(n−2)

2

2
n(n−1)

2

= 1− (m−1)n(n−1
m−1)

n−1P
k=0

(n−1
k )

= 1− (m−1)2( n
m−1)

n−1P
k=0

(n−1
k )

→ 1 as n goes to infinity .

Next, we find an upper bound on the fraction of social quilts that goes to 0 as n grows.

There are two possible sets of degrees that an agent can have in a network: A = {km < n|k
is a nonnegative integer} and B = {k < n|k is an integer} − A. In a social quilt g, every

agent i has a degree di(g) ∈ A. We show that the number of networks such that all agents

have degrees in A is a fraction of no more than 1
2

n−1
of all possible networks.

To do this we catalog networks g by first forming a network among the agents 1 to n−1,

and then considering links between those agents and agent n. We show that regardless of

the starting network g0, there is at most one configuration of links for agent n (out of 2n−1

possible) that will allow all agents to have degrees in A. The result then follows directly.

Beginning with the network g0 among agents 1 to n− 1, if di(g0) ∈ A then it must be that

there is no link between i and n in g. In contrast, if di(g0) /∈ A then in order for di(g) to be

in A it would have to be that i and n are linked in g. Thus, if there is some configuration

of links between n and the other agents that results in the correct configuration of degrees,

there is at most one such configuration out of the 2n−1 possible configurations.

Proof of Theorem 3: Suppose to the contrary that g is robust against social contagion

and some link ij is not supported. Consider h /∈ {i, j} and delete a link of h (and there

is at least one such h who has a link, as the single link ij is not sustainable independently

as part of a subgame perfect equilibrium by (2)). This leads to a continuation g′ that is

robust against social contagion and such that ij ∈ g′, as otherwise by robustness both i and

j would have to be neighbors of h which would contradict the fact that ij is not supported.

Iterate on this argument as long as there are still links that involve any agents other than i
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and j in the network. Eventually, we reach a continuation that sustains the network of the

solitary link ij, which is a contradiction since ij cannot be sustained on its own as a part of

an equilibrium by (2).
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