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We thank Tore Ellingsen and Elena Paltseva for pointing out that there is an error in

the proof of Theorem 5 in the above-referenced paper. In fact, there is not just an error in

the proof, but also in the theorem. The following example shows that Theorem 5, which

applies to three or more players, is incorrect. The error in the proof is that it does not

properly account for potential mixed strategy deviations: it only considers pure deviations

and erroneously claims that the proof extends to mixed deviations. The other theorems

in the paper are unaffected and still hold, including Theorem 6. However, it is not clear

whether Corollaries 1 and 2 that follow Theorem 5 are true as they are not ruled out by the

example below.

The main conclusions of the original paper are modified as follows. The basic messages

that efficient play in games is not always supportable when pre-game side contracting is

available, and that conditions under which efficient play is supportable can be subtle, still

hold. What is modified is the message that with three or more players, profiles of pure

actions that Pareto improve upon pure strategy Nash equilibria can be supported with pre-

game side contracting. The example below shows this is not always true, at least with

unilateral side contracts that condition only upon pure strategies. Thus, there may be a less

dramatic distinction between games with two players and those with three or more players

than we originally thought. Part of the difficulty in achieving efficiency, is that each player

would like to use pre-game side contracting to distort a game in a way such that the resulting

equilibrium is most favorable to him or herself. In a two player game, a player can effectively

refuse transfers from another player (even if transfers do not require consent to be received)
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simply by promising to make transfers back that cancel out any receipts. This can impede

supporting efficient play. The incentives are different with three or more players, since players

can make promised payments to more than one other player at once, and by making large

promises conditional on certain actions can effectively commit not to play certain actions

and thus steer the game towards actions that they would like to see played. The difficulty

that arises is that when several players are doing this at the same time, the combination of

constraints on the transfers needed to support an efficient profile as an equilibrium can be

quite complex. The hole in the original proof was that such combinations can be vulnerable

to deviations in transfer functions by some players that induce mixed strategy equilibria in

the game that are better for those players than the pure strategy profile that other players

are trying to support. It may still be that Corollary 2 is correct, and being able to make side

payments to completely disinterested third parties can help in achieving efficiency as they

have less incentive to distort the game, but that is still an open question.

Theorem 5 would hold if one worked with definitions that did not allow for mixed strate-

gies in the play of the game. However, that would not be very satisfactory since players

could still promise transfers that would result in nonexistence of pure strategy equilibria in

resulting game, and then it would not be clear what players should expect. Instead, Tore

Ellingsen and Elena Paltseva (2011) make important progress along a different route in a

manuscript “Non-cooperative Contracting.” They consider transfer functions that can de-

pend explicitly on mixed strategies, rather than just pure strategies. So players can promise

to pay other players conditional upon certain mixed strategies being played in the game.

Ellingsen and Paltseva show that efficient play can be supported with such transfer schemes.

They also provide some sufficient conditions on games for which only transfers conditional

upon pure strategies are needed. They thus make important progress, since given the nu-

merous applications where some side-payments are available to players it is essential to have

a fuller understanding of which types of side-contracting result in efficient play in games and

for which settings.

The notation and terminology below all follow from the above-referenced Jackson and

Wilkie (2005) paper.

Consider the three player game where player 1 chooses the row action, player 2 chooses

the column action, and player 3 has only one action, and payoffs are:

C D

C 1, 1, 0 0, 2, 4

D 2, 0, 4 0, 0, 0

where the first entry is that of player 1, the second of player 2, and the third of player 3.

Suppose that the transfers t support C, C as an equilibrium with payoffs 1,1,0 to the
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players on the equilibrium path, as would be possible if Theorem 5 were true. Let us show

that we reach a contradiction of equilibrium and thus have a counter-example to Theorem

5.

Claim 1. It must be that t21(C, D)+ t31(C, D) ≤ 2 and similarly t12(D, C)+ t32(D, C) ≤ 2.

Proof of Claim 1: Suppose to the contrary that, for instance, t21(C, D)+t31(C, D) > 2.

Now suppose that 1 deviates from t1 and sets all transfers from 1 to other players to 0. It

follows that 1’s payoffs conditional on t2, t3 (which are nonnegative) and the play of the game

are at least:
C D

C 1 a

D 2 0

where a > 2. In the second period, by mixing evenly on C and D, player 1 is guaranteed

a payoff of more than 1 regardless of what other players do. Thus any equilibrium in the

subgame following 1’s deviation must lead to a payoff of more than 1 to player 1. This

contradicts the support of C, C as an equilibrium with a payoff of 1 to player 1.

Claim 2. Player 3 has an improving deviation away from t to some t̂.

Proof of Claim 2: Note that either −t12(D, D) + t21(D, D) ≤ 0 or t12(D, D) −
t21(D, D) ≤ 0. Without loss of generality, assume it is the first (or else simply switch

the labels of 1 and 2, and swap C, D with D, C in what follows).

Have player 3 deviate from the prescribed equilibrium t and offer transfers t̂ in the first

period, where t̂ is defined as follows.

t̂31(C, C) = t31(C, C) + ε.

t̂31(D, C) = t31(D, C).

t̂31(C, D) = max[ 0 , t13(C, D) + t12(C, D)− t21(C, D)] + ε.

t̂31(D, D) = 0.

t̂32(C, D) = max[ 0 , t23(C, D) + t21(C, D)− t12(C, D)− 1] + ε.

For all other entries, t̂3 = t3.

We now show that under t1, t2, t̂3 there is a unique (strict) equilibrium of C, D and that the

payoff to player 3 under these transfers and equilibrium is larger than 0, which contradicts

the support of (C, C) with t.

First, note that, given the specifications of t̂31(C, C) and t̂31(D, C), under t1, t2, t̂3 it a

strict best response for player 1 to play C if C is played by player 2 (since C was a best

response to C under t).

Second, note that under t1, t2, t̂3 it is a strict best response for player 1 to play C if D

is played by player 2. This follows since we are in a case where −t12(D, D) + t21(D, D) ≤ 0

(from above), which then implies that the payoff to player 1 from D, D is −t13(D, D) −
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t12(D, D) + t21(D, D) + 0 ≤ 0, while the payoff to player 1 from C, D is −t13(C, D) −
t12(C, D) + t21(C, D) + t̂31(C, D) ≥ ε.

So, under t1, t2, t̂3 it is a strictly dominant strategy for player 1 to play C.

Next, note that the payoff to player 2 from C, D under t1, t2, t̂3 is 2+ t̂32(C, D)− t23(C, D)−
t21(C, D) + t12(C, D) ≥ 1 + ε. Thus, if player 1 plays C, then it is a strict best response for

2 to play D (given that the payoff to (C, C) for 2 is still 1).

Thus, under t1, t2, t̂3 there is a unique (strict) equilibrium of C, D.

We complete the proof by showing that the payoff to player 3 for C, D under t1, t2, t̂3 is

larger than 0, which contradicts the support of C, C under t with payoffs 1, 1, 0.

Player 3’s payoff for C, D under t1, t2, t̂3 is

4− t̂31(C, D)− t̂32(C, D) + t13(C, D) + t23(C, D).

Since C, C is supported under t with a payoff of 1 to player 2, it must be that 2 would

not gain by deviating to D under t, and so

2 + t32(C, D)− t23(C, D)− t21(C, D) + t12(C, D) ≤ 1.

Since t32(C, D) ≥ 0, this implies that

1 ≤ t23(C, D) + t21(C, D)− t12(C, D),

and so

max[ 0 , t23(C, D) + t21(C, D)− t12(C, D)− 1] = t23(C, D) + t21(C, D)− t12(C, D)− 1.

Thus, the payoff to player 3 for C, D under t1, t2, t̂3 is

4−max[ 0 , t13(C, D)+t12(C, D)−t21(C, D)]−[t23(C, D)+t21(C, D)−t12(C, D)−1]+t13(C, D)+t23(C, D)−2ε,

or

5−max[ 0 , t13(C, D) + t12(C, D)− t21(C, D)]− t21(C, D) + t12(C, D) + t13(C, D)− 2ε.

If t13(C, D) + t12(C, D)− t21(C, D) > 0, then the expression simplifies to 5− 2ε, which is

larger than 0 for small ε.

Otherwise, the payoff is

5− t21(C, D) + t12(C, D) + t13(C, D)− 2ε.

By Claim 1 it follows that t21(C, D) ≤ 2. Thus the payoff is at least

3− 2ε,

which is again, larger than 0 for small ε.
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