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Abstract

We prove that for any equilibrium of a (Bayesian) game, and any sequence of per-
turbations of that game, there exists a corresponding sequence of ex-ante ε-equilibria
converging to the given equilibrium of the original game. We strengthen the conclu-
sion to show that the approaching equilibria are interim equilibria (ε-best responses
for almost all types) if beliefs in the perturbed games converge in a strong-enough
sense to the limit beliefs. These results imply that equilibrium selection arguments
that are based on perturbations to a game are not robust to slight perturbations in
best reply behavior (or to underlying preferences). This applies to many standard
equilibrium selections, including Selten’s (1975) definition of trembling hand perfect
equilibrium, Rubinstein’s (1989) analysis of the electronic mail game, and Carlsson and
van Damme’s (1993) global games analysis, among others.
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1 Introduction

As many games have multiple equilibria, and some may seem more “natural” than others,

game theorists have examined a variety of arguments that refine the set of equilibria. A
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primary technique for refinement, as used in the seminal equilibrium refinement of trembling

hand perfection, is to consider some sequence of approximations of the game and then only

consider equilibria of the limit game that are the limit of a sequence of equilibria in the

perturbed games.1 A motivation for such an approach is to look for equilibria that are

“robust” to slight variations in the specification of the game. The point that we make here

is that these sorts of results in the literature are all dependent on the fact that the games

were perturbed slightly in terms of the actions that players can take, the information that

the players might have, or the underlying uncertainty about what the types of the players

and or state might be, but that the underlying preferences (as functions of actions, types

and states) are not perturbed. If one allows a slight perturbation in best reply behavior,

then all equilibria of the original game can be approximated by sequences of approaching

(approximate) equilibria. As the modeler may not have precise knowledge of preferences,

allowing for such perturbations to best replies is often a natural form of robustness. In fact,

one can generally interpret ε-best replies as exact best replies to some perturbed preferences.2

Thus, our main result shows that allowing for slight perturbations in preferences along the

sequence, along with the perturbations in games, neutralizes any selective power that the

sequences have.

Specifically, we prove that for any equilibrium of a continuous (Bayesian) game, and any

sequence of perturbations of that game, there exists a corresponding sequence of ex-ante

ε-equilibria converging to the given equilibrium of the original game, with the ε converging

to zero. Thus, selection arguments that have been made in the literature, such as those in

Selten’s (1975) definition of trembling hand perfect equilibrium, Rubinstein’s (1989) analysis

of the electronic mail game, and Carlsson and van Damme’s (1993) global games analysis,

are not robust to slight perturbations in best reply behavior (or thus to corresponding per-

turbations in underlying preferences). In a sense, our result can be thought of as a sort of

lower hemi-continuity result, where one loosens the exactness of the equilibria that approach

the limit point.

We also prove that if the supports of the type distributions of the perturbations approach

the support of the limit game and a stronger notion of belief convergence holds, then the

1There are different ways to think of trembling hand perfection. An easy one, following Selten’s original
definition, is to think of the perturbed games being one which restricts strategies to place minimal weight
on all actions.

2There are a variety of interpretations of ε-equilibria, beyond the simple one of players only approximating
their best responses. As just pointed out, one is that the modeler may have incorrectly specified some of the
preferences and types of the players. Another interpretation is that players themselves have misinterpreted
some of their payoffs, or are somehow not completely informed of their payoffs. Yet another is that the players
optimize subject to some additional costs of fully discovering their type or fully tailoring their strategy to
their types (see the discussion in Section 3.3). Such equilibria have proven useful in a variety of contexts
(e.g., Kalai (2004)).
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same result holds with the stronger notion of interim equilibrium, so that almost all types

are best responding, rather than just a measure approaching one. The difference between

our interim and ex-ante results cannot be avoided and sheds some light on aspects of some

perturbation arguments. In particular, some perturbation arguments, such as global games

arguments, rely on introducing small probabilities of types who are very different from any

type in the original game.

The contribution of our work is three-fold. First, although there are some previous

papers that provide lower hemi-continuity sorts of results in some specific contexts, they do

not make the point that refinements of equilibria are not robust to perturbations of best

response behavior. Second, previous works on ε-equilibria are limited to countable settings

and the substantial technical advance that we provide is dealing with continuum settings,

which allows us to cover many important applications with our main theorem. Third, the

relation between our ex-ante and interim results point out how some perturbation arguments

depend on the introduction of new types that are “far” from the original game, and to what

extent they are robust to perturbations in best replies.

In particular, two prominent previous studies of ε-equilibria that relate to our analysis

are Radner (1980) and Fudenberg and Levine (1986). Radner examined finitely repeated

oligopoly games and showed that ‘cooperative’ behavior could be sustained in such games

as ε-equilibria of finite horizon games with long enough horizons. If one views those games

as approximating the infinite horizon game, then one can view Radner’s result as showing

that the cooperative equilibrium that is sustainable in the infinitely repeated game can

be approximated by a limit of ε-equilibria of a sequence of approaching games. While our

results appear superficially to be limited to finite horizon games, the results in Fudenberg and

Levine (1986) show how with appropriate topological definitions, one can view finite horizon

games as approximating the infinite horizon ones, and so a Radner result is subsumed in

our approach. Moreover, Fudenberg and Levine (1986) show that equilibria of the (complete

information) infinite horizon repeated games can be approximated by ε-equilibria of the finite

horizon games. In doing this they prove that an equilibrium of a complete information game

can be approximated by a sequence of ε-equilibria of approaching games where there are

successively looser restrictions on the strategy spaces in a carefully defined way. That result

is a special case of our main result, as our results also cover other approximations of strategies.

However, the even more substantial distinction is that our results apply to a general class

of Bayesian games, and allow for perturbations in uncertainty. On a technical level, the

treatment of Bayesian games is the substantial complication in proving our main result,

and where much of the effort of the proof is directed especially with the added continuum

structure.3 But most importantly, beyond the treatment of a general class of games of

3Engl(1995) extends Fudenberg and Levine (1986) from a complete information to an incomplete infor-
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incomplete information, the main point and motivation of our paper is much different that

those of Radner (1980) and Fudenberg and Levine (1986), as they were motivated to reconcile

the seeming discontinuity between finitely repeated and infinitely repeated games. The main

motivation of our paper is completely different and is to shed light on the robustness of various

refinements of equilibria that are based on perturbations of a game. That requires proving

theorems in Bayesian settings as some of the most prominent of such refinements include

changes in the information structure.

Another paper considering ε-equilibria is Monderer and Samet (1989), who examine

loosenings of common knowledge and show that with sufficient commonality in players’

beliefs about the payoff structure of the game, one can find an ε-equilibrium close to any

Nash equilibrium of the original game. Their analysis thus also covers Rubinstein’s email

game, and so the point that ε-equilibria revive the desired equilibrium in Rubinstein’s setting

is not new to our paper. However, the analysis of Monderer and Samet (1989) centers

on underlying complete information games and (countable) uncertainty about such games,

and on commonality of beliefs, and so otherwise is quite orthogonal to ours (and see the

concluding remarks for additional discussion).

Our paper is also related to that of Kajii and Morris (1998). Their focus was on defining

what it means for beliefs to be ‘strategically close’ to each other in terms of having nearby ε-

equilibria. As such, they provide a variation of a lower hemi-continuity result for ε-Bayesian

equilibria. Our results move beyond those of Kajii and Morris on several dimensions. First,

they consider games with countable sets of types, which simplifies the analysis dramatically,

as all of the technical difficulties that we face here deal with continuity arguments that are

associated with the continuum. This is not a mere technicality, since it is necessary to deal

with continua to cover applications like global games. Second, they only consider variations

in beliefs, and not in the underlying action spaces and payoff functions, which is also not

a mere technicality since to cover applications like trembling hand perfection one needs to

allow for variations in action spaces. Third, their motivation is quite different, and our

main point about the sensitivity of equilibrium selections to ε-best responses is new and not

implied by their results (and in fact their results do not cover any of the applications that

we discuss here).

Finally, we remark that our results and their implications are quite different from, and

complementary to, those of Weinstein and Yildiz (2007). Weinstein and Yildiz show how

variations of beliefs can lead to any selection among rationalizable strategies, which then

implies that techniques used in global games may not be robust to the specification of the

uncertainty. Here, our results apply to (Bayesian) Nash equilibria, rather than rationaliz-

ability, and work with loosening best response behavior rather than adjusting (higher order)

mation case, but still only allowing countable uncertainty.
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beliefs, and thus the results have no overlap in conclusions, proof techniques, or intuitions.

Moreover, our results include a different set of applications - including things like trembling

hand perfection that are not covered by rationalizability arguments.

2 Bayesian Games and Equilibria

We begin with some basic definitions.

A Bayesian game is a collection 〈N, (Ai)i∈N , (Ti)i∈N , S, P, (ui)i∈N〉, which is as follows

• N = {1, . . . , n} is a finite set of players,

• Ai is the action space of player i, which is a compact metric space for each i ∈ N ,

• Ti is the type space of player i, which is a compact metric space for each i ∈ N ,

• S is a ‘state’ space, which is a compact metric space,

• P is a probability measure on T × S, and

• ui : A× T × S → [0, 1] is a continuous payoff function for each i.

A and T denote A = A1 × · · · × An and T = T1 × · · · × Tn.

Note that this formulation allows for mixed strategies by allowing Ai to be a set of

randomized strategies over some pure strategy set.

A strategy for player i is a (Borel) measurable function σi : Ti → Ai. Let σ(t) =

(σ1(t1), . . . , σn(tn)).

Given a profile of strategies σ = (σ1, . . . , σn), let Vi(σ, ti) be the expected utility of agent

i with type ti and let Ui(σ) be the ex ante expected utility:

Vi(σ, ti) = EP [ui(σ(t), t, s)|ti]

Ui(σ) = EP [ui(σ(t), t, s)]

where EP denotes any version of the conditional expectation with respect to P relative to

the Borel σ-algebra on Ti.

A profile of strategies σ = (σ1, . . . , σn) is an interim ε-equilibrium of the game 〈N, (Ai), (Ti), S, P, (ui)〉
for some ε ≥ 0 if for all i and strategies σ′i of player i:

Vi(σ, ti) ≥ Vi(σ
′
i, σ−i, ti)− ε

for P -almost all types ti.
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A profile of strategies σ = (σ1, . . . , σn) is an ex-ante ε-equilibrium of the game 〈N, (Ai), (Ti), S, P, (ui)〉
for some ε ≥ 0 if

Ui(σ) ≥ Ui(σ
′
i, σ−i)− ε

for all i and all strategies σ′i of player i.

Interim equilibrium and ex-ante equilibrium are the corresponding special cases where

ε = 0.

Below, we provide theorems relating to both of these definitions of equilibrium. The result

on the stronger notion of interim equilibrium requires a stronger definition of convergence,

and the difference between these notions clarifies some aspects of arguments that are used

in the literature. For instance, the trembling-hand example discussed below is a special case

of the stronger result since it has complete information, while global games results do not

satisfy the stronger convergence requirement and are only covered by the ex-ante result.

Regardless of that stronger result, the ex-ante notion of equilibrium is still an important

and interesting one. For instance, if players formulate rules of thumb that do very well (are

almost best responses) in most situations, then the ex-ante notion applies.

3 Applications: Trembling Hand Perfect Equilibria,

Commitment in Games, the Email Game, and Global

Games

Before stating the main theorems, we illustrate some of their implications with applications

to four classic papers that have used perturbations of a game in different ways to make

selections of equilibria.

3.1 Trembling Hand Perfect Equilibria

We begin with the canonical equilibrium refinement. Here our main point is particularly easy

to see and so some of the basic intuition is conveyed, before we deal with the complications

introduced with incomplete information.

Consider a finite game in normal form Γ0 = 〈N, (A0
i ), (u

0
i )〉 (so here states and types are

degenerate),4 where

A0
i = {a0

i ∈ [0, 1]mi |
∑

k

a0
ik = 1}

4One can easily define corresponding concepts for general Bayesian games, and it is clear that our main
theorem still directly covers those cases.

6



is a set of possibly mixed strategies over mi pure actions, and u0
i are standardly defined

(expected) payoff functions. Let

Ar
i = {ar

i ∈ [ηr
ik, 1]mi |

∑
k

ar
ik = 1},

and let Γr = 〈N, (Ar
i ), (u

r
i )〉 be the game where each player i is restricted to place at least

weight ηr
ik on action k; and such that ηr

ik converges to 0 as r → ∞ for each i and k, but

where ur
i = u0

i .

A Nash equilibrium a0 of Γ0 is a trembling-hand perfect equilibrium, as defined by Selten

(1975), if there exists a sequence of perturbed games Γr (for some associated sequence of

minimal trembles on actions ηr
ik converging to 0) and an associated sequence of equilibria ar

of Γr that converge to a0.5

We define a corresponding concept allowing for slight perturbations in the best response

function, but with the stronger requirement that things work for all perturbations.

We say that Nash equilibrium a0 of the game Γ0 is a trembling∗-hand perfect equilibrium if

for every sequence of perturbed games Γr (for some associated sequence of minimal trembles

on actions ηr
ik converging to 0) there exists a sequence of (interim) εr-equilibria ar of Γr that

converge to a0, such that εr → 0.

We remark that the above definition requires the equilibrium be approached by εr re-

gardless of the perturbation, which is stronger than the analogy to trembling hand perfect

equilibrium which only requires things hold for some perturbation. Thus, our comment

here also holds for proper equilibrium as defined by Myerson (1978), which requires specific

perturbations.

Proposition 1 All of the Nash equilibria of any finite normal form game are trembling∗-

hand perfect equilibria.

Thus, while trembling hand perfection can be a very discerning refinement, if we perturb

best response correspondences along with perturbing the game, the refinement power is

completely eliminated.6

Proposition 1 is a corollary of Theorem 3, but again we can see a fairly easy direct proof.

Begin with a0 and define ar by choosing

ar
i ∈ argminbar

i∈Ar
i
|âr

i − a0
i |.

5We omit the obvious definition of convergence, but complete details are provided in the next section.
6The set of trembling hand perfect equilibria have a close relationship to the set of undominated Nash

equilibria, and in fact coincide for two-person games. If one loosens domination to only say that an action is
dominated if some other action gives at least an ε improvement regardless of the actions of other players, then
we would obtain a similar conclusion: all Nash equilibria are undominated∗ equilibria, where domination is
defined in this weaker sense.
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It then follows easily that if a0 is an equilibrium, then ar
i must be a εr-best response to ar

−i

(noting that expected utility is continuous in mixed strategies), where εr is proportional to

maxik(η
r
ik).

To see how this works in the context of a simple example, consider the two-by-two game

pictured in Figure 1.

L R

U
1

1

0

0

D
0

0

0

0

Figure 1: There are two equilibria: (U,L) and (D,R). Only (U,L) is a trembling hand perfect

equilibrium.

In this game, there are two Nash equilibria, (U,L) and (D,R), and only one trembling

hand perfect equilibrium (U,L). If we require that either player to place weight at least 1
r

on

each strategy then the unique best response is for the players to play U,L.

Note however, that if, for instance, the column player plays L with weight 1
r

and R with

the remaining weight, then the row player only loses 1
r

in expected payoff by playing D rather

than U . Thus, (D,R) is still an 1
r
-equilibrium of the game where players are forced to mix

their strategies.

In fact, if along with forcing the players to mix their strategies, we allow for a slight

perturbation in payoffs, then (D,R) is an exact equilibrium for the sequence of perturbed

games. For example, if the payoffs are slightly perturbed as in Figure 2, then (D,R) is in

fact a strict equilibrium of the corresponding perturbed games.

The point of this is example is not that we find (D, R) to be a compelling equilibrium of

this game. The point is that in order to rule out this equilibrium, one has to rely on arguments

that involve more than simply perturbing the game if one believes that along with possible

trembles in the strategies come possible misperceptions of the payoffs by either the modeler

or the players. In that case, (D, R) becomes a strict equilibrium, and ruling out strict

equilibria requires other sorts of approaches. Approaches such as stochastic stability (e.g.,
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L R

U
1

1

0

0

D
0

0

1
r−2

1
r−2

Figure 2: Perturbed Payoffs: Now D is a strict best reply even when 1
r

weight is played on

L.

Kandori, Mailath and Rob (1993), Young (1993)), or other sorts of dynamic/evolutionary

or reasoning arguments (e.g., Harsanyi and Selten (1988)), can lead to a prediction of (U,L)

even with perturbations of the payoffs, but these rely on very different sorts of machinery

and are not subject to the same criticism that we are making of trembling hand perfection.

3.2 Commitment in Games

Bagwell (1995) studies the robustness of predictions regarding the ability of a party to

commit to a course of action by examining what happens under small perturbations to the

observability of their actions. An example that illustrates his results is as follows.7

A seller decides whether to produce a low quality version (Low) or a high quality version

(High) of a product. A buyer observes the quality, and then decides whether to buy (Buy)

or not buy (Not) the product at some fixed price. The payoffs are described in Figure 3.

In the limit game Γ0, the seller moves first, and the buyer decides whether to buy after

she perfectly observes the quality. In the unique subgame perfect equilibrium of Γ0 the

seller produces the high quality version and the buyer buys if the quality is high and does

not buy if the quality is low. The fact that the quality of the product can be observed

by the buyer before making his decision allows the seller to commit to producing the high

quality version. Bagwell studies the robustness of the commitment prediction by examining

perturbations of this sequential game in which the buyer has to make the decision after an

imperfect observation of the product’s quality.

7We thank Ehud Kalai for suggesting that we use this example.
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Buy Not

High
1

1

0

0

Low
−1

2

0

0

Figure 3: Payoffs as a function of the actual quality and the decision of the buyer

Specifically consider the game Γr in which the seller chooses the quality and the buyer

decides whether to buy or not to buy based upon a noisy signal s, taking values (H) or (L)

and which is consistent with the true quality of the product with probability 1− 1
r
,

p(s = H|High) = 1− 1

r
= p(s = L|Low).

In terms of mapping this into our setting, there is a state of nature which can be thought

of as “correct” or “not correct,” which determines whether the type of the buyer matches

the actual quality or not, and types can be thought of as the signals. We can then list a

buyer’s strategy as a function of the signal.

Bagwell’s interesting conclusion can be seen by noting two key features of these games

with imperfect observability which hold regardless of how small the amount of noise is8. The

first one is that the only pure strategy Nash equilibrium of Γr involves the buyer never buying

the product and the seller producing the low quality version9. The second one is that in the

only equilibrium in which the seller produces the high quality version with high probability,

the buyer buys for sure upon observing the H signal and buys with probability approximately
1
2

upon observing signal L10. So no matter how large r is, there are no equilibria which are

close to the unique subgame perfect equilibrium of Γ0. In this sense, it seems that the

ability of the seller to commit to producing the high quality version disappears even with

8That is, how large r is.
9It has a family of mixed strategy Nash equilibria in which the seller produces the high quality version

with probability at most 1
r and the buyer never buys.

10Note that since in Γr, all information sets are reached on the equilibrium path, none of the standard
refinements of the concept of Nash equilibrium apply.
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the slightest noise in the observations made by the buyer prior to making his decision.

Nevertheless if we allow for a corresponding small perturbation in the players’ best response

behavior then this commitment ability is restored.

Claim 1 For any equilibrium σ0 of the limit game (Γ0), there is a sequence σr of interim

εr-equilibria of the corresponding games Γr that converge to σ0, where εr → 0. That is, each

σr is an εr-equilibrium with the property that the strategy of player 2 is εr-optimal conditional

on each possible signal that he may observe.

Consider the strategy profile σr = (σr
s , σ

r
b), according to which the seller chooses high

quality with probability 1− 1
r

and low quality with probability 1
r
; the buyer chooses to buy

when seeing the high-quality signal and doesn’t buy when seeing the low-quality signal. For

large enough r and given the buyer’s strategy, producing the high quality version is the

seller’s best choice. However this optimal strategy only beats σr
s by 1

r
, and therefore σr

s is
1
r
-optimal. The buyer’s strategy is in fact optimal because conditional on observing the high

quality signal, the probability that the product is of high quality is high enough for him to

prefer to buy, and conditional on the low-quality signal, the item has an even probability of

being high-quality and low-quality so he is indifferent between buying and not buying. Thus

σr is an interim r-equilibrium, and it is easy to see that σr converges to the unique subgame

perfect equilibrium of Γ0 σ0 as r →∞.

3.3 ε-Equilibria in Rubinstein’s (1989) Electronic-Mail Game

Let us now turn to a different example, where a different sort of perturbation is made to the

games, but our claim will still apply (by a slightly different argument).

Rubinstein’s (1989) electronic mail game is one where with complete information (and

common knowledge) of a state of nature, two players are able to coordinate on an equilibrium

that leads to a socially efficient outcome that is unambiguously good for both of them.

However, if their communication is imperfect, and the state is no longer common knowledge,

then that equilibrium disappears. One implication of our theorem is that even though that

equilibrium disappears, it is still an ε-equilibrium. In fact, in this case the ε is proportional

to the noise in the communication.

The game is formally described as follows. There are two states of nature x and y and

two players who choose an action in Ai = {X, Y }. The states of nature correspond to the

payoff matrices in Figures 4 and 5. State y occurs with probability p < 1
2

and x occurs with

probability 1−p, and the state is privately revealed to player 1 at the beginning of the game.

The players are connected by an automatic e-mail exchange system that works as follows:

• An initial message is sent by player 1’s terminal if and only if the state of nature is y.

11



• Each terminal automatically replies to any message it receives.

• Any given message fails to get from the emitting terminal to the receiving terminal

with a probability 0 < γ < 1.

After the state of nature is revealed to player 1, players learn how many messages ti ∈
{0, 1, 2....} were sent by their respective machines, and then the players simultaneously choose

action X or action Y , and their payoffs are determined according to the state of nature as

shown in Figures 4 and 5, where L > M and δ is taken to be a small number.11

X Y

X
M

M

−L

0

Y
0

−L

−δ

−δ

Figure 4: The Game Gx

There is a unique equilibrium of the above game for any γ > 0 which is for both players

to choose action X regardless of their types. The key insight, is that type t1 = 1 realizes that

she sent a message to the other player, but did not get one in return. There is a better than

1/2 chance that player 2 never received 1’s initial message and so will then find it optimal

to play X.12 Given these odds, player 1 of type t1 = 1 should choose X. The game unravels

from there, as similar reasoning then applies to player 2 of type t2 = 1, and then to player

1 of type t1 = 2, and so forth.

The intriguing aspect of this game, is that when the state is really y, the players’ types

are likely to be quite large, so with high probability, they will each know the state, and know

11Rubinstein’s (1989) game has δ = 0. Our formulation results in a unique equilibrium, rather than simply
a unique equilibrium where X is played in state x. If δ = 0 there is also an equilibrium where both players
always play Y . With any δ > 0, that is no longer an equilibrium.

12It is a dominant strategy for player 1 to choose X in state x. This implies that when t2 = 0, player 2
places at least weight 1/2 on the state being x and player 1 playing X and then has a unique best reply to
play X as well.
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X Y

X
0

0

−L

0

Y
0

−L

M

M

Figure 5: The Game Gy

that the other knows the state, and so forth, to a high level. However, the γ-wedge is enough

to break down full common knowledge, and that is all that is needed to eliminate the quite

natural equilibrium where both players choose X when the state is x and Y when the state

is y.

When we look at the limiting game, where γ = 0, which intuitively corresponds to a

game where both players are publicly told the state and it is common knowledge, then there

is another quite natural and Pareto optimal equilibrium where players play X when the

payoff-state is x and Y when the state is y. Thus, any slight introduction of noise that

breaks down the common knowledge of the state in the way described above, eliminates the

higher payoff equilibrium, and results in a very different play of the game.

Our point is that if in addition to introducing a slight noise in beliefs one also allows

for slight deviations from full optimization, then the original equilibria are approximately

recaptured.

Claim 2 For any sequence of γ → 0 (the probability of the message not getting across),

there is a corresponding sequence of ex ante εγ-equilibria, σγ, of the corresponding email

games, where εγ → 0, and which converge to having players play X when the payoff-state is

x and Y when the state is y.

Claim 2 shows that for slight perturbations in the information away from the complete

information game, if one also allows for slight perturbations in best reply behavior (in an ex

ante sense), then one recovers all equilibria including the Pareto optimal equilibrium that

disappeared in the perturbations that Rubinstein considered.
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Claim 2 follows as a corollary to Theorem 3.13 In this case, it is also easy to see a direct

proof of the claim. Consider the strategies σ∗i (0) = X, σ∗i (ti) = Y ∀ti ≥ 1 and all γ > 0. For

any γ > 0 (the probability of the message not getting across), σ∗ = (σ∗1, σ
∗
2) constitute an

ε-equilibrium of the game where ε is proportional to γ. To see this, note that it is a strictly

dominant strategy for t1 = 0 to play X. It then follows easily that the unique best response

for t2 = 0 is to play X. Next, under the prescribed strategy σ∗ = (σ∗1, σ
∗
2), it is a unique best

response for any ti > 1 to play Y , since they are sure that the other player has ti ≥ 1 and

will thus play Y . The only remaining types are ti = 1, and the only type who is not best

replying is t1 = 1, which is a type with a probability proportional to γ.

It is worth noting that the above-specified εγ-equilibrium of the game Pareto dominates

the exact equilibrium of the perturbed game (for small γ). It is only a single low-probability

type of player 1 who is not optimizing. Player 1 is better off ignoring some of his or her

information: if player 1 only observes the true state, but not the number of messages received

(t1 is unknown to player 1 but the state is known), then playing a strategy corresponding to

what each player has heard the state to be is an equilibrium of the game. In fact, if player

1 could commit not to pay attention to the messages received - all players would strictly

benefit. This also provides an interesting interpretation of the ε-equilibrium. If player 1 has

to incur some cost to observe t1 (presuming the player sees the state {x, y}), then it would

be optimal for player 1 to choose not to pay to observe the type. This is an example where a

ε-equilibrium that involves low probabilities of some types acting substantially suboptimally,

can be understood by having players face costs of discovering information or a cost of fully

tailoring strategies to information (in addition to other justifications that are based on players

or the modeler incorrectly perceiving payoffs).

Note that this example illustrates why the ε-equilibrium needs to be an ex-ante notion

for this setting. The statement is not true from an interim perspective: type t1 = 1 always

has a strict best reply (with a fixed gap) of playing X. Proposition 2 echoes a finding of

Monderer and Samet (1989) who argue that the distinction between ex-ante and interim

equilibrium is due to a lack of common belief (a weakening of common knowledge) for some

of the types. We discuss the relation to their results more fully in the concluding remarks.

3.4 Global Games

Next, let us consider the class of global games as first studied by Carlsson and van Damme

(1993).

13Reset the type spaces to be [0, 2], and then remap so that each ti > 0 becomes 1 + 1/ti and keep ti = 0
to be 0, so that all type spaces can then be taken to be Ti = [0, 2]. Then let the Γ0 game be such that with
probability p the state is y and both players are of type 1, and with probability 1− p the state is x and both
players are of type 0.
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A “global game” Γr = {N, S, (Ti), (Ai), (ui), (P
r
i )} is defined as follows, following the

structure from Frankel, Morris, and Pauzner (2003). A state s ∈ S ⊂ IR is drawn according

to a continuous density φ with connected and compact14 support. Each player i observes a

signal tri = s + rηi, where ηi is distributed according to an atomless density fi with support

in the interval [−1/2, 1/2], and ηi is independent of ηj for all i 6= j. The action set of player

i, Ai ⊆ [0, 1], is a closed, countable union of closed intervals and points, and contains 0 and

1. If player i chooses action ai ∈ Ai, his or her payoff is ui(ai, a−i, s).

Frankel, Morris, and Pauzner (2003), in generalizing the earlier results of Carlsson and

van Damme (1993), make a series of assumptions about the structure of the payoffs of the

game, and also about the uncertainty structure. Under those assumptions, they show that

even though the limit game (where r = 0) may have multiple equilibria, there is a unique

equilibrium along the sequence. Thus, the approximation by a series of equilibria of slightly

noisy versions of the game “selects” a unique equilibrium of the limit game. Here, we show

that even without any structure on the game, we regain all of the equilibria of the limit game

as the limit of ε-equilibria along the sequence. So, no selection can be made if one allows for

perturbations to the best replies as well as the uncertainty in the game.

Proposition 2 For any sequence of “global games” Γr, and any equilibrium σ0 of the limit

game (Γ0), there is a sequence σr of ex-ante εr-equilibria of the corresponding global games

Γr that converge to σ0, where εγ → 0.

It is important to note that this result holds only for the ex-ante notion of equilibrium

and not the interim. The global games approach relies on introducing small measures of

types that have very different preferences from the types in the original game, and then

using those far-away types to anchor the strategies of the equilibrium. If one requires a

stronger definition of convergence in the game, then the global games conclusions could not

be obtained, or if one allows that perhaps the far-away types’ strategies are mispecified.

In contrast to the earlier propositions, Proposition 2 is more difficult to prove directly,

but it does follow as a direct corollary of Theorem 3. Thus, we now move on to the main

theorem.

4 The Theorems

Before stating the main theorems, we provide some definitions that are useful in defining

convergence in a general setting of Bayesian games.

14Frankel, Morris, and Pauzner (2003) do not assume compact support, but their results could be recast
in such a setting with an appropriate compactification. We can prove Proposition 2 without compactness
(via a series of successive approximations and repeated applications of our main theorem), but then it is no
longer a direct corollary of Theorem 3.
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4.1 Sequences of Games

For r = 0, 1, . . . , let Γr = 〈N r, (Ar
i ), (T

r
i ), Sr, P r, (ur

i )〉 be a Bayesian game. All the games

in question have the same set of players N r = N = {1, . . . , n}, and satisfy the following

conditions: The action spaces Ar
i lie in a compact subset Ai of a fixed locally convex linear

metric space,15 the closed type spaces T r
i lie in a fixed compact metric space Ti, and the

closed state spaces Sr lie in a fixed compact metric space S, and the P r are Borel probability

measures on T × S, with support in T r × Sr. All ur
i are defined on A× T × S.

4.2 Convergence of a Sequence of Games

We say that the sequence of games {Γr} converges to Γ0 if

[1 ] Sr → S0, and for each i: Ar
i → A0

i and T r
i → T 0

i ; all in the Hausdorff metric,

[2 ] the ur are a uniformly equicontinuous sequence of functions.16,17

[3 ] convergence of beliefs:

(a) P r → P 0 in the sense of weak convergence of measures (as measures on T × S),

(b) For each r and i there exists a P r-measure one set, Br
i ⊂ T r

i , such that: for any

continuous function f : T × S → [0, 1] and for every ε > 0 there exists δ and r

such that if r and r′ are larger than r (including the limit r = 0) and tri ∈ Br
i and

tr
′

i ∈ Br′
i are such that d(tri , t

r′
i ) < δ then |EP r [f |tri ]− EP r′ [f |tr′i ]| < ε.

Most of the conditions are straightforward, simply requiring convergence of corresponding

action spaces, type spaces, payoffs, and probability measures. The requirement [2] that

preferences are uniformly equicontinuous guarantees that preferences can be compared across

games. In fact in most applications the preferences are the same across games and it is only

the information and uncertainty structure, states, perhaps actions spaces that differ along

the sequence. In such a case, [2] is satisfied as long as preferences are continuous, given the

compactness of the domains.

15It is thus sufficient to have a compact subset of a normed vector space that is a metric space.
16We say that a sequence of functions fr : X → Y indexed by r (possibly including a limit element

indexed by r = 0), where X and Y are compact metric spaces, is uniformly equicontinuous if fr is uniformly
continuous for every r and for every ε > 0 there is a δ > 0 and an index r such that d(fr(x), fr′

(x′)) < ε for
every pair r, r′ ≥ r (including r = 0) and x ∈ X and x′ ∈ X such that d(x, x′) < δ.

17When working with product spaces, we take d to be the ∞-product metric, So, for in-
stance, d((ai, ti, s), (a′i, t

′
i, s

′)) = max{dAi(ai, a
′
i), dTi(ti, t

′
i), dS(s, s′)}, and then d((a, t, s), (a′, t′, s′)) =

maxi{d((ai, ti, s), (a′i, t
′
i, s

′))}. Note that uniformity is implied in compact spaces, but we state it to make
clear the implications that are used in the proof.
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The only condition that might be unexpected is [3b]. Some condition like this is needed,

as weak convergence of the underlying type distributions is not sufficient to guarantee that

agents’ interim beliefs in the sequence of games converge to the beliefs in the limit game.18

An example of a sequence of underlying distributions that converge weakly to a limit but

such that the corresponding sequence of interim beliefs is completely different from the limit

can be seen in Example 1 in Milgrom and Weber (1985).19 They exhibit a game where

players’ types are perfectly correlated and revealing of a state all along a sequence, but not

at all revealing of a state in the limit under weak convergence. Such sequences need to be

ruled out in order to establish any sort of equilibrium convergence.

Condition [3b] simply requires convergence of beliefs in the weakest way required for

the proof technique of our main theorem, and is satisfied in the relevant applications. For

instance, if the type space is finite, there exists some δ such that the distance between any

two types are larger than δ. Thus [3b] is just the convergence of conditional expectation upon

the same type, which is true by weak convergence. Moreover, if the type space is countable

and there exist some δ such that the distance between any two types are larger than δ,

[3b] applies as well. Another sufficient condition is independent conditional distributions

such that EP r [f |tri ] = EP r [f |tr′i ] for all P r, f and all types, and [3b] is implied by the same

argument as in the finite case. More generally, the condition is a continuity condition in terms

of how conditional beliefs vary with types, and is satisfied in many standard applications

(such as some sequences of affiliated values auctions that have the same supports on types

as the uncertainty varies).

4.3 Interim ε-Equilibrium

We begin with results on the stronger notion of interim ε-equilibrium, which requires ap-

proximate best responses for all types of all players.20

Before stating the theorems on interim ε-equilibrium, let us discuss why it is important

to allow for such equilibria in order to have a robust analysis, rather than simply focusing

on exact equilibria. There are at least three reasons that justify examining robustness with

18For more on the necessity of such a condition, see Kajii and Morris (1998).
19That example has one player and an uncertain state, so that S = {0, 1} and T = T 1 = [0, 1]. P r

is such that P r[s = 0, t1 = 2j
2r ] = 1

2r and P r[s = 1, t1 = 2j−1
2r ] = 1

2r for every j ∈ {1, . . . , r}. Thus, all
along the sequence player 1’s type exactly reveals the state. Note that P r weakly converges to P 0 such
that P 0[s = 0, t1 ≤ t] = P 0[s = 1, t1 ≤ t] = t/2 for t ∈ [0, 1] and so in the limit the player’s type reveals
nothing about the state. If the player’s utility is state dependent, then equilibria of the sequence of games
and the limit game might be completely different from each other as the information is not converging in an
appropriate sense.

20Of course, formal statements are up to sets of measure zero given that all things are only defined up to
versions of corresponding probability measures.

17



regards to interim ε-equilibrium:

• The modeler may have (slightly) mispecified or mismeasured the payoffs of the players.

• The players may make slight errors or may slightly misperceive their payoffs or have

slight noise in their beliefs or perceptions of payoffs.

• Complexity or other costs may prevent players from exact optimization, and it may

suffice for them to approximately optimize.

Given this perspective, if one relies on refinements based on exact equilibrium, when those re-

finements are not robust with respect to approximate equilibrium, then one may be mistaken

in predictions.

Theorem 1 Let {Γr} be a sequence of (Bayesian) games converging to Γ0 such that the

supports of the P rs converge to the support of P 0 in the Hausdorff metric. For any continuous

equilibrium21 σ0 of the limit game Γ0, there exists a sequence of interim εr-equilibria σr of

the corresponding games {Γr} that converge uniformly to σ022 such that εr → 0.

This theorem requires that the support of P r be close to the support of P 0 when r is

large enough. This is an important condition for our interim results. As we saw in the email

game above, the support of P 0 on the type space was t ∈ {0, +∞} while the support of P r

was t ∈ {0, 1, 2, ..., +∞} for all r > 0. For agents with types (t = 1), which are far from the

support of P 0, we cannot find a type close to t = 1 in t ∈ {0, +∞} such that we cannot find

the corresponding strategy in σ0 to assign to t = 1 and make sure it is close to best response.

The proof of this theorem is a variation of the proof of our theorem about ex ante ε-

equilibrium. That proof already implies that given the identical supports on types and

identical action spaces then the actual original strategies would be interim ε-equilibria. The

only non-obvious portion is the approximation of strategies when type and action spaces do

not coincide. This is taken care of by first matching a type in the support of game Γr to

a nearest type in the support of Γ0, being careful about measurability, and then choosing

its corresponding strategy to be as close as possible to that of its matched type (the details

appear in the proof of Theorem 3), subject to any constraints imposed by differences between

Ar and A0. Then continuity of beliefs and utility functions guarantee that these strategies

are approximate best responses for all types.

21If the support of P 0 is finite, then any equilibrium σ0 is continuous. Thus, this applies to any setting
where the limit game has a finite support of types, including oth the trembling-hand example and the
commitment-games example.

22 In our proof we construct σr : T → Ar so that the σr are defined for all types in T , even those outside
of T r, and also mapping within the range Ar, and such that if we restrict the domain of σr to be T r then
these are then strategies in Γr.
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This theorem shows that an interim approximation result holds generally for continuous

equilibria when the approximating games have type spaces close to the limit game. If there

are some discontinuity points in the equilibrium strategies, slight belief changes in Γr can

have significant effects since there can be types facing agents on one side of some discontinuity

point who face agents on the other side of the discontinuity point with very different behaviors

under a slight belief change. Thus, in order to extend the theorem to address discontinuous

equilibria, one has to strengthen the conditions on the convergence of beliefs. In order to

deal with this issue, a stronger form of convergence of beliefs is needed, and we consider the

following conditions that correspond to conditions that Milgrom and Weber (1985) used to

study existence of equilibria and upper-hemi continuity:

• Absolute Continuity: let P r
i be the marginal distribution of P r with respect to Ti

and P r
S be the marginal on S. P r is absolutely continuous with respect to the product

measure P̂ 0 = P 0
S × P 0

1 × · · · × P 0
n , with corresponding Radon-Nykodym derivative by

f r, for every r (including 0).

• Uniform Convergence: The {f r} converge uniformly to f 0 on every compact subset of

T × S, and f 0 is continuous almost everywhere with respect to P̂ 0.

Note that the first condition requires that the measures associated with the perturbed games

be absolutely continuous with respect to the product measure of the limit game.

With this stronger notion of convergence of beliefs in hand, we can show that the interim

approximation results hold for all equilibria, including discontinuous ones.

Theorem 2 Let {Γr} be a sequence of (Bayesian) games converging to Γ0 satisfying absolute

continuity and uniform convergence. For any equilibrium σ0 of the limit game Γ0 there

exists a sequence of interim εr-equilibria σr of the corresponding games {Γr} that converge

in probability to σ0 relative to P 0 and such that εr → 0.

These theorems imply that all equilibria of limiting games may be approached by approx-

imate equilibria of any sequence of nearby games, provided the type spaces are sufficiently

close in well-defined senses. Thus, refinements relying on perturbations of exact equilibria

are not robust to perturbations of payoffs or best reply behavior, unless they rely on per-

turbations of the type spaces that introduce types that are quite distant from the original

ones. Thus, these theorems also shed light on the difference between interim and ex-ante

ε-equilibrium notions, as to satisfy the interim notion, we require the stronger notion of

convergence. We next discuss more drastic perturbations, which then must rely on ex-ante

equilibrium, in order to capture applications to Rubinstein’s email game, to global games,

and related settings.
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4.4 Ex-Ante ε-Equilibrium

Before stating our theorem on ex-ante ε-equilibrium, we provide additional justifications

regarding the importance and interest of this as an equilibrium notion. In justifying the

notion of interim approximate equilibria, we mentioned three possible justifications: slight

misspecifications or errors by the modeler, slight errors or noise in beliefs or perceptions

by the players, or slight costs of full optimization. When we move to a notion of ex-ante ε-

equilibrium, we now allow some vanishing set of types of players not to be even approximately

optimizing. How does one justify an equilibrium notion that allows some subset of players

not even to approximately best respond? Here there are several answers. First, as in the

justification of interim equilibrium, it could be that the modeler has slightly misspecified

the game. Any equilibrium refinement relying on perturbed games that escapes the interim

approximations we discussed above must then be relying critically on some small set of types

who are quite different from any types in the limit game. If those types are eliminated, then

any equilibrium in the limit can be approximated. Thus, it is on at most a vanishing fraction

of types on which any perturbation-based refinement must depend and it will then be non-

robust to a misspecification of the types in that way. Second, from the vast literature on

game theoretical experiments, one often sees, in fact, non-trivial fractions of players who

fail to even approximately best respond, having some more basic misunderstanding of the

game. Here we show that that fraction need only be tiny to allow approximation of any

equilibrium of a limiting game. Third, players may in fact optimize from an ex-ante point of

view and then choose behaviors that pay attention to most possible situations, but are not

fully optimal in some vanishing fraction of situations.

In order to state the theorem, we need one additional definition regarding the form

of convergence that we establish. Given compact metric spaces X and X0 ⊂ X, we say

that a sequence of corresponding functions f r : X → Y for some compact metric space Y

converges∗ to f 0 : X0 → Y relative to a probability measure P on X, denoted f r →∗
P f 0, if

f r is continuous for each r and d(f r(x), f0(x)) < ε(r) for a set of P -measure at least 1−ε(r)

where ε(r) → 0.

This is essentially a standard convergence notion, namely convergence in probability,

except that we additionally demand that the approaching functions be continuous, which

makes it a stronger notion of convergence. Nevertheless, we will show that for any equilibrium

of the limit game, there exists a sequence of ε-equilibria converging it in this sense.23

Theorem 3 Let {Γr} be a sequence of (Bayesian) games converging to Γ0. For any equi-

librium σ0 of the limit game Γ0, there exists a sequence of ex ante εr-equilibria σr of the

23As will be clear in the proof, if the action spaces coincide then the convergence will be pointwise and so
even stronger (in particular, step 3 of the proof of Theorem 3 is no longer necessary).
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corresponding games {Γr} such that σr →∗ σ0 relative to P 0 24 and εr → 0.

The proof of the theorem follows a fairly simple intuition, but has substantial complica-

tions due to the fact that the games may have different type and strategy spaces, and that

we allow for arbitrary distributions over types. These are important elements of generality

to cover many applications. So, let us describe the basic intuition for the proof in the case

where all of the type and strategy spaces are the same and the distributions over types all

have the same finite support. We then outline the more general proof technique and refer

the reader to Appendix for details.

In the case where all of the spaces are the same and the type distributions all have the

same finite support, then the original equilibrium strategies form a sequence of εr-equilibria

of the sequence of games. This is straightforward. If this were not true, then for some player

and type of that player that has positive measure in the limit, there would be a sequence of

deviations for that type that would all result in a benefit of more than some fixed amount

γ > 0. Given the finite support, any strategy can be taken to be a continuous function, so

then weak convergence of the beliefs implies that the limit of the deviations would result

in a better reply in the limit, which contradicts the fact that the original strategy is an

equilibrium.

The complications for the general proof come on several fronts. First, without a finite

support on types, the original strategies (as well as deviations from them) might not be

continuous functions. In that case, weak convergence of the measures of types does not

guarantee any convergence of beliefs. In fact, it alone is not sufficient for the theorem in

the general case, and that is the role of condition [3b]. Thus, the proof needs to work

with approximations to the original strategies. We approximate the original strategies by

a sequence of continuous functions that converge to the original strategies in the sense of

→∗. This involves using a theorem by Aldaz (1996) on continuous approximations, as well

the Tietze extension theorem, in order to make sure that the convergence is strong enough

for our purposes (Lemma 1). We then show that these approximations form a sequence of

ε-equilibria of the original game due to the uniform continuity of the utility functions in the

original game and the →∗ convergence of our approximations to the original strategies. The

second complication comes from then showing that these continuous approximations of the

original strategies are approximate equilibria of the approaching games. The difficulty is that

optimal deviations from these strategies need not have nice convergence properties, as the

set of strategies itself is not compact; and we need to work with those in order to bound the

potential gain from deviations along the sequence of converging games. We address this by

a careful and fine partitioning of the space of types in a way such that the boundaries of the

partition have negligible measure (Lemma 3) and then argue that any optimal deviation can

24See footnote 22.
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be approximated by step functions on those partitions. The set of step functions on these

carefully constructed partitions is compact. We then show that convergence of beliefs holds

for such sequences of step functions (and here [3b] comes into play, together with Lemma

2), given that the non-deviating strategies are continuous and that the boundaries of the

partitions have been chosen to have negligible measure. Next, we face the third complication,

which is that the action and type spaces of the sequence of games might not be the same, and

so these ε-equilibria of the original game cannot be directly taken to even be feasible in the

approximating games. Thus, we need to approximate these by strategies in the converging

games. In order to do that, we need to appeal first to the Kuratowski-Ryll-Nardzewski

Selection Theorem to show that we can find a measurable map for large enough r which is

an approximation, and then again apply the same machinery as above to get a continuous

approximation. We then verify that these remain εr-equilibria, for appropriate choices of εr.

4.5 Correlated Equilibria and Upper Hemi-Continuity

Our next remark concerns correlated equilibria, as defined by Aumann (1974). Theorem 3 is

stated for Bayesian (Nash) equilibria. Given that a correlated equilibrium can be written as

a Bayesian equilibrium where the uncertainty encodes the correlation device, our results also

cover correlated equilibria. We state the remark for the case of a complete information game,

which then covers both the interim and ex-ante notions of equilibrium. The remark extends

to Bayesian games as well, but then there are various potential definitions one can work with

in terms of defining correlated equilibrium and we simply refer the reader to Forges (1993)

for details on defining correlated equilibria in Bayesian settings for an appropriate notion in

a strategic form setting; and then one can correspondingly define ε-correlated equilibria by

extending her definition to only require approximate best responses to extend the remark.

Remark 1 Consider a finite game in normal form Γ0 = 〈N, (A0
i ), (u

0
i )〉 where A0

i is the set

of mixed strategies over a finite number of pure actions. For any correlated equilibrium of Γ0

and a sequence of finite games in normal form Γr → Γ0, there is a corresponding sequence

of εr-correlated equilibria25 of the games Γr converging∗ to the correlated equilibrium of Γ0.

Theorem 3 establishes a sort of lower hemi-continuity result for Bayesian equilibrium,

when we allow the approaching sequence to be εr-equilibria. An upper hemi-continuity result

also holds, as one would expect from standard upper hemi-continuity results on Bayesian

equilibria (e.g., see Milgrom and Weber (1985) and Jackson, Simon, Swinkels and Zame

(2004)). We state such a result as a remark as its proof is more standard, and the necessary

25We omit the formal definition, as it is the obvious extension of correlated equilibria to have players ε-best
respond given the information they have from the correlating device and the strategies of other players.

22



modifications of previous results to work with the general form of convergence of games that

we allow here can be easily adapted from the proof of Theorem 3. We state this for the

weaker concept of ex-ante equilibrium, since that then provides a stronger result since the

limiting equilibrium with be both interim and ex-ante.

Remark 2 If σr is a sequence of ex-ante εr-equilibria of Γr such that σr →∗ σ0 and εr → 0,

then σ0 is an equilibrium of the limit game Γ0.

A sketch of the proof of the remark is as follows. Suppose to the contrary that σ0 is not

an equilibrium of the limit game Γ0. Then there exists i, ε > 0 and σ0
i such that

ε + EP 0(u0
i (σ

0)) < EP 0(u0
i (σ

0
i , σ

0
−i)).

Then using some of the arguments in the proof of Theorem 3, we can find a (continuous)

approximation of σ0
i , denoted σ̃r

i , such that

ε/2 + EP r(ur
i (σ

r)) < EP r(ur
i (σ̃

r
i , σ

r
−i)).

However, σr is a sequence of εr equilibria of Γr, and so when r is large enough

ε/4 + EP r(ur
i (σ

r)) ≥ EP r(ur
i (σ

r
i , σ

r
−i))

for any possible strategy σr
i , which contradicts the previous inequality.

5 Concluding Remarks

5.1 Continuity of Beliefs and Common-p Beliefs

Our analysis has shown that under suitable convergence and continuity conditions, any equi-

librium of an underlying game can be approximated by ex ante ε-equilibria of an approaching

sequence of games. We also provided a result for interim ε-equilibria under stronger condi-

tions on the underlying sequences of perturbations.

Our approach is quite different from that of Monderer and Samet (1989), who prove a re-

sult with a similar structure when the approximating sequence is with countable uncertainty

and satisfies a common p-belief condition. This raises a question regarding the relationship

between the continuity that we work with here and the commonality of p-beliefs studied by

Monderer and Samet.

Effectively, what is needed to get our approximation result is that players’ beliefs about

the uncertainty they face in the perturbed games not differ too much from what they face

in the limit. Players face two forms of related uncertainty: one about what their payoffs
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in the game are as a function of the actions (“payoff uncertainty”) and the other about

what other players are likely to do (“strategic uncertainty”). A common p-belief condition

(for very high p) is sufficient to ensure that both of these forms of uncertainty become

negligible in the limit. Our continuity condition is a more direct requirement that ensures

that beliefs (both payoff and strategic) in the perturbed games are similar to those in the

limit. The advantage of working with a continuity condition is that it is a more primitive and

more general mathematical condition, which allows us to expand the scope of the analysis

quite substantially to cover settings where the underlying games are Bayesian and where we

can allow for continua of types. Nonetheless, it would still be interesting to explore which

sorts of common p-belief and other epistemic conditions are sufficient for continuity in the

uncertainty beyond the countable-perturbations setting that was studied by Monderer and

Samet (1989)26.

5.2 Extensive Form Games and Rationalizability

Our approach has covered Bayesian games and has focused on equilibrium notions. Other

potential applications of our reasoning include rationalizability notions, as well as extensive

form games.

In fact, extensive form games can already be analyzed by applying our analysis since,

for instance, our results already cover the associated normal form game and its trembling

hand perfect equilibria∗. This then implies that applying our analysis to the extensive

form leads one to recover all Nash equilibria of the extensive form, even when one applies

perfection arguments that would usually lead to sequential rationality. To understand why

the admittance of ε-best responses leads one to recover all Nash equilibria rather than some

variation of perfection in extensive-form settings, it is again easy to see that with only slight

trembles, a change in any given player’s off-the-equilibrium path behavior will only lead to

slight changes in payoffs.27 Thus, such trembles do not have the usual refining power, and all

Nash equilibria are recovered, even in the extensive form. Despite our results being directly

applied to extensive forms, there are also some interesting questions that arise concerning

what the appropriate ε-notion of sequential rationality should be in doing so. Does one

simply require ε-best responses from the perspective of the overall payoffs of the game (in

26Kajii and Morris (1997) provide a definition of common p-beliefs in a continuum setting, which could
potentially provide a foundation for some analogs to Monderer and Samet’s (1989) results with richer un-
certainty.

27This applies whether one works with an associated agent normal form following Selten (1975) (where
each information set is treated as a separate player), or with a standard formulation where players’ fully
contingent strategies are the actions in the strategic form of the game (e.g., von Neumann and Morgenstern
(1947)).

24



which case our results here can be applied as just discussed) or does one require that players’

payoffs be ε-best responses restricting attention to the payoffs conditional on already being

in some subgame?28 If it is the latter, then details of the extensive form need to be taken

into account.

In terms of rationalizability, one can similarly loosen exact best responses to some beliefs

to instead require ε-best replies. For instance, such an approach would eliminate much

of the refinement power of concepts like perfect and cautious rationalizability that refine

rationalizability concepts (see Bernheim (1984) and Pearce (1984)) in similar ways that we

have seen here.
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Appendix

The following lemmas are useful in the proofs.

Lemma 1 Given any δ > 0, any i, any measurable strategy σi defined on a closed subset of

Ti and any Borel probability measure P on that set, there exists a continuous σ′i defined on

all of Ti such that d(σ′i(ti), σi(ti)) < δ for all ti in a set of P -measure of at least 1− δ. If a

second probability measure P ′ is also present, then d(σ′i(ti), σi(ti)) < δ for all ti in a set that

has both P ′ and P -measure of at least 1− δ.

Proof of Lemma 1: By Corollary 2.4 in Aldaz (1996) [noting that a compact subset of a

locally convex metric space is a Frechet space, and that any Borel measure on a metric space

is completed], there exists a sequence of continuous functions σk
i defined on the domain of

σi converging pointwise to σi, P -almost everywhere. By a variation of the Tietze Extension

Theorem29 there exists an extension of σk
i which is continuous on all of Ti and is equal to σk

i

on its domain, and so without loss of generality we take σk
i to be continuous on all of Ti. By

Egorov’s theorem, for any δ > 0, we can find a set of P -measure at least 1− δ such that the

pointwise convergence of the σk
i to σi is uniform, and applying Egorov’s Theorem a second

time leads to the second conclusion.

Lemma 2 Consider a sequence of (possibly discontinuous) functions fk : X → [0, 1] where

X is a compact metric space, such that |fk(x)− f ∗(x)| < εk for a set of P -measure at least

1− εk where εk → 0 and P is a probability measure on X. Then EP [fk] → EP [f ∗].

Proof of Lemma 2: Since there is a sequence εk → 0 such that |fk(x)− f ∗(x)| < ε(k) for

a P -measure set of at least 1− εk, it follows that

EP [|fk − f ∗|] < εk(1− εk) + (1)εk,

and the right hand side goes to 0 with εk. Thus, EP [fk] → EP [f ∗].

29This follows, since Ai is a locally convex linear compact metric space, by a theorem due to Dugundji
(1951). Thank you to Ben Golub for pointing us to this version of the theorem.
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Lemma 3 For every i and k there exists a finite partition of Ti denoted Ck
i such that the

diameter of every Ci ∈ Ck
i is less than 1/k and

∑
Ci∈Ck

i
P 0(∂Ci) < 1/k, where ∂C denotes

the boundary of C.

Proof of Lemma 3: First, we cover Ti with balls B(ti, k) = {t′i ∈ Ti|d(ti, t
′
i) < 1/(4k)}.

Ti is compact, so we can find a finite number of balls covering Ti; and we denote the finite

set of the centers of the balls by T c
i . Note that for any φ, 1

2
< φ < 1, the balls B(ti, φk)

for ti ∈ T c
i still cover Ti and each have diameter less than 1/k. Order the points in T c

i

t1i , t
2
i , . . . , t

m
i where m = |T c

i |. Find 1
2

< φ1 < 1 such that P 0(∂B(t1i , φ
1k)) < 1/(m2k). This

is possible since the intersection of the ∂B(t1i , φk)s is empty for any set of distinct φs such

that 1
2

< φ < 1, and so at most a finite number, m2k, of the boundaries can have measure of

at least 1/(m2k). Similarly, find φj for each tji in T c
i such that P 0(∂B(t1j , φ

jk)) < 1/(m2k).

The balls B(tji , φ
jk) form a finite covering of the set Ti such that the sum of their boundaries

has a total measure of less than 1/mk. Now, form a partition of Ti as follows. Let C1
i

be Cl(B(t1i , φ
1k)), where Cl denotes closure. Inductively, let Cj

i be Cl(B(tji , φ
jk)) less the

points in ∪j′<jC
j′

i . Note that the boundary of the elements of the partition is the union of

parts of the boundaries of the collection of balls B(tji , φ
jk), and so P 0(∂Cj

i ) < m 1
m2k

= 1
mk

.

Therefore
∑

Ci∈Ck
i
P 0(∂Ci) < 1/k. Also, the diameter of each element of the partition is less

than 1/k by construction.

Lemma 4 σ is an interim ε-equilibrium relative to some P if and only if for every i and

every positive measure Borel set Bi ⊂ Ti∫
S×Bi×T−i

ui(σ, t, s)dP ≥
∫

S×Bi×T−i

ui(σ−i, ai, t, s)dP − εP (Bi)

for all ai ∈ Ai.

Proof of Lemma 4: If σ = (σ1, . . . , σn) is an interim ε-equilibrium then for all i and actions

ai of player i:

Vi(σ, ti) ≥ Vi(ai, σ−i, ti)− ε

for P -almost all types ti.

Thus, for any positive measure Bi∫
Bi

Vi(σ, ti)dP ≥
∫

Bi

Vi(ai, σ−i, ti)dP − εP (Bi).

Thus, by the definition of conditional expectations,∫
Bi×S×T−i

ui(σ, t, s)dP ≥
∫

Bi×S×T−i

ui(σ−i, ai, t, s)dP − εP (Bi).
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To see the converse, suppose that σ is not an interim ε-equilibrium, so that there exists

σ′i and a positive measure of types B′
i such that

Vi(σ, ti) < Vi(σ
′
i, σ−i, ti)− ε

for all ti ∈ B′
i. This implies that we can find some positive measure of types B′′

i such that

Vi(σ, ti) < Vi(σ
′
i, σ−i, ti)− ε′

for all ti ∈ B′′
i where ε′ > ε. Then, by the uniform continuity of the utility (and the

compactness of the domain), we can find a single ai such that for a positive measure of types

Bi ⊂ B′′
i

Vi(σ, ti) < Vi(ai, σ−i, ti)− ε

for all ti ∈ Bi. Thus, ∫
Bi

Vi(σ, ti)dP <

∫
Bi

Vi(σ
′
i, a−i, ti)dP − εP (Bi).

Thus, by the definition of conditional expectations,∫
Bi×S×T−i

ui(σ, t, s)dP <

∫
Bi×S×T−i

ui(σ−i, ai, t, s)dP − εP (Bi).

The claim follows.

Corollary 1 Suppose that P is absolutely continuous with respect to P̂ , with Radon-

Nykodym derivative f . Then σ is an interim ε-equilibrium relative to P if and only if for

every i, ai and Pi-almost every ti:∫
S×T−i

ui(σ, t−i, ti, s)f(s, ti, t−i)dPS(s)×j 6=i dPj(tj) ≥

∫
S×T−i

ui(σ−i, ai, t−i, ti, s)f(s, ti, t−i)dPS(s)×j 6=i dPj(tj)− ε.

We begin our proofs with the ex-ante theorem, as some of its steps are useful in proving

the interim theorems.

Proof of Theorem 3:

Suppose that {Γr} is a sequence of Bayesian games converging to Γ0. Let σ0 be an

equilibrium of the limit game Γ0. We prove the theorem in the following three steps.

The first step finds a sequence of continuous strategies mapping all of Ti into A0, denoted

σδ, approximating σ0 that are ex-ante εδ equilibria of the game Γ0.

29



The second step then shows that for each δ > 0 these are also ex-ante 2εδ equilibria of

the games Γr for large enough r, excepting for the fact that these strategies do not map into

Ar.

The third step approximates these σδ by strategies mapping into Ar and shows that they

are ex-ante 3εδ of the games Γr for large enough r.

Step 1: For every δ > 0 there exists an approximation of σ0, which we denote σδ, such that:

• σδ
i : Ti → A0 and σδ is continuous,

• σδ →∗ σ0 (as δ → 0), and

• the σδ are ex-ante εδ equilibria of the game Γ0, where εδ → 0 (as δ → 0).

Step 2: For every δ > 0 there exists r(δ) such that if r ≥ r(δ) then

EP r [ur
i (σ

δ)] ≥ EP r [ur
i (σi, σ

δ
−i)]− 2εδ

for any i and measurable σi : Ti → Ai.

Step 3: For every δ > 0 and r ≥ r′(δ) there exists a continuous σδ,r such that σδ,r
i : Ti → Ar,

σδ,r →∗ σ0, and

EP r [ur
i (σ

δ,r)] ≥ EP r [ur
i (σi, σ

δ,r
−i )]− 3εδ

for large enough r and any i and measurable σi : Ti → Ai.

Proof of Step 1:

By Lemma 1, for every δ > 0 there exists an approximation of σ0 denoted σδ, such that

σδ
i : Ti → A0 for each i and σδ is continuous and is such that d(σδ(t), σ0(t)) ≤ δ for all t in

a set of P 0-measure of at least 1− δ.30 We note that this implies that the σδ are such that

σδ →∗ σ0 (as δ → 0).31

Thus, to conclude the proof of Step 1 it is sufficient to show that the σδ are εδ- equilibria

of the game Γ0 and where εδ → 0 (as δ → 0). In other words, it is sufficient to prove the

claim that: ∀ε > 0, there exists δ(ε) > 0 such that ∀δ ≤ δ(ε) and any σi

EP 0 [u0
i (σ

δ)] ≥ EP 0 [u0
i (σi, σ

δ
−i)]− ε. (1)

30Note that although we stated Lemma 1 in the context of a given i, it also holds directly for a profile of
strategies, simply dropping the i notation in the proof.

31This convergence is also pointwise convergence almost everywhere under P 0, since here we only need to
use the result of Aldaz once to get the sequence of σδ.

30



To prove the claim above, we start with the fact that σ0 is an equilibrium of Γ0, such that

for any σi,

EP 0 [u0
i (σ

0)] ≥ EP 0 [u0
i (σi, σ

0
−i)]. (2)

Given the uniform continuity of u0
i , there exists h such that if d(a, a′) < 1/h then

|u0
i (a, t, s)− u0

i (a
′, t, s)| < ε

4
(3)

for all t, s.

Let δ(ε) = min(1/h, ε/4). Using the fact that d(σδ(t), σ0(t)) ≤ δ for all t in a set of

P 0-measure of at least 1− δ ≤ 1− ε/4 combined with (3) implies that

|u0
i (σ

δ(t), t, s)− u0
i (σ

0(t), t, s)| < ε

4
(4)

and also

|u0
i (σi(t), σ

δ
−i(t), t, s)− u0

i (σi, σ
0
−i(t), t, s)| <

ε

4
(5)

for a P 0-measure of at least 1− ε/4. Note that (4) and (5) imply that

EP 0 [u0
i (σ

δ)]− EP 0 [u0
i (σi, σ

δ
−i)] ≥

(
EP 0 [u0

i (σ
0)]− EP 0 [u0

i (σi, σ
0
−i)]−

ε

2

) (
1− ε

4

)
− ε

4
.

By (2) the right hand side is at least − ε
2

(
1− ε

4

)
− ε

4
, establishing (1).

Proof of Step 2:

We show that for each δ > 0 there exists r(δ) such that if r ≥ r(δ) then

EP r [ur
i (σ

δ)] ≥ EP r [ur
i (σi, σ

δ
−i)]− 2εδ (6)

for any i and measurable σi : Ti → Ai.

Fix any δ and suppose that this is not true, so that there is some i and an infinite sequence

of r with a σr
i violating the condition above, such that

EP r [ur
i (σ

r
i , σ

δ
−i)] > EP r [ur

i (σ
δ)] + 2εδ (7)

Choose k(δ) and h(δ) as follows: 1/k(δ) < εδ/16, h(δ) ≤ δ, and find a finite subset

Ah(δ)
i ⊂ A0

i such that for every every ai ∈ Ar
i (including the limit r = 0) there exists some

a′i ∈ Ah(δ)
i such that d(ai, a

′
i) < 1/h(δ) when r is large enough. Also by Lemma 3 find a

finite partition Ck(δ)
i of Ti such that the diameter of every Ci ∈ Ck(δ)

i is less than 1/k(δ) and∑
Ci∈C

k(δ)
i

P 0(∂Ci) < 1/k(δ). In particular, given the uniform equicontinuity of the sequence

of {ur
i}, choose k(δ) and h(δ) such that if d(t, t′) < 1/k(δ) and d(a, a′) < 1/h(δ) then

|ur
i (a, t, s)− ur

i (a
′, t′, s)| < εδ

16
(8)
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for all large enough r and all s.

In addition, by condition [3b] choose k(δ) so that if d(ti, t
′
i) < 1/k(δ) then for every

ai ∈ Ah(δ)
i and large enough r (and Ah(δ)

i is finite, so this is possible having fixed h(δ)

already):

|EP r [ur
i (ai, σ

δ
−i)|ti]− EP r [ur

i (ai, σ
δ
−i)|t′i]| <

εδ

16
(9)

for P r-almost every ti, t
′
i such that d(ti, t

′
i) < 1/k(δ).

Let σ̃r
i be a measurable selection32 from

argmin
ai∈A

h(δ)
i

d (ai, σ
r
i (ti)) .

Then, by (8) and (7) it follows, since d(σ̃r
i (ti), σ

r
i (ti)) < 1/h(δ) for each ti, that

EP r [ur
i (σ̃

r
i , σ

δ
−i)] > EP r [ur

i (σ
δ)] +

7

4
εδ (10)

Next, note that by (9) it follows that

max
ai∈A

h(δ)
i

EP r [ur
i (ai, σ

δ
−i)|Ci] > EP r [ur

i (σ̃
r
i , σ

δ
−i)|Ci]−

εδ

8
(11)

for every Ci ∈ Ck(δ)
i . 33 Thus, define ar

i to be a step function on the partition Ck(δ)
i taking

on values in Ah(δ)
i , and in particular taking on a value in argmax

ai∈A
h(δ)
i

EP r [ur
i (ai, σ

δ
−i)|Ci]

such that

EP r [ur
i (a

r
i , σ

δ
−i)] > EP r [ur

i (σ
δ)] +

3

2
εδ.

Given that the partition Ck(δ)
i is finite, we can find a subsequence of large enough r such

that the step function is the same for those r, denoted by a∗i .

Applying Lemma 1, there exists a continuous function âi such that |a∗i (ti) − âi(ti)| <

1/h(δ) except on a set of measure P 0(Set) < εδ

16
. Let Set′ = Set∪C where C = ∪

Ci∈C
k(δ)
i

∂Ci.

32Such a measurable selection exists given that d (ai, σ
r
i (·)) is measurable for each of the finite number

of ai’s. We can then order the ai’s and whenever the argmin is multivalued, select the minimum under
the ordering. Then note that the inverse image of σ̃r

i at some ai is then the intersection of sets of the
form {ti|d (ai, σ

r
i (ti)) < d (a′i, σ

r
i (ti))} for a′i below ai in the ordering, and of the form {ti|d (ai, σ

r
i (ti)) ≤

d (a′i, σ
r
i (ti))} for a′i above ai in the ordering. These are each measurable sets, and a finite intersection of

measurable sets is measurable.
33Let ati be the best response for ti from the actions in Ah(δ)

i . By (9), the difference of expected utilities
for type t′i between the action ati and the action at′i

is less than εδ/8 when ti and t′i are in the same Ci, and
the above inequality holds.
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Then Lemma 3 implies that P 0(Set′) < εδ

8
. Note that Set′ is closed.34 So when r is large

enough on the subsequence, P r(Set′) < 3
16

εδ. 35 Thus,

EP r [ur
i (âi, σ

δ
−i)] > EP r [ur

i (σ
δ)] +

5

4
εδ.

By weak convergence, it follows that

EP 0 [u0
i (âi, σ

δ
−i)] > EP 0 [u0

i (σ
δ)] +

9

8
εδ.

This contradicts the fact that σδ is a εδ equilibrium (relative to P 0) as shown in Step 1.

Proof of Step 3:

For each δ > 0 and r ≥ r(δ), we now adjust σδ slightly, so that it is a profile of strategies

mapping into Ar.

For any r ≥ r(δ), i, and ti ∈ Ti, let

Σr
i (ti) = {ar

i ∈ Ar
i |d(ar

i , σ
δ
i (ti)) ≤ 1/h(δ)},

where h(δ) is defined as in the proof of Step 2 as a function of δ. Since the sequence {Ar
i}

converges to A0
i in the Hausdorff metric, Σr

i (ti) is nonempty for all ti ∈ Ti and large enough r.

Since Σr
i (ti) is a nonempty closed (by definition) subset of a compact space, it is compact. By

the Kuratowski-Ryll-Nardzewski Selection Theorem, define σ̂δ,r
i to be a measurable selection

from Σr
i (ti). So σ̂δ,r

i is a measurable mapping from Ti to Ar
i such that d(σδ

i (ti), σ̂
δ,r
i (ti)) ≤ 1/h

for all ti ∈ Ti. Thus by the uniform equicontinuity of the utility functions and (6) from Step

2,

EP r [ur
i (σ̂

δ,r)] ≥ EP r [ur
i (σi, σ̂

δ,r
−i )]−

5

2
εδ

for large enough r and any possible σi mapping from Ti to Ai.

Again by Lemma 1, for any σ̂δ,r
i there exists a continuous σδ,r

i : Ti → Ar
i such that

d(σ̂δ,r
i (ti), σ

δ,r
i (ti)) < 1/h(δ) for all ti in a set of P r-measure of at least 1 − εδ/8 and also a

set of P 0-measure of at least 1− εδ/8. Then it follows that

EP r [ur
i (σ

δ,r)] ≥ EP r [ur
i (σi, σ

δ,r
−i )]− 3εδ

for large enough r and any possible σi mapping from Ti to A. The proximity of the σδ,r
i

to σ̂δ,r
i on the P 0-measure of at least 1 − εδ/8, together with the proximity of σ̂δ,r

i to σδ
i ,

34Set′ can be written as the union of Set′′ = {ti /∈ C : |a∗i (ti) − âi(ti)| ≥ 1/h(δ)} with C. C is clearly
closed. Suppose that that there exists a sequence t

k(δ)
i ∈ Set′ converging to some t∗i . We show that then

t∗i ∈ Set′′ ∪ C. If t∗i is a point of discontinuity of a∗i , then t∗i ∈ C since a∗i is a step function. If t∗i /∈ C then
it is a point of continuity of a∗i and then |a∗i (t∗i )− âi(t∗i )| ≥ 1/h(δ) since this is true along the sequence and
the function is continuous at the limit point. But then it follows that t∗i ∈ Set′′.

35Otherwise, we can find a sequence of r with the measure greater than or equal to 3
16εδ. Given that Set′

is closed, the limit measure should be larger than or equal to 3
16εδ as well, which would be a contradiction.
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and the fact that σδ →∗ σ, implies that we can find a subsequence of δ and corresponding

subsequence of r > r′(δ) for which σδ,r →∗ σ0 and these are 3εδ equilibria where 3εδ →δ 0,

establishing the theorem.

Proof of Theorem 1: Without loss of generality we take σ0 to be a continuous mapping

from all of Ti to A0
i , using the variation of the Tietze Extension Theorem referenced in the

proof of Lemma 1.

Since σ0 is an equilibrium of Γ0, it follows that for any i, for any ai ∈ A0
i , and P 0

i -almost

any t0i :

EP 0(u0
i (σ

0)|t0i ) ≥ EP 0(u0
i (σ

0
−i, ai)|t0i ). (12)

Since the Ars converge to A0, by the argument in Step 3 in the proof of Theorem 3, for

any δ > 0 there exists a large enough rδ such that for all r > rδ there exists a measurable

σr : Ti → Ar
i , such that for any ti ∈ Ti, d(σr(ti), σ

0(ti)) < δ. Moreover, then under the

uniform equicontinuity of the utility functions, equicontinuity, for any γ > 0 there is a large

enough r such that for any ai ∈ Ai and every tri

|EP r(ur
i (σ

r)|tri )− EP r(ur
i (σ

r
−i, ai)|tri )| ≤ |EP r(ur

i (σ
0)|tri )− EP r(ur

i (σ
0
−i, ai)|tri )|+ γ. (13)

To prove the theorem, it is enough to show that the σr’s are interim εr equilibria with

εr → 0.

Suppose the contrary. Then there exists some ε such that for all large enough r the σr

are not ε equilibria.

Thus, there is some i (given the finite set of agents, taking a subsequence if necessary)

such that for each large enough r there is some ar
i such that36

EP r(ur
i (σ

r)|tri ) < EP r(ur
i (σ

r
−i, a

r
i )|tri )− ε/2

for a P r-positive measure set of tri .

It then follows, given the uniform equicontinuity of utility functions, and the uniform

convergence of σr to σ0 (see (13)), that for all large enough r

EP r(u0
i (σ

0)|tri ) < EP r(u0
i (σ

0
−i, a

r
i )|tri )− ε/4 (14)

for a P r-positive measure set of tri .

Take a fine enough finite grid of A0
i so that for every ai there is an a0

i such that

|u0
i (a−i, a

0
i , t, s) − ui(a−i, ai, t, s)| < ε/8 for all a−i, t, s. This can be done given the con-

tinuity of u on a compact domain, implying uniform continuity. Then mapping each ar
i to

such an a0
i on that grid, in (14) we can replace the ar

i s with a sequence of corresponding a0
i s

36The choice of a single ar
i can be made via the continuity of the utility functions.
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from that grid and the ε/4 by a ε/8. Then taking a subsequence, we can find some single a0
i

such that for large enough r

EP r(u0
i (σ

0)|tri ) < EP r(u0
i (σ

0
−i, a

0
i )|tri )− ε/8

for a P r-positive measure set of tri . However, this contradicts [3b], the convergence of the

supports of the P rs to P 0, and (12). Thus, the supposition was incorrect, establishing the

result.

Proof of Theorem 2: Recall that P r is absolutely continuous with respect to the product

measure P̂ 0 = P 0
S × P 0

1 × · · · × P 0
n , with corresponding Radon-Nykodym derivative by f r,

for every r (including 0); and that {f r}r converges uniformly to f 0 on all compact sets.

Let G be the support of P 0 (which is necessarily compact since a support is closed and

a subset of a compact set). Since P 0(G) = 1 and P r(G) = 1 for all r, we need only focus on

the set G. Moreover, we have uniform convergence of f r to f 0 on G.

Uniform convergence implies for any ε > 0, there exist a r1 > 0 such that |f 0− f r| < ε/2

uniformly on G for all r > r1. Thus,

|
∫

T−i×S

ur
i (σ−i(t−i), ai, s)f

r(ti, t−i, s)dP 0
S(s)×j 6=i dP 0

j (tj)

−
∫

T−i×S

ur
i (σ−i(t−i), ai, s)f

0(ti, t−i, s)dP 0
S(s)×j 6=i dP 0

j (tj)| < ε/2

for almost all types in G.

Also by the equicontinuity of the utility functions, there exist a r2 > 0 such that |u0−ur| <
ε/(2N) uniformly on G for all r > r2 where N is the bound of the absolute value of f 0 on

G. Then

|
∫

T−i×S

u0
i (σ−i(t−i), ai, s)f

0(ti, t−i, s)dP 0
S(s)×j 6=i dP 0

j (tj)

−
∫

T−i×S

ur
i (σ−i(t−i), ai, s)f

0(ti, t−i, s)dP 0
S(s)×j 6=i dP 0

j (tj)| < ε/2

for almost all types in G.

It follows that

|
∫

T−i×S

ur
i (σ−i(t−i), ai, s)f

r(ti, t−i, s)dP 0
S(s)×j 6=i dP r

j (tj)

−
∫

T−i×S

u0
i (σ−i(t−i), ai, s)f

0(ti, t−i, s)dP 0
S(s)×j 6=i dP 0

j (tj)| < ε

and so there cannot be an improving deviation bigger than ε for almost all types in G. Then

by Corollary 1 the result follows.
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