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1 Critical Networks and Renegotiation-Proofness

Here, we provide more discussion of critical networks and sufficient conditions for renegotiation-

proof networks. Recall that m is defined by

m
δp(v − c)

1− δ
> c > (m− 1)

δp(v − c)

1− δ
. (1)

and

G(m) = {g | ∀i, di(g) ≥ m or di(g) = 0}

is the set of networks in which each node has either at least m links or 0 links.

∗All three authors are at the Department of Economics, Stanford University, Stanford, California
94305-6072 USA. Jackson is also an external faculty member at the Santa Fe Institute. Emails: jack-
sonm@stanford.edu, trodrig@stanford.edu, and xutan@stanford.edu.
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Figure 1: A critical network where two agents have an excess number of links

1.1 Critical Networks

Recall that a network g is m-critical if

• g ∈ G(m)

• for any i and ij ∈ g, there is no subnetwork g′ ⊂ g − ij such that di(g
′) > di(g) − m

and g′ ∈ G(m).

As the following example shows, it is also possible to have more than one node have more

than m links, as long as those two nodes are not adjacent.

Example 1 A critical network such that two nodes have more than m links.

Consider the following network, which is pictured in Figure 1:

{12, 13, 14, 15, 23, 45, 26, 36, 46, 56}.
In this network nodes 1 and 6 have degree four. This is critical and is a renegotiation-

proof network when (1) holds for m = 3. If any node, including 1 or 6, drop a link, then

some node’s degree drops below 3 and there is no subnetwork that is sustainable.�

1.1.1 Unions of Critical Networks

Let us explore the extent to which one can build richer classes of networks that are renegotiation-

proof by agglomerating critical networks.

A first question is, “Are unions of critical networks renegotiation-proof networks?”

The first point is that one has to be careful as to how one builds a union of networks.

To see this, suppose that m = 2 and we consider a union of two critical networks which

are two triads. If the “union” is two disjoint networks with no intersecting nodes, then it is

clear that the resulting network will be renegotiation-proof. However, if the union involves

duplication of a link, then the resulting network might not be. For example, consider the

network in Figure 2. This can be seen as the union of two triads where the link 13 is shared
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Figure 2: A five link network that is not sustained as a renegotiation-proof equilibrium

Figure 3: A tree union of critical networks that is not a critical network, but is still

renegotiation-proof.

by the triads. We already know that this is not renegotiation-proof. Thus, we need to be

careful that if the networks intersect, then they do not share links.

Recall that we defined “tree unions” of networks in the footnote of the main paper.

A union of several networks g1, ..., gK is called a tree union if the networks can be ordered

in a way g1, ..., gK such that successive unions

U1 = g1, . . . , Uk = Uk−1 ∪ gk, . . . , UK =
⋃

k=1...K

gk

are such that each additional network has at most one node in common with the preceding

union: |N(Uk−1) ∩N(gk)| ≤ 1.

One thing to note is that a tree union of critical networks is not necessarily critical, as

illustrated in the following example.

Example 2 A Tree Union of Critical Networks

Let m = 2 and consider the network of three linked triads g = {12, 23, 13, 14, 15, 45, 26, 27, 67}
as pictured in Figure 3. This is not critical since if 1 cuts the link 12, then all nodes in the

sub-network still have at least 2 links. Nonetheless, (as we will verify below) this network is

renegotiation-proof.�
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Figure 4: A tree union of critical networks that is not renegotiation-proof.

Although Example 2 shows that it is possible to have a network that is a tree union of

critical networks not be critical, and yet still renegotiation-proof, that is not true of all tree

unions, as the following example shows.

Example 3 A tree union of critical networks that is not renegotiation-proof.

Let m = 3 and consider the three critical networks ga, gb and gc shown in Figure 4. Let g′a
be a network with the same structure as ga but with a different group of agents {1a′, ..., 9a′},
and define g′b, g′′b and g′′′b similarly. Consider two tree unions of these critical networks:

• U1 = ga ∪ g′a ∪ gc. intersecting at the node 1a = 1a′ = 1c;

• U2 = gb ∪ g′b ∪ g′′b ∪ g′′′b , intersecting at the node 1b = 1b′ = 1b′′ = 1b′′′.

Structurally, U2 − {6b, 7b, 8b, 9b, 10b} is the same as U1. The claim is U1 and U2 cannot

both be both renegotiation proof networks. Otherwise, starting from U2 if agent 1b refuses a

favor to agent 10b, the network played in the continuation has to be U2−{6b, 7b, 8b, 9b, 10b}
since it is renegotiation-proof (having the same structure as U1) and noting that the nodes

{6b, 7b, 8b, 9b, 10b} must lose their links in any continuation. Thus, agent 1b only loses one

link and would prefer not to do a favor for 10b, contradicting the supposition that U2 is a

renegotiation-proof network.�

One special character of networks in this example that potentially prevents the unions

to be renegotiation-proof is there are some “critical” nodes in the networks such as 1a, 1b

and 1c.
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A node is called critical if deleting this node increases the number of components in the

network.

In other words, a node is critical if it plays an essential role in connecting different agents

who will be in different components without the critical node. For example, without 1a,

agents 2a and 6a won’t be connected in ga. Another way to present this character is by

noting that any path between 2a and 6a has to contain 1a such that there is no simple

cycle containing agents 2a and 6a. The lemma below implies the equivalence of these two

presentations of the special character of networks in Example 3.

Lemma 1 Consider a path-connected network involving links among at least three nodes.

For each pair of path-connected nodes in the network there is a simple cycle containing them

if and only if there is no critical node in the network.

Proof of Lemma 1: Let us first argue that if there is a critical node, then there are at

least two nodes that are path-connected but that do not lie on a simple cycle. Suppose that

there is a critical node i in the path connected network g, such that deleting i results in at

least two separate components. Pick nodes j in one of those components and k in another

component. It follows that i lies on all paths connecting j and k or else deleting i would

not have resulted in these nodes falling in separate components. Thus, there could not have

been a simple cycle containing these two nodes in the original network.

For the other direction of the lemma, we consider any two path-connected nodes i and j

that are embedded in a network with at least 3 nodes that has no critical nodes. We show

that there exists a simple cycle containing i and j. We proceed by induction on the distance

between i and j (with the standard definition of distance being the number of links of the

shortest path between them).

For the base case let the distance between i and j be 1 so that i and j are direct neighbors.

There must exist some other node k that is a neighbor of either i or j since the network

involves at least 3 nodes and is path connected. Without loss of generality assume that it is

adjacent to i. Since there are no critical nodes in the graph, k and j remain path-connected

if we delete node i. Thus, let P be a path that goes from k to j without passing through i.

There is a simple cycle containing i and j given by j− i− k, and then taking P from k to j.

For the inductive step, suppose that the claim is true for any pair of nodes of distance

n or less, and consider some pair of nodes i and j at distance n + 1, and let S be a path of

length n + 1 between i and j. There is a unique node k adjacent to i on S, at distance n

from j and by the inductive hypothesis there exists a simple cycle containing k and j. Let

P1 be a path from k to j contained in this simple cycle, and P2 a path from j to k disjoint

from P1. Since the graph has no critical nodes there exists some path P3 from i to j that

does not go through k. If P3 is disjoint from P1 or P2 we are done, since we then have a
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Figure 5: A critical network with a bridge

simple cycle given either by i − k − P1 to j and then back to i via P3, or by i − k − P2 to

j and then back to i via P3. So assume that P3 intersects both P1 and P2 and without loss

of generality that it intersects P1 first, at some node m (since P1 and P2 are disjoint, this

first-to-be-intersected order is strict). We now have a simple cycle including i and j given

by i → m (via P3), then m → j (via P1) and then from j to k (via P2), and then k− i finally

back to i.

So in the following, we look at a nice subclass of critical networks that don’t have these

critical nodes. And it turns out that tree unions of networks in this subclass are renegotiation-

proof.

1.1.2 Simply Critical Networks

A useful subclass of critical networks is the class in which any two nodes are connected via

a simple cycle. Such networks can be agglomerated quite nicely.

A network g is called simply critical if di(g) equals m or 0 for every i, and for any pair

of nodes i and j there is a simple cycle containing them.

Clearly a simply critical network is critical. An obvious example of a simply critical

network is a clique of m + 1 nodes.1 To get a deeper feeling for what simplicity implies, see

the network pictured in Figure 5 which is critical but not simply critical.

Example 4 A Critical Network with a Bridge.

Consider the network pictured in Figure 5:

1A clique is a completely connected (sub-)network
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g = {12, 13, 24, 27, 35, 36, 45, 46, 67, 75, 18, 89, 8 − 10, 9 − 11, 9 − 14, 10 − 12, 10 − 13, 11 −
12, 11− 13, 13− 14, 14− 12}

In this network every node has exactly 3 links. There is a bridge: the link 18. This

network is renegotiation-proof when (1) holds for m = 3. If any node drops a link, then all

links are dropped since there is no proper subnetwork where each node in the subnetwork

has at least 3 links. However, this network is not simply critical�

Thus, the idea of simply critical networks is that each each agent has exactly m links

and is cyclicly tied to every other agent. A nice feature of simply critical networks is that

they make nice “building blocks” in that they can be agglomerated via tree unions to create

renegotiation-proof networks.

Proposition 1 A tree union of simply critical networks is renegotiation-proof.

Proof of Proposition 1: The proof proceeds by induction on the size of the tree union.

When k = 1, it is a single critical network, and so it is renegotiation proof. Suppose it is

true for all k′ < k. We show that a tree union of k simply critical networks is renegotiation

proof.

To establish the proposition, we show that tree unions of simply critical networks and

some nonempty strict subnetworks of simply critical networks cannot be renegotiation-proof.

This is enough to establish that tree unions of simply critical networks are renegotiation-

proof, simply by deleting all links in any particular simply critical subnetwork of the tree

union if some agent fails to perform a favor in that subnetwork.

Begin with a tree union of k simply critical networks, g1, . . . gk.

Let g0 =

( ⋃
h=1...m0−1

gh

)
∪

( ⋃
h=m0...k

g0
h

)
, with m0 ≤ k, g0

h ⊂ gh, g0
h 6= gh ∀h ≥ m0 and at

least one g0
h in the union is nonempty. So this is the tree union of simply critical networks

and some nonempty strict subnetworks of simply critical networks. Suppose to the contrary

that it is renegotiation-proof.

Note that
⋃

h=m0...k

g0
h is a tree union of networks, and it must therefore have some leafs.

Pick one such leaf and denote it g0
h∗ . Since g0

h∗ is a strict subset of the simply critical network

gh∗ and a leaf of the subtree, there is some agent i0 who has a positive number of links, less

than m, in the subtree. Suppose this agent were to fail to provide a favor on a link i0j0 in

g0
h∗ . Since by supposition g0 ∈ RPN , agent i0 would have to lose at least m links if he or she

failed to provide a favor on any link i0j0 in the subtree. Since the agent does not have enough

links to lose in the subtree, he or she would have to lose links in
⋃

h=1...m0−1

gh. Denote the

continuation by g1 which must be renegotiation-proof. Note that g1 cannot be a strict subset

of
⋃

h=1...m0−1

gh, since by the inductive hypothesis
⋃

h=1...m0

gh ∈ RPN . Therefore g1 must have
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some links from
⋃

h=m0...k

g0
h. In particular g1 =

( ⋃
h=1...m1−1

gh

)
∪

( ⋃
h=m1...k

g1
h

)
, where g1

h ⊂ gh,

g1
h 6= gh ∀h ≥ m1 and m1 < m0. This last inequality results from the fact that i0 lost links

in
⋃

h=1...m0

gh. Again, any agent who has fewer than m links in
⋃

h=m1...k

g1
h must have links

in
⋃

h=1...m1−1

gh. We the derive a subnetwork g2 from g1 analogously to the way we derived

g1 from g0. Proceeding in this fashion we produce a finite sequence of renegotiation proof

networks g0, g1, ..., g`, with mx < mx−1 at each iteration and there is always at least one link

in
⋃

h=mx...k

gx
h. Continue until m` = 0. Using the same argument with which we found i0,

it can be seen that we would find some node with less than m links in total, contradicting

g` ∈ RPN .

Before moving on, we note one useful observation for identifying simply critical networks.

A Hamiltonian network 2 is a network with a simple cycle visiting all nodes. So a Hamil-

tonian network is sufficient, but not necessary, for there to be a simple cycle containing any

given pair of nodes in a network. Thus, any critical network that is a Hamiltonian where

each node has m links is simply critical, but not vice versa.3

2 Some Renegotiation-Proof Networks

The equivalence between renegotiation proof and transitively critical works provides us with

a straightforward algorithm for deciding whether a given network is renegotitation proof

or not. Implementing this algorithm for large numbers of vertices (n), and high values of

m however, is currently not feasible due to the sheer size of the space of non-isomorphic

graphs that must be traversed. Table 1 shows the number of non-isomorphic renegotation

proof networks for a few small values of m and n, along with the corresponding number

of non-isomorphic subgame perfect networks. Note that the numbers in the first column

(m = 1), also correspond to the number of non-isomorphic networks on the number of

vertices associated to each row. Figure 6 shows the non-isomorphic renegotiation proof

networks corresponding to the values of n and m shown in the table.

2See Jackson (2008) for more background.
3Consider the network g = {13, 34, 35, 45, 46, 56, 62, 17, 78, 79, 89, 8−10, 9−10, 10−2, 1−11, 11−12, 11−

13, 12 − 13, 12 − 14, 13 − 14, 14 − 2} and m = 3. g is critical since every node has exactly m links and any
pair of nodes has a cycle containing them. However, g is not a Hamiltonian network since there are three
“highways” connecting 1 and 2 such that there is no way a simple cycle can contain all nodes.
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n=3,m=2

n=4,m=2

n=5,m=2

Figure 6: Non isomorphic networks for n=1-6, m=2 and m=3
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n=6,m=2

Figure 6 continued.
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n=4,m=3

n=5,m=4

n=6,m=3

Figure 6 continued.
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3 A Special Heterogeneous Case

An interesting case that generalizes the homogeneous case and yet is not as fully general as

the heterogeneous case examined above is one where agents may have idiosyncratic values

and costs to favors vi and ci, and discount factors δi, but where these values are not depen-

dent upon to whom agents are linked and also where the favor probabilities are not agent

dependent. In that case, each agent is characterized by his or her own mi such that4

mi
δip(vi − ci)

1− δi

> c > (mi − 1)
δip(vi − ci)

1− δi

. (2)

For this case, our previous results have analogs.

We define transitively critical networks as before, simply changing the reference number

of links to be agent specific.

Given m = (m1, . . . ,mn), let TCk(m) ⊂ Gk denote the set of transitively critical networks

with k links.

• Let TC0(m) = {∅}.

• Inductively on k, TCk(m) ⊂ Gk is such that g ∈ TCk(m) if and only if for any i and

ij ∈ g, there exists g′ ⊆ g − ij such that g′ ∈ TCk′(m), di(g
′) ≤ di(g)−mi, and there

is no g′′ ∈ TCk′′(m) such that g′′ ⊂ g − ij and D(g′′) > D(g′).

Next, in order to define the analog of social quilts we need to define an analog of a

minimal clique. In the fully symmetric case a critical clique was simply one where each

agent had m links. Now, however, different agents may have different critical numbers of

favor relationships that they must fear losing in order to give them incentives to exchange

favors. There cannot be too much asymmetry in these critical numbers across the members

of a clique or else some subset of the clique could sever some relationships and still have it

be sustainable. For example if mi = 2 for two agents and mi = 3 for another two agents,

making a clique from these four agents will not be renegotiation-proof. The first two agents

could sever the link between them and end up with a (transitively) critical network.

A critical clique with m′ nodes is a clique that has m′ nodes and such that mi ≤ m′ − 1

for each i in the clique and mi < m′ − 1 for at most one i.

Thus, a critical clique has all but one agent having identical mi’s and the remaining

agent’s mi being the lowest.

Next, in order to define social quilts we also need to be careful about how cliques are

pieced together whenever there is a node involved in two of the cliques. A (tree) union of

critical cliques is not always robust, as the following example illustrates.

4Again, we rule out indifference.
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Figure 7: A tree union of critical cliques that is not robust

Example 5 A tree union of critical cliques that is not robust.

Consider two critical cliques with agents {1, 2, 3, 4} and {1, 5, 6, 7}, respectively, where

mi = 3 for all i except m4 = m7 = 2. The tree-union of these two cliques is denoted g

as in Figure 7. Then deleting links 14 and 17 leads to a subnetwork of g that is critical

and renegotiation-proof. Indeed, all agents end up with exactly their critical number of

links except agent 1 who has one extra link. It then follows that g is not robust, since this

subnetwork would violate a local contagion condition. �

Thus, we have to be careful in defining tree unions when some of the cliques have asymme-

tries in the agents’ respective numbers of critical links. When we unite two critical networks

at some agent like agent 1, we add extra links for that agent and some of them might become

non-critical.

The example above suggests that if some agent has a lower mi than other agents in a

clique, and we piece cliques together, then it should be that lowest agent who is the common

agent in two cliques. Exactly how this works when there are various heterogeneities across

cliques is somewhat subtle as the following example shows.

Example 6 A tree union of heterogeneous critical cliques that is robust.

Consider two critical cliques with agents {1, 2, 3} and {1, 4, 5, 6}, respectively, where

m1 = m2 = 2, m3 = 1 and m4 = m5 = m6 = 3. The tree-union of these two cliques is

denoted g as in Figure 8. Here, agent 1 has the lowest mi in one of the cliques, but not the

other. This network is still robust, since as long as the “connecting” agent is minimal in at

least one of the two cliques, then that clique remains completely critical, and so then has no

interaction with the adjacent clique. Here it is impossible to remove any link in {1, 4, 5, 6}
without it losing all links. Then, �

The insights from these two examples lead to the following definition.
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RNP m

n 1 2 3 4 5

1 1 1 1 1 1

2 2 1 1 1 1

3 4 2 1 1 1

4 11 3 2 1 1

5 34 7 3 2 1

6 156 16 7 3 2

SP m

n 1 2 3 4 5

1 1 1 1 1 1

2 2 1 1 1 1

3 4 2 1 1 1

4 11 5 2 1 1

5 34 16 5 2 1

6 156 78 24 6 2

Table 1: Number of non-isomorphic renegotiation proof and subgame perfect networks for

some values of n and m.

Figure 8: A tree union of critical cliques that is robust
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Given a profile m = (m1, . . . ,mn), we say that g is an ordered tree union of networks

g1, ..., gK if the networks can be ordered in a way g1, ..., gK such that

• successive unions

U1 = g1, . . . , Uk = Uk−1 ∪ gk, . . . , UK =
⋃

k=1...K

gk

are such that each additional network has at most one node in common with the

preceding union: |N(Uk−1) ∩N(gk)| ≤ 1, and

• in each step of the union Uk = Uk−1 ∪ g(k) the node in common (in N(Uk−1)∩N(gk) if

the intersection is nonempty) is the node with the smallest mi in g(k).

Of course, an ordered tree union is the same as a tree union in the case where all agents

have the same critical number.

Now we define a social quilt to be a ordered tree union of critical cliques.

Social quilts thus defined are sufficient and necessary for robustness.

Theorem 1 In cases where each agent has an idiosyncratic mi defined by (2), a network

is renegotiation-proof if and only if it is transitively critical, and a network is robust against

social contagion if and only if it is a social quilt.

Given our previous discussion of critical networks, it is a simple extension to see that

transitive criticality characterizes renegotiation-proofness, and social quilts are renegotiation-

proof. The critical cliques limit contagion to be local in nature. The subtle and difficult part

of the proof of Theorem 1 is in showing that only social quilts are robust. For example, why

is a complete network not robust? This requires an involved argument, which draws upon

both the renegotiation-proofness and the local aspect of punishments. Roughly, the intuition

is as follows. First, any robust network must contain some cliques, as an agent who cheats

must lose some number of links, which must all be local. In terms of continuation equilibria,

any smallest sustainable subnetwork of a given network must be a clique. This follows since

any deviation must lead to the loss of all its links since it is the smallest, and by locality

the agents must all be neighbors. Moreover, it must be of minimal size by renegotiation-

proofness as otherwise the society could renegotiate to keep a minimal sized clique which

would contradict this being the smallest sustainable subnetwork. The proof then works by

using some graph theoretic reasoning to show that any network that is not a social quilt has

some subnetwork that is a critical network, and hence a smallest sustainable subnetwork,

but is not a clique. Thus, if a network is not a social quilt, there is some way in which it

could be broken down so that the eventual contagion in a last stage of destruction would

necessarily be non-local.
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Proof of Theorem 1: We only prove that robustness implies that a network must be a

social quilt, since the converse is an easy analog of the proof of Proposition 1, adapted to

strong tree unions.

Suppose that g is robust against social contagion. If there is a critical clique gc ⊂ g that

has at most one node i connected with nodes outside of the clique and mi is the smallest

in gc, then g − gc is also robust against social contagion. This follows since if any agent

j 6= i who is in gc deletes a link, he or she must lose all of his or her links, and then so

must all other agents except i in the clique, but by robustness no other links can be deleted.

So, eliminate gc and continue with the network g − gc. If repeating this process leads to an

empty network, then g must have been a social quilt. Suppose instead, that this elimination

process leads to some nonempty g′. Note that since g is robust, g′ is then also robust and

hence sustainable. By the above process, g′ contains no critical cliques where at most one

agent has links outside of the clique and that agent has the smallest mi.

By the above process, any remaining cliques that are subnetworks of g′ and are such that

each agent i in the clique has at least mi links, must belong to at least one of the following

sets:

(1) Cliques that are not critical.

(2) Cliques that are critical but such that some agent j connected to another part of the

network is not the agent i with the smallest mi in the clique.

(3) Cliques that have at least two agents who have links outside of the clique.

So, identify some remaining clique that is a subnetwork of g′ and is such that each agent

i in the clique has at least mi links, and identify the first case of (1) to (3) that applies.

Next, do the following depending on which case applied: In case (1) delete a link between

the agents with the two smallest mis. In case (2) delete the link ij. In case (3), delete a link

between a pair of agents who have links outside of the clique.

The remainder of the proof of the result follows the the logic in the end of the proof in

Theorem 2 in the main body of the paper.

4 Weak Robustness

It also turns out that we can weaken the definition of robustness and still end up with exactly

the class of social quilts. In particular, we can weaken the notion of renegotiation-proofness

in the definition. This is useful because it allows us to define robustness in a way that is not

inductive, and can thus be easier to implement.
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Let us say that a network g is weakly renegotiation-proof if it is sustainable by a pure

strategy subgame perfect equilibrium and at any subgame that starts with g′ ⊂ g that is

critical, g′ is sustained in the equilibrium continuation.

Let WPRNk denote the set of all networks that have exactly k links and can be sustained

in perpetuity as part of a pure strategy weakly renegotiation-proof equilibrium.

Lemma 2 All renegotiation-proof networks are weakly renegotiation-proof; that is, RPNk ⊂
WRPNk for all k.

Weakly renegotiation-proof networks are a richer set than renegotiation-proof networks.

This is not obvious, since the latter definition is inductive. Both definitions require that in

any subgame starting with a network g′ that cannot degrade further without collapsing (thus

being critical), g′ be played in perpetuity. Otherwise, weak renegotiation-proofness puts no

additional restrictions on the networks in continuation whereas renegotiation-proofness does.

Weak renegotiation-proofness allows richer punishments than renegotiation-proofness, while

it still rules out things like grim trigger. While it may be on less solid ground as a solution

concept, it is useful in proving some results, which then also hold a fortiori for the stronger

concept of renegotiation-proofness.

We can also use weak renegotiation-proofness as a basis for a robustness definition. We

say that a network g is weakly robust against social contagion if it is weakly renegotiation-

proof and sustained by a pure strategy subgame perfect equilibrium with g0 = g such that in

any subgame continuation from some weakly renegotiation proof g′ ⊂ g, and for any i and

ij ∈ g′, if i does not perform the favor for j when called upon, then the continuation leads

to g′′ such that if h` /∈ g′′ then h ∈ Ni(g
′) ∪ {i} and ` ∈ Ni(g

′) ∪ {i}.
Weak robustness turns out to be equivalent to robustness.

Proposition 2 A network is weakly robust against social contagion if and only if it is robust

against social contagion.

Proposition 2 follows easily from the observation that weak robustness against social

contagion implies that a network must be a social quilt, which is then in turn robust against

social contagion.

5 Maximal Equilibria

In this part, we consider a slight variation on the concept of renegotiation-proof equilibrium,

called maximal equilibrium that is similar but does not require that a deviating agent be

considered in the Pareto calculations. Thus, it allows agents to ostracize some deviating
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agent even when there would be some continuation that would make that agent better off

without hurting any of the other agents.

Maximal equilibria are a subset of pure strategy subgame perfect equilibria and are

defined as follows. Let Gk denote the set of all networks that have k links.

• Let ME0 = {∅}

• Let MEk denote the subset of Gk such that g ∈ MEk if and only if beginning with

g0 = g implies there exists a pure strategy subgame perfect equilibrium such that

– on the equilibrium path g is always sustained, and

– in any subgame starting with some network g′ ∈ Gk′ with k′ < k if g′′ is played in

perpetuity with some probability in the continuation then g′′ ∈ MEk′′ for some

k′′ and there does not exist any g′′′, g′′ ⊂ g′′′ ⊂ g′ such that g′′′ ∈ MEk′′′ .

These equilibria still embody a sort of renegotiation-proofness. For instance, they still rule

out a full grim-trigger strategy where once any link is cut then all links are cut. At any point

in time, if a given network is reached and that network can be sustained via some equilibrium

(with the inductively defined continuations satisfying the same maximality condition), then

it is sustained.

However, maximal equilibria allow agents to ostracize other agents, which is not always

the case in renegotiation-proof equilibria as we illustrate in Example 7. Thus maximal

equilibria might be appropriate in some social settings: they permit a society to punish an

agent who does not abide by a social norm, and at the same time the society does not resort

to arbitrarily drastic punishments but instead limits itself to punishments that minimize the

damage to other agents.

Example 7 Maximal Equilibria

Let there be 4 nodes.

Consider a case where

2
δp(v − c)

1− δ
> c >

δp(v − c)

1− δ

Here, no link is sustainable in isolation, since the value of providing a favor c is greater

than the value of the future expected stream of giving and receiving favors: δp(v−c)
1−δ

.

However, if an agent risks losing two links by not performing a favor, then links could be

sustainable depending on the configuration of the network, since c < 2 δp(v−c)
1−δ

.

What do the maximal equilibrium networks look like in this case?

Here, ME1 = ∅ since no isolated links are sustainable.

Similarly, ME2 = ∅ since any agent who only has one link will never perform a favor.
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ME3 = {g = {ij, jk, ik} : for some distinct i, j, k}. Thus triads are sustainable, since if

any agent severs a link, then that will lead to a two-link network which is not sustainable,

and so becomes an empty network. Thus, not performing a favor leads to an empty network,

and so it is a best response to perform a favor, anticipating favors by other agents.

ME4 = {g = {ij, jk, k`, `i} : for some distinct i, j, k, `}. This is an obvious extension of

the logic from three-link networks.

The interesting difference between maximal and non-maximal equilibria come with k = 5

or more links.

Consider the network g = {12, 23, 34, 41, 13} as pictured in Figure ??. So, agents 1 and

3 each have three links and agents 2 and 4 have two links. There is a subgame perfect

equilibrium sustaining this network: if any link is ever cut, then all agents cut every link in

the future. However, there is no maximal equilibrium sustaining this network. To see this,

suppose that agent 1 is called upon to do a favor for agent 3. If agent 1 does not do the

favor, then the resulting network is g′ = {12, 23, 34, 41}. Note that g′ ∈ ME4, and so there

is a maximal equilibrium continuation sustaining g′. Thus, under any maximal equilibrium,

g′ would be sustained in the equilibrium continuation. Thus, agent 1 can cut the link 13 and

still expect the network g′ to endure, and so this is the unique best response for agent 1 and

so g is not part of any maximal equilibrium: g /∈ ME5. Thus, ME5 = ∅.
Next, note that ME6 = G6, i.e., the complete network. To see this, consider an equilib-

rium as follows. If an agent i severs a link, then the remaining agents never perform a favor

for i again and sustain the triad that excludes i. This continuation satisfies the requirements

of maximal equilibrium, and is a subgame perfect equilibrium (with a fuller specification of

all the off-equilibrium-path behaviors, which we provide in more detail in the results below).

Here we also point out the difference between maximal equilibria and renegotiation-

proofness. The complete network is not renegotiation-proof. If agent 1 deletes the link 12,

the above equilibrium calls for agents to then go to the triad that excludes agent 1. However,

that equilibrium continuation is Pareto dominated by a continuation of the four link network

12, 23, 34, 41. Thus, it is a Pareto improvement for the society to forgive agent 1 and go

to a four link network instead of the three link network. Interestingly, the other agents are

indifferent and it is only the deviating agent who is helped. This is the aspect that if the

other agents move to the other equilibrium where they are equally well off, they will help

sustain the better six link network with a threat to ostracize agent 1.�

5.1 Characterizing Maximal Networks

Before moving to the complete characterization of maximal networks, we consider various

critical networks first. Recall the definition of criticality such that a network g is m-critical,

if
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• g ∈ G(m)

• for any i and ij ∈ g, there is no subnetwork g′ ⊂ g − ij such that di(g
′) > di(g) − m

and g′ ∈ G(m).

Any critical network g is also sustainable as a pure strategy maximal equilibrium. Because

criticality is defined such that if any agent i delete a link, i expects to lose at least m links in

the sequel. So criticality is sufficient, but not necessary for pure strategy ME. The network

in Example 2 is sustainable in pure strategy ME, but it is not critical.

We also keep the definition of simply critical networks. Since criticality is not related to

the utility of the agents. All the results on them can be generalized to maximal equilibria

directly. Such as the following useful proposition, which ensures the social quilts are maximal

networks:

Proposition 3 A tree union of simply critical networks is maximal.

5.1.1 Transitively Critical Networks

We define transitively critical networks for maximal equilibria as follows.

Given a whole number m, let TCM
k (m) ⊂ Gk′ denote the set of transitively critical

networks with k links, where m satisfies (1).

• Let TCM
0 (m) = ∅.

• Inductively on k, TCM
k (m) ⊂ Gk is such that g ∈ TCM

k (m) if and only if for any i and

ij ∈ g, there exists g′ ⊆ g − ij such that g′ ∈ TCM
k′ (m), di(g

′) ≤ di(g)−m, and there

is no g′′ ∈ TCM
k′′(m) for any k′′ such that g′ ⊂ g′′ ⊂ g − ij.

Even though this is also an inductive definition (not surprisingly, given that maximal

equilibria are so defined), it does not involve any incentive descriptions and is effectively an

algorithm that can be run on any graph without any knowledge of agents, payoffs, etc.

Now let us examine maximal equilibria.

Theorem 2 Let m satisfy (1). A network is sustainable as a pure strategy maximal equi-

librium if and only if it is transitively critical.

Proof of Theorem 2 is very similar to the Proof of the corresponding theorem in the

paper. So we omit it here.
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5.2 Social Quilts

Recall a m-clique is a complete network with m + 1 nodes so that every node has exactly m

links. m-cliques are an important class of critical networks.

Note that different from pure strategy renegotiation-proof equilibria, a clique (completely

connected subnetwork) g with m+2 nodes (each having m+1 links) is sustainable as a pure

strategy maximal equilibrium. To see this, have some i delete a link ij. The continuation

network is a m-clique g′ with all agents but i. It is not a valid continuation in pure strategy

RPE since we can find some network g′′ Pareto dominating it. However, it is a valid continu-

ation in pure strategy ME. By the definition, there should not exist g′′ such that g′′ ∈ MEk′′

and g′ ⊂ g′′ ⊂ g − ij. Suppose such g′′ does exist, i should be in g′′ with at least m links.

So the only possible g′′ = g − ij, which is not sustainable in pure strategy ME. To see this,

if any agent j 6= i refuses a favor to i, the network in continuation should be g′ and j only

loses one link. So g′′ is not sustainable.

We keep the definition that a network g is an m-quilt if g can be written as the union of

m-cliques, such that any two of these cliques intersect in at most one node and there are no

simple cycles involving more than m + 1 nodes.

5.3 Robustness

Note the following observation:

Observation 1 If (1) holds for m ≥ 2, g is sustainable as a pure strategy maximal equilib-

rium, and ij ∈ g, then g − ij is not sustainable as a pure strategy maximal equilibrium.

Thus, beginning from some ME network, if a link is deleted then the network will necessarily

further degrade in terms of what is sustainable.

The definition of robustness remains for ME such that a network g is robust against social

contagion if it is renegotiation-proof and sustained as part of a pure strategy subgame perfect

equilibrium with g0 = g such that in any subgame continuation from any renegotiation proof

g′ ⊂ g, and for any i and ij ∈ g′, if i does not perform the favor for j when called upon, then

the continuation leads to g′′ such that if h` /∈ g′′ then h ∈ Ni(g
′) ∪ {i} and ` ∈ Ni(g

′) ∪ {i}.
Thus all theorems discussing the structures of the robust networks work for pure strategy

maximal equilibria as well. Especially the following two:

Theorem 3 A network is robust against social contagion if and only if it is a social quilt.

Theorem 4 In the asymmetric payoffs case, if a network g is robust against social contagion

then all links in g are supported.
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6 Background Statistics on the Indian Village Net-

works

6.1 Descriptive Statistics

In this section we present some snapshots of the network data discussed in Section 6.

The graphs shown in Figure 9 summarize the distributions of the normalized degree,

betweenness and eigenvalue centralities in each of the networks of relationships described in

Tables 1 and 2 of Section 6.2. The distributions were computed by considering the network

defined among all the surveyed people in the 75 villages in our sample by each relationship

type5. Mores specifically, the aggregate sample is comprised by all the people that were

surveyed and who reported at least one relationship of the types described in Table 1 of

Section 6.2 with some other surveyed individual. The total number of people in the sample

thus defined was 16855.

The first graph for each relationship type in Figure 9 shows the inverse cumulative distri-

bution functions of normalized degree, betweenness and eigenvalue centralities. The second

graph shows the inverse cumulative distribution function of normalized degree and the be-

tweenness and eigenvalue centralities of the marginal village according to the normalized

degree.

Figure 10 exhibits the distribution of the number of reported relationships by surveyed

individuals for each relationship type described in Table 1 of Section 6.2. As shown in these

graphs and discussed in Section 6.2, only a very small fraction of the surveyed population

reported a number of relationships reaching the limits of 5 or 8 implied by the survey design.

5 Note that relationships were restricted to lie within each village.
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6.2 Support in the Data

Figure 11 shows the inverse cumulative distribution functions of support S(g′, g) in our

sample of 75 villages for a number of combinations of the networks g and g′ defined in Table

2 of Section 6.1. Each graph also includes the plots of the fraction of links supported by

exactly k other links in the marginal village (ordered according to their aggregate support

levels). Note that the context network g that defines in each case whether a given link in g

is supported or not, is always by construction a superset of g′.

23



Figure 9: Centrality Measures
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Figure 9 (continued)
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Figure 9 (continued)
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Figure 9 (continued)
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Figure 9 (continued)
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Figure 9 (continued)
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Figure 9 (continued)

Figure 10: Distribution of the numer of reported relationships by surveyed individuals.
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Figure 11: The inverse cumulative distribution function of support levels in the villages: The

horizontal axis is the fraction of villages having support no more than the amount listed on

the vertical axis. The upper-most curve is the inverse CDF of the fraction of supported g′

relationships in the g network. The five curves below list the breakdown of the fraction for

the marginal village by various levels of support: “by k” indicates the fraction of links in

that village that are supported by exactly k other nodes (so that i and j have k friends in

common), and so the five lines below sum to the curve above.
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Figure 11 (continued)

32



Figure 11 (continued)
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Figure 11 (continued)
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Figure 12: The inverse cumulative distribution function of support and clustering levels

in the villages: The horizontal axis is the fraction of villages having support/clustering no

more than the amount listed on the vertical axis. The upper-most curve is support and the

lower-most is the clustering coefficient of the marginal village.

6.3 Comparing Support to Clustering

Figure 12 shows graphs comparing clustering and support in the various networks defined in

Table 2 of Section 6.1.
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Figure 12 (continued)
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Figure 12 (continued)
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Figure 12(continued)
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6.4 Comparing Support in Different Sorts of Relationships

In the main paper, we worked with a definition of an “All” network that included relatives.

We also now include various calculations that include definitions that simply look at the

union of “hedonic” and “favor” networks, H ∪ F in what follows.

Tables 3-5 show the comparison of support measures of various relationships. The entry

ij of the first table reports the number of villages for which S(g′
i, All)) > S(g′

j, All)). The

entry ij of Table 4 reports the number of villages for which S(g′
i, H(or)F )) > S(g′

j, H(or)F )),

where H(or)F is the union of the Favor network and the Hedonic network. Finally, Table 5

presents the comparison of self support measures. That is, the entry ij reports the number

of villages for which S(g′
i,g

′
i)) > S(g′

j,g
′
j)

6.

6The entries the self support of the Favors network with that of the Physical Favors and Intangible Favors
networks are left blank because since they are 75 by definition (Since each of the latter are subnetworks of
the favors network).
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Support Measure Self H ∪ F All

Physical Favors 0.2807 0.6002 0.7200

Intangible Favors 0.2587 0.5721 0.7198

Hedonic 0.3795 0.5569 0.6530

H ∪ F – 0.5556 –

All – – 0.6931

Table 2: The Average Support Measure

Network g′ Favors Physical Favors Intangible Favors Hedonic

Favors – 30∗∗ 24∗∗∗ 72∗∗∗

Physical Favors 45∗∗ – 38 69∗∗∗

Intangible Favors 51∗∗∗ 37 – 72∗∗∗

Hedonic 3∗∗∗ 6∗∗∗ 3∗∗∗ –

*** significant difference at 1% level ** significant difference at 5% level

Table 3: Comparison of Support Measures. sp

Entry i, j is the number of villages for which S(g′
i, All)) > S(g′

j, All)).

Network g′ Favors Physical Favors Intangible Favors Hedonic

Favors – 15∗∗∗ 40∗∗∗ 46 ∗∗

Physical Favors 60∗∗∗ – 57∗∗∗ 63∗∗∗

Intangible Favors 35 18∗∗∗ – 38

Hedonic 29 ∗∗ 12∗∗∗ 37 –

*** significant difference at 1% level ** significant difference at 5% level

Table 4: Comparison of Support Measures. sp

Entry i, j is the number of villages for which S(g′
i, H ∪ F )) > S(g′

j, H ∪ F )).

6.5 How Observed Support Compares to that Expected in a Ran-

dom Network

One way to get a feeling for how much support we observe is to compare the observed level

of support with that which would arise if the same number of links were instead distributed

purely at random.
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Network g′ Favors Physical Favors Intangible Favors Hedonic

Favors – – – 55∗∗∗

Physical Favors – – 48∗∗∗ 8∗∗∗

Intangible Favors – 27∗∗∗ – 11∗∗∗

Hedonic 20∗∗∗ 8∗∗∗ 64∗∗∗ –

*** significant difference at 1% level ** significant difference at 5% level

Table 5: Comparison of Support Measures. sp

Entry i, j is the number of villages for which S(g′
i,g

′
i)) > S(g′

j,g
′
j)).

In a random network with a the probability p of a link and n as the population of the

network, the expected support measure can be approximated as follows: the average degree

is D = p · (n−1), and the chance any given link is supported is roughly S = 1− (1−p)(D−1),

since the chance a link ij is not supported is that none of the other D − 1 friends of agent

i are friends of agent j which is (1 − p)(D−1).7 From the data, we can calculate p and

n for each village and estimate what the support measure S would be if the network were

generated uniformly at random. Table 6 shows the average support measure in real networks

are substantially larger than those expected in random networks.

S(PF, PF) S(IF, IF) S(H, H) S(H∪ F, H ∪ F) S(All, All)

Observed network 0.2807 0.2587 0.3795 0.5556 0.6931

Random network 0.0137 0.0172 0.0400 0.0960 0.1487

Table 6: Average Support Measures for Observed and Random Networks

While these numbers are suggestive, we now provide a more detailed statistical test to

see if the support is higher than would be generated at random, where random also allows

for geographic biases.

6.5.1 Geography and Support

We proceed in two different manners. First, we build an explicit random network model that

incorporates geography directly. Next, we work with an exponential random graph model.

7This approximates things since not all nodes are expected to have degree D. Slightly more accurate
estimates could be obtained by working with the specific degree distribution that would be generated, or
some other degree distribution. We do not pursue those, since we provide a more rigorous test with the
geographic based networks in any case.
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Some of the relationships in these data are bound to be at least partly correlated by

geographic closeness, since it is natural to expect some sorts of favor exchange among ge-

ographic neighbors , and geographic closeness is a transitive relation. Therefore networks

that we observe may inherit some support from this geographic determinacy in a manner

unrelated to the network structure based favor exchange that we have examined. In order to

address this issue, we examine a geographically-biased-random network formation model and

then see whether the support measures from that model differ in a statistically significant

way from the observed support measures.

We proceed as follows.

• For each village we decomposed the observed links of each type into deciles according

to the geographic proximity of the members of the pair in question, as measured by

the households’ GPS coordinates. Based upon this decomposition we constructed an

empirical link distribution for each specific relationship and each village.

• We then carried out 50 simulations for each village and relationship. In each case

we constructed a random graph based on the corresponding empirical distribution of

links by geographic location. In order to guarantee that each simulated base network

was a subset of the context network, we produced the context network by augmenting

the simulated base network with the appropriate number of randomly drawn links

according to the appropriate conditional distribution.

• We measured the support of each simulated network, and by comparing it to the

observed support for the corresponding village and relationship, created a realization

of a random variable with value 1 if the simulated support measure exceeded the

observed support and 0 otherwise.

• Pooling all the random variables generated according to this method for a given rela-

tionship across all villages, we performed a one sided test of the null hypothesis that

the random variable was binomially distributed with equal probability of being 1 or 0.8

As shown in Table 7, for every one of relationships, the observed support is significantly

greater (with p-values smaller than 0.0001 in all cases) than the one generated by the

geographically biased random graph models.

8The variances of the random variable are likely to be different for different villages. Not taking into
account heteroskedasticity biases the test against rejection of the null hypothesis.
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Base-Context p-value

PF-PF 0.000

PF-HR 0.000

PF-All 0.000

IF-IF 0.000

IF-HR 0.000

IF-All 0.000

HR-HR 0.000

Table 7: Binomial one sided test

6.6 How Observed Support Compares to that Expected via an

Exponential Random Graph Model Incorporating Geography

Table 8 shows the estimated coefficients and the standard errors in the collection of models:

log(Pr(G = g)) = β0 + β1

∑
i<j

gij + β2

∑
i<j

gijs(g,g′)ij + β3

∑
i<j

d(i, j)gij (3)

We have fit one such model for each of the Favors networks in each of the 75 villages in

the sample. The indicator function s(g,g′)ij is 1 if and only if link ij is supported in the All

networks of the corresponding village.

We used version 2.1-1 of the R package statnet developed by Handcock et.al. to estimate

the exponential random graph models.
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6.7 Bounding Measurement error

Another thing that we do is examine how much measurement error there would have to be

in order to see support measures of the level that we observed if the true support level were

really 100 percent. In particular, what fraction of links would have to be missing to get

the observed relationships?9 Specifically, the types of errors that are likely to arise in our

data are one-sided: while people are quite likely to forget relationships, it is less likely that

they “imagine” ones given the way in which these questions were designed.10 To address

this issue, there are various ways in which one might proceed, and here we followed a fairly

simple one where we simulated the survey process 100 times, proceeding as follows in each

iteration:

For each village in our sample and type combination of base-context networks in question

we consider the closest network to the context network that leads the base network to have

full support; where closest is defined as having the least number of additional links.11 We

then remove each link in the augmented network with a measurement error probability, and

calculate the support of the resulting base-context pair. Figure 13 shows for each measure-

ment error in the x axis the mean fraction of villages in the sample that ended with a support

fraction of at most the level observed in the survey. It should be noted that the number of

simulations (100) is such that any differences in expectation for different measurement errors

in a given base-context pair or for different base-context-pairs are statistically significant.

Table 9 provides a closer look at a small segment of Figure 13.

6.8 The Relation of Support to other Characteristics of Links,

Households and Individuals

6.8.1 Link Level Predictors of Support

The first collection of statistics, presented in Tables 10-14, builds upon the fact that support

is firstly a property of relationships themselves, rather than a property of agents. We look at

the likelihood that a a pair of agents have at least one friend in common conditional on them

being similar/disimilar according to a number of individual characteristics: education, age,

caste, gender and participation in the microfinance program12. Specifically we break the set

of pairs of agents in each village into similarity/dissimilarity classes for each of characteristic

9This test is biased against us since we are not considering missing nodes.
10By asking questions regarding actual actions (borrowing or lending money or rice, visiting someone’s

home, etc.) rather than asking about perceived relationships (who is your friend), we eliminate many
problems with misperceived or asymmetric sorts of relationships.

11We randomly draw one network from the set of closest networks.
12As discussed above, the data that we use was collected as part of the deployment of a micro-finance

program (see Banerjee et al. (2010)).
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Village β̂1 β̂2 β̂3

1 -3.535 1.951 -2.64591

(0.103) (0.094) (0.15248)

2 -3.411 2.031 -2.99944

(0.108) (0.102) (0.18072)

3 -5.741 3.228 -0.0239

(0.055) (0.066) (0.00903)

4 -5.416 3.138 -0.06672

(0.064) (0.077) (0.01876)

5 -5.283 3.287 -0.10529

(0.098) (0.111) (0.02784)

6 -4.562 2.435 0.02029

(0.099) (0.126) (0.01198)

7 -3.831 2.5 -2.26155

(0.143) (0.129) (0.14617)

8 -4.6 2.305 -0.00219

(0.109) (0.125) (0.01419)

9 -5.57 2.845 -0.01145

(0.071) (0.086) (0.00866)

10 -4.599 2.256 -0.28231

(0.161) (0.163) (0.09628)

11 -5.045 2.58 0.02389

(0.1) (0.114) (0.01656)

12 -4.975 2.435 -0.07023

(0.074) (0.088) (0.03028)

13 -5.047 2.684 -0.03246

(0.094) (0.11) (0.01584)

14 -5.027 2.509 -0.14136

(0.072) (0.084) (0.03267)

15 -5.218 2.84 -0.09215

(0.09) (0.101) (0.02527)

16 -5.06 2.613 -0.08345

(0.077) (0.087) (0.03251)

17 -5.573 3.062 -0.01536

(0.061) (0.076) (0.00996)

Village β̂1 β̂2 β̂3

18 -4.167 2.366 -1.39615

(0.089) (0.082) (0.08668)

19 -5.203 2.964 -0.1163

(0.103) (0.112) (0.03037)

20 -5.411 2.786 -0.03094

(0.079) (0.094) (0.01605)

21 -5.716 3.273 0.01757

(0.066) (0.076) (0.00286)

22 -5.295 2.635 -0.0024

(0.074) (0.088) (0.00612)

23 -5.233 2.597 -0.17919

(0.055) (0.071) (0.03192)

24 -5.364 3.144 0.02495

(0.107) (0.12) (0.00619)

25 -4.921 2.371 0.00219

(0.073) (0.097) (0.00424)

26 -5.811 3.006 -0.00087

(0.048) (0.064) (0.00364)

27 -5.615 3.11 -0.00811

(0.058) (0.07) (0.00394)

28 -5.119 2.658 0.00057

(0.085) (0.099) (0.00611)

29 -5.011 2.67 -0.04409

(0.071) (0.084) (0.02404)

30 -5.284 2.303 0.01208

(0.05) (0.069) (0.00419)

31 -4.469 2.508 -1.15936

(0.106) (0.093) (0.10727)

32 -3.564 2.173 -2.78001

(0.114) (0.11) (0.18851)

33 -5.523 3.35 0.01532

(0.08) (0.089) (0.01093)

34 -4.566 2.498 -1.5863

(0.081) (0.079) (0.07984)

Table 8: Estimated Coefficients of the ergm the model for the Favors network.

The model is log(Pr(G = g)) = β0 + β1

∑
i<j

gij + β2

∑
i<j

gijs(g,g′)ij + β3

∑
i<j

d(i, j)gij
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Village β̂1 β̂2 β̂3

35 -2.929 2.064 -2.42283

(0.139) (0.122) (0.13827)

36 -4.69 2.003 -0.01248

(0.062) (0.091) (0.00822)

37 -5.593 2.937 -0.00046

(0.047) (0.06) (0.00348)

38 -5.627 3.448 0.00809

(0.067) (0.076) (0.00535)

39 -2.806 2 -2.84171

(0.108) (0.093) (0.13161)

40 -3.439 2.12 -2.23149

(0.099) (0.09) (0.12461)

41 -5.035 2.717 -0.0257

(0.062) (0.072) (0.01106)

42 -5.359 2.951 0.00402

(0.063) (0.071) (0.00778)

43 -5.436 2.862 -0.00495

(0.061) (0.08) (0.00828)

44 -5.381 2.601 0.00614

(0.055) (0.078) (0.0034)

45 -4.982 2.596 0.02517

(0.081) (0.1) (0.00517)

46 -4.915 2.327 -0.14076

(0.065) (0.08) (0.02759)

47 -5.042 2.584 -0.08957

(0.085) (0.092) (0.03094)

48 -5.274 3.073 -0.31429

(0.077) (0.077) (0.0453)

49 -5.536 2.857 -0.00476

(0.057) (0.065) (0.00529)

50 -4.595 2.495 -1.49029

(0.063) (0.06) (0.06625)

51 -3.623 1.986 -1.67765

(0.097) (0.097) (0.10073)

Village β̂1 β̂2 β̂3

52 -2.565 1.231 -2.87712

(0.121) (0.118) (0.18388)

53 -5.638 3.609 -0.00381

(0.064) (0.073) (0.00457)

54 -3.705 2.396 -2794.07224

(0.113) (0.105) (230.7352)

55 -3.626 1.914 -2.00195

(0.089) (0.084) (0.10752)

56 -4.961 2.273 0.00665

(0.059) (0.082) (0.00469)

57 -5.879 3.36 0.00788

(0.051) (0.063) (0.00269)

58 -5.17 2.816 -0.46967

(0.05) (0.055) (0.04399)

59 -4.598 2.793 -0.65429

(0.119) (0.118) (0.08063)

60 -4.517 2.522 -1.20137

(0.09) (0.083) (0.11496)

61 -4.762 2.937 -0.53211

(0.093) (0.095) (0.08401)

62 -4.097 2.544 -2.07602

(0.077) (0.073) (0.12048)

63 -5.718 3.244 0.00255

(0.055) (0.064) (0.00411)

64 -4.123 2.399 -1.59247

(0.117) (0.106) (0.13163)

65 -5.59 2.95 -0.03898

(0.078) (0.094) (0.01971)

66 -5.064 2.771 -0.17221

(0.094) (0.105) (0.0409)

67 -3.857 2.363 -1.96435

(0.102) (0.091) (0.10493)

68 -4.909 2.281 -0.16078

(0.061) (0.072) (0.02437)

Table 8 (continued)
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Village β̂1 β̂2 β̂3

69 -5.692 3.216 -0.00852

(0.062) (0.072) (0.00561)

70 -5.503 2.947 -0.00275

(0.072) (0.084) (0.00429)

71 -5.491 3.029 -0.00194

(0.08) (0.09) (0.00335)

72 -5.151 3.098 0.00485

(0.073) (0.087) (0.00472)

Village β̂1 β̂2 β̂3

73 -5.331 2.899 -0.01296

(0.076) (0.088) (0.01131)

74 -5.403 3.251 -0.0077

(0.059) (0.071) (0.00875)

75 -4.654 2.59 -0.20904

(0.077) (0.087) (0.04137)

Table 8 (continued)
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Figure 13: Fraction of villages with at most the observed support as a function of measure-

ment error
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Support Measure Measurement Error

16% 24% 32% 40%

PFavors-All 0.54 0.91 0.99 0.999

IFavors-All 0.52 0.91 0.99 0.999

Favors-All 0.40 0.87 0.99 0.999

Hedonic-All 0.17 0.71 0.96 0.999

All-All 0.12 0.74 0.98 0.999

Table 9: A closer look at Figure 13

and for each class compute the mean across the 75 villages of the fraction of pairs of agents in

the class who have at least one friend in common13 in the All network. We present one table

for each characteristic. In addition to the mean for each similarity/dissimilarity class, each

table shows the number of villages in which the class is the one with the highest fraction of

pairs of agents with a friend in common. Note that in each of the 5 individual characteristics

considered the presence of a link among dissimilar agents is associated with a significantly

greater probability of a friend in common relative to the classes of similar agents, with respect

to situations in which the agents are not linked. This is a property which holds for links in

the favors networks and also in the hedonic networks.

In addition to the mean for each similarity/dissimilarity class, each table shows the

number of villages in which the class is the one with the highest fraction of pairs of agents

with a friend in common. Note that in each of the 5 individual characteristics considered

the presence of a link among dissimilar agents is associated with a significantly greater

probability of a friend in common relative to the classes of similar agents, with respect to

situations in which the agents are not linked. This is a property which holds for links in the

favors networks and also in the hedonic networks.

6.8.2 Household Level Predictors of Support

Here, we examine links at a household level, where we a pair of households to be linked in

a given network if there exists a agent in each household who are linked to each other.

Table 16 presents the coefficients associated to two probit regressions relating the like-

lihood of having a “household friend” in common in the All network to some household

characteristics: maximum education, mean age, rooms per person and household size. In

the first one an observation corresponds to a randomly chosen friend in the favors network of

a randomly chosen household in one of the 75 villages in our sample. In the second regression

13A link is supported when the linked agents have at least one friend in common; as above, speaking of
having a friend in common lets us refer to linked agents as well as to agents that are not linked.
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Education ij 6∈ Favors ij ∈ Favors ij 6∈ Hed ij ∈ Hed

Mean # Max Mean # Max Mean # Max Mean # Max

both below median 0.139 26 0.707 25 0.140 25 0.651 23

# total pairs in class 600724 9507 600616 9615

above/below median 0.131 3 0.719 25 0.132 2 0.663 28

# total pairs in class 1003084 11795 1003210 11669

both above median 0.149 46 0.714 25 0.150 48 0.637 24

# total pairs in class 469260 7617 469222 7655

Table 10: Mean fraction of pairs of agents with at least one friend in common in the All

network, by similarity/dissimilarity in formal education, when the agents have a link in

the favors network compared to when they do not have a link in the favors network. The

column labeled #Max depicts the number of villages (out of 75) in which the fraction of

pairs with at least one friend in common is the highest among the 3 education categories.

The education scale has 15 different levels, ranging from no formal education to graduate

degree. The median level of education in the scale is 5.

Gender ij 6∈ Favors ij ∈ Favors ij 6∈ Hed ij ∈ Hed

Mean # Max Mean # Max Mean # Max Mean # Max

both male 0.203 75 0.707 16 0.202 75 0.637 16

# total pairs in class 404266 10343 402374 12235

female/male 0.123 0 0.728 30 0.126 0 0.690 43

# total pairs in class 1033918 7572 1038232 3258

both female 0.117 0 0.713 29 0.116 0 0.649 17

# total pairs in class 634884 11004 632442 13446

Table 11: Mean fraction of pairs of agents with at least one friend in common in the All

network, by similarity/dissimilarity in gender, when the agents have a link in the favors

network compared to when they do not have a link in the favors network. See the caption

of Table 10 for more details.

an observation corresponds to a randomly chosen household unrelated to a randomly chosen

household in one of the 75 villages.
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Age ij 6∈ Favors ij ∈ Favors ij 6∈ Hed ij ∈ Hed

Mean # Max Mean # Max Mean # Max Mean # Max

both belong 0.116 3 0.700 23 0.117 3 0.633 17

# total pairs in class 552166 7753 551759 8160

belong/not belong 0.134 0 0.727 30 0.136 0 0.670 36

# total pairs in class 1031445 12236 1032157 11524

neither belong 0.167 72 0.705 22 0.168 72 0.644 22

# total pairs in class 489457 8930 489132 9255

Table 12: Mean fraction of pairs of agents with at least one friend in common in the All

network, by similarity/dissimilarity in their age, when the agents have a link in the favors

network compared to when they do not have a link in the favors network. See the caption

of Table 10 for more details.

Caste ij 6∈ Favors ij ∈ Favors ij 6∈ Hed ij ∈ Hed

Mean # Max Mean # Max Mean # Max Mean # Max

different castes 0.091 0 0.578 3 0.090 0 0.540 7

# total pairs in class 1432149 7638 1429094 10693

same caste 0.239 75 0.755 72 0.244 75 0.707 68

# total pairs in class 640919 21281 643954 18246

Table 13: Mean fraction of pairs of agents with at least one friend in common in the All

network, by whether they belong to the same caste or not, when the agents have a link in

the favors network compared to when they do not have a link in the favors network. See the

caption of Table 10 for more details.
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Micro Finance ij 6∈ Favors ij ∈ Favors ij 6∈ Hed ij ∈ Hed

Mean # Max Mean # Max Mean # Max Mean # Max

Neither belong 0.103 7 0.696 14 0.102 7 0.629 13

# total pairs in class 336948 5018 335703 6263

belong/not belong 0.100 5 0.691 8 0.099 5 0.637 7

# total pairs in class 69383 1087 69092 1378

both belong 0.159 26 0.635 16 0.158 26 0.610 18

# total pairs in class 4862 186 4836 212

Table 14: Mean fraction of pairs of agents with at least one friend in common in the All

network, by whether they participate or not in the micro finance program, when the agents

have a link in the favors network compared to when they do not have a link in the favors

network. This table was computed only considering pairs agents eligible for participation

in the program. That is, women of age 15 or older, living in one of the 38 villages in the

treatment group.

Linked Not Linked

Mean Age 0.244 0.005

Mean Education 0.034 −0.010

Rooms per person −0.84∗∗ 0.16

Household size −0.064 0.041

Intercept 1.54∗ −0.56

(**) Significant at 5%, (*) Significant at 10%

Table 15: Probit regression of support in the households all network of linked and unlinked

pairs in the households favor network. In the regression shown in the first column an obser-

vation corresponds to a randomly chosen agent linked in the favors network to a randomly

chosen household in one of the 75 villages in our sample. In the regression shown in the sec-

ond column an observation corresponds to a randomly chosen agent unlinked to a randomly

chosen household in one of the 75 villages.
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Linked Not Linked

Mean Age 0.205 0.008

Max Education 0.017 0.007

Rooms per person −0.78∗∗ 0.13

Household size −0.063 0.029

Intercept 1.70∗∗ −0.66∗

(**) Significant at 5%, (*) Significant at 10%

Table 16: Probit regression of support in the households all network of linked and unlinked

pairs in the households favor network. In the regression shown in the first column an ob-

servation corresponds to a randomly chosen household linked in the favors network to a

randomly chosen household in one of the 75 villages in our sample. In the regression shown

in the second column an observation corresponds to a randomly chosen household not linked

to a randomly chosen household in one of the 75 villages.
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