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Abstract While Bayesian models have been applied to an impressive range of
high-level cognitive phenomena in recent years, methodological challenges have
been leveled concerning their particular use in cognitive science, and specifically
their role in the program of rational analysis. The focus of the present article is on
one strand of these criticisms, namely, computational impediments to probabilis-
tic inference, and related puzzles about empirical confirmation of these models.
The proposal is to rethink the role of Bayesian methods in rational analysis, and
specifically to adopt an independently motivated notion of rationality appropriate
for computationally bounded agents, and then to explore broad conditions under
which (approximately) Bayesian agents would in fact be rational. The proposal
is illustrated with a characterization of computational costs in an abstract manner
inspired by ideas in thermodynamics and information theory.

1 Introduction
Many normative questions—questions about what we ought to do or think—
obviously depend on various factual questions about what the world is like. In
particular, answers to these questions may depend on details about what kinds of
cognitive agents we are and how our minds in fact work. In the other direction,
there is an equally powerful idea, that one productive method for discovering how
our minds in fact work is by asking questions and developing hypotheses about
what would be good ways for the mind to work, that is, how the mind ought to
work. Versions of this thesis can be traced back at least to the American prag-
matists, who particularly stressed the adaptation of mind to an environment, and
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many variations of the strategy have been pursued in psychology (e.g., Green and
Swets 1966; Peterson and Beach 1967; Marr 1982; etc.). Much contemporary
research in cognitive science takes inspiration from a formulation due to John
Anderson, based on a methodological program called rational analysis (Ander-
son, 1990). A rational analysis of some cognitive function involves conjecturing
a precise problem that the mind is assumed to be solving, finding a good or even
optimal solution to this problem, and using that solution to guide the scientist’s
search for cognitive models of how that function works.

The rational analysis program has been applied across a number of domains,
from low-level perception to high-level cognitive tasks such as categorization and
language understanding. Because many such tasks can be construed as prob-
lems of inference under uncertainty, it has been common to characterize them
as Bayesian inference problems, with the problem specified in terms of a prior
probability model to be updated with some data or observations, and the optimal
solution given by application of Bayes’ Rule. Bayesian cognitive science has seen
a remarkable surge of interest over the past several decades, and the approach has
been applied to high-level phenomena as diverse as naı̈ve physics and linguistic
pragmatics (see Tenenbaum et al. 2011 for a review).

At the same time, a number of critical articles have questioned some of the
methodological assumptions underlying Bayesian rational analysis (Murphy, 1993;
Kwisthout et al., 2008; Jones and Love, 2011; Eberhardt and Danks, 2011; Bow-
ers and Davis, 2012; Marcus and Davis, 2013). Some of the criticisms are directed
at rational analysis generally, echoing similar criticisms to optimality modeling in
biology. Others are aimed specifically at the claim that we should expect Bayesian
theory to be the default framework for understanding rationality or optimality
when it comes to studying human cognition. One central theme in this critical
work is that the calculations required by most Bayesian models are intractable
and thus could not describe computations performed by a resource-limited brain.
If one instead considers approximations to Bayesian models, which in many cases
provide better fit to individual-level data anyway (cf. the discussion in §5 below),
then the claim of rationality or optimality comes into question, since tractable ap-
proximations can often be arbitrarily less accurate than what is prescribed by the
ideal model. Thus, the original motivation for rational analysis—to help guide the
search for cognitive models—is undermined, since there is nothing obviously dis-
tinguishing an approximation to a Bayesian model from any other non-Bayesian
model, at least from a rational point of view.

The aim of the present article is to propose a different way of thinking about
Bayesian models in cognitive science and their relation to the rational analysis
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program. In short, rather than construing the problems to be solved by the mind
as problems of inference under uncertainty, we should instead think of cognitive
functions as solving constraint optimization problems, where the relevant con-
straints include not (only) making accurate inferences, but making rational use of
limited computational resources.1 On this version of boundedly rational analy-
sis, it cannot be assumed from the start that a given cognitive function should be
modeled in a Bayesian manner. However, it does leave open the possibility that
in many cases Bayesian models, or approximations thereto, will nonetheless be
promising hypotheses even from the boundedly-rational constraint-optimization
perspective. This shift in perspective is arguably consonant with more recent
trends in Bayesian cognitive modeling, but it also makes definite prescriptions,
and raises pressing and precise questions about when we should expect a Bayesian
(approximation) model to be apt.

After presenting the view in more detail and sketching a very general ac-
count of bounded (instrumental) rationality, we shall consider this question of
when approximate Bayesian computations, specifically Monte Carlo algorithms
for Bayesian inference, could be seen as a boundedly rational solution to an un-
derlying constraint optimization problem. We discuss and assess several possibil-
ities, including a speculative proposal inspired by thermodynamics, which char-
acterizes the problem to be solved in terms of an abstract notion of computational
cost derived from the entropy of an agent’s action distribution (the probabilities of
taking various possible actions). Whether or not the overall proposal ultimately
succeeds in characterizing the tasks to which human cognition might be adapted,
it will be argued that some such account should be given in order to motivate
Bayesian models and their approximations as a priori plausible candidates in a
rational analysis.

2 Bayesian Rational Analysis
The study of high-level cognition—phenomena such as categorization, causal
reasoning, moral judgment, language understanding and production, etc.—relies
largely on behavioral data. There are methods that allow more fine-grained data to
be collected than mere input-output pairs, e.g., eye-tracking, response-time stud-
ies, brain lesion analyses, etc. However, even with these more probing techniques,
there remains a problem of identifiability (Pylyshyn, 1984; Anderson, 1990). The

1The present article develops a proposal made earlier in Icard (2013, 2014).
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problem is two-fold. First, there is an obvious question of where to begin the
search for high-level cognitive models. Second, there are often cases in which
competing models cannot yet be distinguished by available measurement. Ra-
tional analysis promises to ameliorate both of these problems by focusing the
researcher’s attention on models that involve a good, or even optimal, way of car-
rying out the function. Anderson (1990, 29) summarizes the methodology in six
steps: (1) Precisely specify the goals of the cognitive system. (2) Develop a formal
model of the environment to which the system is adapted. (3) Make the minimal
assumptions about computational limitations. (4) Derive the optimal behavioral
function given items 1 through 3. (5) Examine the empirical literature to see if
the predictions are confirmed. (6) If the predictions are off, iterate. He then goes
on to demonstrate the efficacy of the approach in four cases studies on memory,
categorization, causal inference, and problem solving. In the intervening decades
rational analyses have been applied to scores of phenomena (Chater and Oaksford
1999; Oaksford and Chater 2007; Tenenbaum et al. 2011; Lewis et al. 2014).

Rational analysis is similar in spirit to the use of optimal models in evolution-
ary biology, in that both involve an optimality assumption. In the biological case,
the assumption is often used to support a kind of adaptationist explanation: the or-
ganism has this observed feature because it optimal (Parker and Maynard Smith,
1990). The status of rational analysis as a method for deriving explanations of
cognitive phenomena is a matter of considerable controversy (Danks, 2008; Jones
and Love, 2011; Eberhardt and Danks, 2011; Bowers and Davis, 2012). However,
the primary use of the methodology in cognitive science—and the one that is our
focus in this paper—is to address the identifiability problem, that is, to uncover
reasonable models of cognition that make sense and have a priori plausibility, es-
pecially in cases where empirical evidence provides inadequate hints about where
to start. Even critics of optimality modeling in biology are sympathetic to this
kind of motivation (Kitcher 1987). The question is how we should theorize about
human rationality in order to arrive at plausible cognitive models in the first place.

Across a number of domains of cognition, it often seems sensible to character-
ize cognitive functions in terms of inference problems under uncertainty. The idea
that even unconscious mental operations could be understood as inferences goes
back at least to Helmholtz, who construed vision as the problem of inferring latent
causes of sensory impressions. The framing nicely generalizes: categorization
involves inducing categories for novel objects in order to predict unobserved fea-
tures (e.g., Anderson 1990), language understanding involves inferring a speaker’s
intended message from the utterance produced (e.g., Frank and Goodman 2016),
and so on. Furthermore, inference and prediction make sense as abilities that
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would be good for an organism, and would thus seem eligible for improvement
and perhaps even optimization through adaptation.2

Bayesian rational analysis is premised on two assumptions. The first is that
many cognitive functions can indeed be understood as solving inductive inference
problems. The second is that Bayesian methods provide a rational approach to
such problems. The Bayesian approach to statistical inference can be understood
as incorporating the following broad claims:

• Uncertainty can and should be characterized in terms of a probability distri-
bution P (ϑ) over some relevant class of possible states of affairs, together
with appropriate likelihood functions P (s|ϑ) for any conceivable stimuli s,
specifying how the alternative hypotheses would be expected to produce
observations.

• Upon receiving some stimuli s, one ought to update one’s view about ϑ
by conditionalizing and using Bayes’ Rule, so that P (ϑ|s) ∝ P (s|ϑ)P (ϑ).
That is, the posterior probability of ϑ is proportional to the likelihood times
the prior on ϑ.

This broad characterization by no means picks out a unique statistical methodol-
ogy,3 but it is enough to distinguish the Bayesian approach to cognitive science.
For a given cognitive task, the Bayesian cognitive scientist will posit a reasonable
prior probability distribution P (ϑ) assumed to capture participants’ prior expec-
tations (perhaps guided in part by empirical elicitation), as well as a likelihood
function P (s|ϑ) specifying what one would expect to observe were each of the
hypotheses true (which may also be determined partly empirically). Once these
two elements have been specified, the scientist hypothesizes that participants’ re-
sponses in the experimental task can be captured in some way in terms of the
posterior distribution P (ϑ|s).

What exactly is supposed to be rational about these models? There are at least
three aspects that might be characterized as rational, or specifically as Bayesian:

1. that people are behaving as though they are performing Bayesian inference,

2. the priors and likelihoods themselves may be rational,

3. people are making rational decisions on the basis of their inferences.
2See Geisler and Diehl (2002) for a detailed account of how optimal inference in perceptual

systems could evolve.
3Famously, Good (1971) calculates that there at least 46,656 different versions of Bayesianism.
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While it is typically presumed that people make reasonable decisions on the basis
of their updated view of the situation (e.g., predicting the hypothesis with highest
posterior probability), and that the assumed prior and likelihood at least roughly
reflect the statistics of the environment, I take it that what unites the numerous
Bayesian analyses of cognition is adherence to 1, which concerns the logic of
the inductive computations performed.4 In other words, even if people maintain
inaccurate priors and likelihoods and sometimes make bad choices given their
information, the more people’s inductive leaps on different tasks are shown to ac-
cord with Bayes’ Rule, the more Bayesian rational analysis will be vindicated.
As long as we can assume that the mind is (at least approximately) performing
Bayesian computations, inferring the shape and parameters of people’s priors and
likelihoods is not an insurmountable task (see, e.g., Hemmer et al. 2015). The very
idea that it would be reasonable to approach a novel cognitive modeling problem
by assuming that the mind is effectively performing (approximate) Bayesian in-
ference would already mark considerable progress on the identifiability problem.

Having now made clear what we take to be distinctive of Bayesian rational
analysis, we can still ask, what is so rational about Bayesian conditionalization,
particularly given this highly subjectivist variety of Bayesianism? Authors from
Laplace to Pólya have considered Bayesian reasoning to be nothing more than
tutored common sense, perhaps with no need of justification: Bayes’ Rule nat-
urally trades off prior plausibility of a hypothesis with its ability to explain the
data. Others have proposed formal justifications, e.g., based on Dutch book argu-
ments or epistemic utility arguments (see Huttegger 2013 and references therein).
Some in the cognitive science literature (e.g., Perfors et al. 2011) follow similar
arguments from de Finetti (1937) claiming that a Bayesian predictor is bound to
out-predict any non-Bayesian in the long run. Without settling which, if any, of
these arguments succeeds, let us momentarily accept that, for certain kinds of (per-
haps highly idealized) agents making statistical inferences, adherence to Bayesian
norms is indeed rational.

3 Challenges to Bayesian Rational Analysis
What does it take to show that a Bayesian model has successfully elucidated some
cognitive phenomenon? Experimentalists almost never require that each individ-
ual participant, or even the majority of participants, give the Bayes optimal re-

4In fact, 2 and 3 point to two of the dimensions distinguishing varieties of Bayesianism accord-
ing to Good (1971).
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sponse on a task. Rather, often the posterior distribution associated with the model
is compared to (some statistic of) the distribution of responses in an experiment
(see Eberhardt and Danks 2011; Vul et al. 2014 for many examples). The usual
justification for this degree of latitude is that Bayesian models are intended to
capture cognition at the “computational level” in the sense of Marr (1982). This
may engender more mechanistic “algorithmic level” models aimed at predicting
(variation in) individual responses, but the computational level model is thought
to be of interest in itself, giving a clean, intuitive portrayal of the abstract problem
that the mind is assumed to be solving, and perhaps even shedding explanatory
light on why the function works the way it does (e.g., Perfors et al. 2011).

There is at least one sufficient reason why we should not expect participants
in an experiment to give optimal Bayesian responses: the calculations required
by most Bayesian cognitive models are intractable. This in-principle tractability
problem is accompanied by a related empirical issue. A common finding, going
back at least to Estes (1959), is that the distributions of responses in a study will
often match the normative posterior distributions, a phenomenon called “posterior
matching” (Peterson and Beach, 1967). For example, an analysis by Vul et al.
(2014) of the data from an influential study by Griffiths and Tenenbaum (2006)
showed that the two distributions, response and model-posterior, match almost
perfectly. This posterior matching behavior of course means that most participants
are giving non-Bayes-optimal responses.

These facts—that Bayesian models are usually intractable, and that people
show systematic deviations from Bayesian predictions at an individual level—
bolster some of the more pressing criticisms of the approach. The central problem
is that they seem to show either that Bayesian norms do not set the right standard
of rationality, or just that people fall far short of meeting it.

A common response has been to suggest that people may be approximating
Bayesian calculations in some way. In particular, a number of authors have pro-
posed sample-based, e.g., Monte Carlo, algorithms that approximate Bayesian
inference in the sense of asymptotic convergence (see the discussions by Vul et al.
2014 and many references therein). It is often supposed that these algorithms, and
thus people’s behavior, ought to be considered (approximately) rational because
they approximate the rational ideal, in the sense that they converge to the ideal
in the limit. In other words, people are doing as well as they could given their
limited resources.

By their very nature, approximation algorithms can give rise to very differ-
ent predictions from the ideal models they approximate, and this can even be
important in accounting for experimental data. However, from the normative per-
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spective, if Bayesian reasoning determines the standard, this means approxima-
tions can also deviate dramatically from what would be rational. The challenge
to Bayesian models then becomes acute: why should we expect an approximation
to Bayesian inference to be more rational than any number of alternative models
that do not in any straightforward sense approximate Bayesian calculations? And
if they are not, what distinguishes them as especially worthy of attention from the
perspective of rational analysis?

This worry about rationality of approximate Bayesian calculations is com-
pounded with a more general worry, that even for idealized agents without re-
source limitations Bayesian norms may not be uniquely rational, particularly when
the environment statistics are unknown or constantly changing (Gigerenzer, 1991;
Sutton and Barto, 1998). For instance, Gigerenzer and Brighton (2009) show
that even a relatively tractable and a priori reasonable Bayesian model may be
empirically worse at prediction than very simple heuristics—heuristics that sys-
tematically ignore potentially relevant information—for wide classes of problems.
Douven (2013) argues that the rationality of Bayesian inference depends on the
agent having specific epistemic goals, where other equally legitimate goals might
favor other inference methods. None of this is to say Bayesian approximation al-
gorithms could not provide a good model for a given phenomenon. The objection
is to the claim that we have good reason to expect this to be the case, based solely
on rationality considerations and a methodological optimism that the mind will
have happened upon rational solutions to problems. We need to understand what
additional assumptions could justify such optimism.

4 Boundedly Rational Analysis
The response we propose to these challenges is to accept them, but to argue that
there may in fact be good reason to think that in many circumstances approximate
Bayesian algorithms could be rational after all. We cannot reach this conclusion
by merely noting that they approximate Bayesian calculations, e.g., by asymptotic
convergence. Instead, we must reconsider our understanding of rationality—and
in particular, of rational analysis—and show that these models do in fact meet the
standards of this general and independently motivated concept of rationality.

Here we return to a point made at the outset. Rational analysis is premised
on the idea that we can reach descriptive hypotheses from normative claims. But
we might also think that what we consider normative depends to some extent on
what kinds of agents we are. Classical accounts of rationality do this to a minimal
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degree. Traditional Bayesian theory assumes that we are observationally limited,
but that our information about the world can be represented by a probability dis-
tribution. Critics have often countered that this assumes too much and too little:
we are limited not just observationally, but also computationally, and in part be-
cause of these additional limitations we cannot necessarily assume that our view
on the world be captured by a probability representation. Herbert Simon (1956,
1976) famously argued that useful theorizing about human agents should focus
not on substantive rationality, but what he called bounded or procedural rational-
ity, which concerns the computational processes and algorithms we use to make
inferences and decisions. Significantly, the extent to which a given algorithm or
procedure is rational will also depend on details of the architecture on which it is
running. Thus, on this view of rationality, details not only about the environment
and task, but also about human psychology—the way the mind actually works—
will be relevant to answering normative questions about inference.

This view of rationality may seem anathema to rational analysis. In fact, Si-
mon (1991) criticized Anderson’s rational analysis of categorization for being too
focused on optimality, and paying too little attention to human agents as they are:

Our interest is in the learning process itself—not a hypothetical one or
an optimal one, but the one that people use. We want a learning the-
ory precisely because people do not arrive at optimal classifications
immediately or costlessly. (Simon, 1991, 35)

In the other direction, although the method includes a step for characterizing com-
putational limitations, it is often said that a rational analysis is effective in as far as
it makes the minimal assumptions at this step. Anderson (1990) himself charac-
terized the methodology as a “nearly mechanism-free casting of a psychological
theory” (30), and suggested that the potential need to specify too many architec-
tural details is “the potential Achilles’ heel of a rational approach” (32).

The core claim of this article is that there is a promising middle ground, and
that finding it may help us understand when and why Bayesian analyses of cogni-
tion will lead to successful modeling. In this direction, we describe a framework
for theorizing about procedural or resource-bounded rationality, which neither as-
sumes nor rules out the possibility that Bayesian agents are rational. The frame-
work combines aspects of the Bayesian evolution framework of Geisler and Diehl
(2002) with an analysis of bounded optimal agents in artificial intelligence by
Russell and Subramanian (1995), though it is more general than both of these.5

5For instance, unlike in these articles, we do not assume that fitness or goodness is necessarily
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The advantages of this generality are (1) that it can be applied flexibly to a di-
verse array of agents facing a diverse array of tasks across different environments,
and more importantly for present purposes, (2) that it highlights the considerable
assumptions involved in distinguishing (approximate) Bayesian agents as optimal.

Imagine that we are modeling from outside an agent who will receive some
data s, before choosing some action a. The utility U of taking action a depends
on the state of the world ϑ, with U(a, ϑ) a real-valued measure of how good action
a is in state ϑ. While it may draw upon the agent’s own internal representation of
value or desirability (if such there be), the utility function is to be understood from
the external perspective of the theorist. Finally, suppose that we have some prior
model on states of the environment, P (ϑ), as well as a likelihood function P (s|ϑ)
over stimuli. Again, this is to be understood as capturing a theorist’s perspective
on the agent’s situation.

Let us first think abstractly of agents as defining agent functionsA, which map
observations s to distributions over actions, so A(s)(a) gives the probability that
A will respond with a after receiving stimulus s. If we know the state of the world
ϑ and the data s that the agent will receive, then we can define a score function σ,
relative to some way Σ of combining action probabilities with utilities:

σ[ϑ, s,A] = Σ
(
〈A(s)(ai), U(ai, ϑ)〉ai

)
Here 〈A(s)(ai), U(ai, ϑ)〉ai denotes the set of probability-utility pairs with ai
ranging over all possible actions. This just says that Σ is some function of this
set. As an example, we might take Σ to sum over utilities of possible actions,
weighted by their probabilities according to A(s):

σ[ϑ, s,A] =
∑
ai

A(s)(ai)× U(ai, ϑ) (1)

Prior to knowing anything about the world, we can define a measure of fitness φ,
relative to functions Φ and Ψ, by combining the scores with the world probabilities
in some manner:

φ[A] = Φ
(〈

Ψ
(
P (ϑ, s)

)
× σ[ϑ, s,A]

〉
ϑ,s

)
(2)

We assume Ψ is weakly monotone increasing, so that state/observation pairs with
higher probability have a higher impact on fitness, all else being equal. Again, this

determined by taking an arithmetic average over states of the environment. Meanwhile, Geisler
and Diehl (2002) do not define any notion of agent program, and Russell and Subramanian (1995)
do not analyze stochastic agent behavior, whereas these are both central to our framework.
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expression means that φ[A] is a function of probability/score pairs, now ranging
over all possible state/observation pairs.

For example, taking Ψ to be the identity function, and taking Φ to define an
expectation, φ[A] gives a straightforward expected score:

φ[A] =
∑
ϑ,s

P (ϑ, s)× σ[ϑ, s,A] (3)

We imagine nature chooses a state of the world ϑ and generates some stimulus
s; the agent must then take an action ai, and the payoff is the weighted sum of
utility for each of the actions the agent might take in state ϑ. This is a natural
and common way of assessing fitness of an agent, appropriate for many purposes.
However, we leave the official definition of fitness in (2) more general, to incor-
porate minimax, maximin, geometric averaging, and other proposals. This allows
evaluating agents in a way that, e.g., punishes variance or going below some min-
imum acceptable utility. Though we will not be using this generality further in
the present article, it is important to highlight the fact that moving from the more
general (2) to the much more specific (3) is substantive.

In the specific case of a prediction problem, we might stipulate that the action
space and the state space coincide, so that the agent’s task is simply to predict the
state. This naturally suggests a utility function where U(ϑ, ϑ′) = 1 if ϑ = ϑ′, and
U(ϑ, ϑ′) = 0 otherwise. We might, for example, think of categorization in these
terms: guessing the correct category gives utility 1, while guessing the wrong
category gives 0. Note then that, assuming (1), we have σ[ϑ, s,A] = A(s)(ϑ). By
a standard prediction problem we mean any setup with this utility function, with Σ
and Φ defining expectations, and with Ψ weakly monotone increasing. It is easy
to show that no agent function has better fitness in such a setting than an agent
A∗ who acts according to Bayes’ Rule, choosing ϑ that maximizes P (ϑ|s) with
probability one. We state this as a fact. (The derivation is routine but somewhat
lengthy. See Okasha 2013, who essentially shows this in a very similar context.)

Fact 1. No agent outperforms a Bayesian agent in a standard prediction problem.

Fact 1 identifies one clear class of situations in which a Bayesian agent is
uncontroversially—indeed, almost by stipulation—optimal. The assumptions built
in to this fact are substantial. Aside from the stipulation of a standard prediction
problem, it is also assumed that the agent antecedently knows the prior and like-
lihood functions. Rather than dwell on these assumptions, which can certainly be
questioned, we turn to computational considerations.
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A significant problem with A∗, and thus with this characterization of optimal-
ity, is that in many cases no possible agent, not to mention any actual agent, could
instantiate it. In order to incorporate computational limitations, we may refine
agent functions by considering somewhat more concrete representations of agents
and the actual computations they perform. Suppose we have a class Π of possible
agent programs, from some “programming language” (cf. Pylyshyn 1984). This
could be based on actual programs written in a concrete language such as Java,
classes of neural networks with associated algorithms, or any other (possibly more
abstract) type of representation that we would like to consider as candidates for
some mental process.

We make two key assumptions. First, each program π in Π instantiates an
agent function Aπ. Second, we can associate a cost to π for processing stimulus
s, written Cπ(s). Then we define the cost-adjusted fitness of a program in an
analogous manner:

φ[π] = Φ
(
〈Ψ
(
P (ϑ, s), σ[ϑ, s,Aπ], Cπ(s)

)
〉ϑ,s
)

(4)

where φ now depends on the costs Cπ(s) of computation. As before, one rea-
sonable (but not unique or uncontroversial) instantiation of this definition would
simply give expected score minus costs:

φ[π] =
∑
ϑ,s

P (ϑ, s)×
(
σ[ϑ, s,Aπ]− Cπ(s)

)
(5)

Let us say an agent program π is boundedly rational to the extent that φ[π] is high.
This framework is remarkably general, and does not by itself issue very strong

claims about bounded rationality. However, with further assumptions it may do
so. Focusing on P and U , we can explore the landscape of “ecologically rational”
agents (Gigerenzer and Brighton, 2009; Oaksford and Chater, 2007). Focusing
on Π and the associated costs C, we can ask questions about what representa-
tions and algorithms are best suited to a given task (Anderson, 1990; Russell and
Subramanian, 1995; Lewis et al., 2014). By manipulating both of these, we may
find natural scenarios in which, e.g., “satisficing” agents (Simon, 1956) turn out
to be optimal, or in which accuracy of representation is sacrificed in favor of non-
epistemic ends (Stich, 1990; Mark et al., 2010). Finally, we can go even further
and explore alternatives to how we want to assess agents—in terms of Σ, Φ, and
Ψ—which might give rather different pronouncements from the standard expected
utility assessment in (5). This may be particularly important if we want to relate
this type of fitness to varieties relevant to evolution and adaptation (Sober, 2001).
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Notably, this framework in no way assumes that a Bayesian agent will al-
ways be optimal. Even under the most standard fitness measure in (5), it may be
that no cost-effective program in Π is actually consistent with a Bayesian agent
function A∗, pace Fact 1. However, it does allow us to ask a precise question:
are there plausible assumptions about the components of this framework that will
make a Bayesian agent—or more interestingly, an agent performing approximate
Bayesian computations—appear boundedly rational? This will be our main ques-
tion from here on.

5 Case Study: Posterior Matching
The prevalent phenomenon of posterior probability matching has been at the cen-
ter of many of the criticisms of Bayesian approaches to cognitive science, par-
ticularly those that target rationality claims. Given the central importance of this
phenomenon, we would like to refine our question from the previous section: are
there plausible assumptions about the components of our framework that would
render boundedly rational an agent who displays posterior matching behavior?

The observation that people’s choices match not just empirical frequencies,
but also more “notional” probabilities derived from normative models, has a long
history (Estes, 1959; Peterson and Beach, 1967). Much of the human data—
including in many recent Bayesian analyses—can be modeled using a class of
functions first explored in psychology by Luce (1963), and which have subse-
quently become a standard tool in the field of reinforcement learning under the
name of softmax functions (Sutton and Barto, 1998). Using the notation estab-
lished in the previous section, suppose we have an agent that needs to choose
from among various actions ai, each assigned some estimated measure of value
Vs[ai]. A Luce choice agent Lτ will take action ai with probability:

Lτ (s)(ai) =
eVs[ai]/τ∑
aj
eVs[aj ]/τ

where the parameter τ determines how close the agent is to maximizing value.
As τ → 0, the agent maximizes value with probability 1; while as τ → ∞,
all actions become equally likely. A special case of this setup is the standard
prediction problem. A convenient value function for prediction problems, often
used in machine learning and in neuroscience, is the log posterior probability, so
that the value of guessing a state ϑ given data s is equal to logP (ϑ|s). If we
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assume this, the Luce choice agent Lτ is then proportional to the following:

Lτ (s)(ϑ) ∝ elogP (ϑ|s)/τ (6)

When τ = 1, this agent posterior matches exactly: L1(s)(ϑ) = P (ϑ|s). It is very
common in Bayesian cognitive modeling to compare L1, rather than the “ideally
rational” agent A∗, to human data. There are also cases where the parameter τ
is fit to some value potentially less than one, in order to provide a more flexible
model (see, e.g., the discussion in Sanborn et al. 2010).

We saw that in a standard prediction problem, ignoring costs, A∗ will be
deemed rational, indeed optimal (Fact 1). In what sense, if any, is Lτ rational?
In a thorough discussion, Eberhardt and Danks (2011) consider a number of pos-
sible answers to this question, but find them all wanting. The problem is that in
a single-shot inference problem there is no evident advantage to guessing a state
with probability lower than the maximum.

One step in the direction of answering this challenge has been suggested by
Vul et al. (2014). In a standard prediction problem, L1 properly describes the
behavior of an agent who draws a sample state ϑ∗ from P (ϑ|s) and uses ϑ∗ as
a response, while an agent who draws multiple samples and chooses the mode
will correspond to Lτ for some τ < 1. Under certain assumptions about the cost
of drawing samples from a posterior distribution, compared to the potential im-
provement in utility afforded by a more accurate approximation to the posterior,
Vul et al. (2014) show that it is often optimal to draw very few samples, some-
times as few as one. Griffiths et al. (2015) extend this analysis by suggesting that,
for concrete sampling algorithms such as those based on the Metropolos-Hastings
method, optimal decisions involve not just relatively few samples, but also un-
avoidable bias in the sampling process, which is used to account for a number of
psychological effects. The motivation behind this work is in the spirit of bounded
rationality: because the computations required by application of Bayes’ Rule are
intractable, use of Monte Carlo sampling might make sense as “behavior that is
actually optimal in the context of the limitations of the agent” (Vul et al., 2014,
26). The fact that Monte Carlo algorithms are also a favored engineering solution
to hard probabilistic inference problems lends further credence to this suggestion.

At the same time, this response to the challenge arguably assumes too much at
the outset. In terms of the framework from the previous section, Vul et al. (2014)
essentially assume that Π consists solely of agents that draw some number of sam-
ples from the posterior before making a guess, differing only in how many samples
are drawn. That is, the analysis only compares approximately Bayesian agents to
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one another. This does not show that any of these agents will be boundedly ra-
tional in any more robust sense, in particular as compared to agents employing
heuristics whose choice behavior may differ markedly. This is especially pressing
given the possibility of scenarios in which simple heuristics perform demonstra-
bly better than even very costly Bayesian calculations, not to mention algorithms
that merely approximate those calculations. Agents whose behavior is described
by Lτ may well be boundedly rational in many cases of interest. But we cannot
simply assume this without a compelling reason.

The difficulty in substantiating a claim of bounded rationality is related to the
“potential Achilles heel” of rational analysis. We could perhaps learn that, as
a matter of fact, the brain represents (conditional) probability distributions by a
particular kind of sampling process (cf. Icard 2016). This would then allow us
to sharpen hypotheses about what class Π of programs should be our focus, be-
fore then focusing on more specific issues such as the determination of an optimal
value for τ . This kind of detailed analysis is possible, and can be profitable.6 Yet,
for high-level cognition we simply do not have such understanding, and the point
of rational analysis is to help guide that very search, so that we know what to look
for. Moreover, it seems likely that the details may be quite different from task to
task. The diversity of tasks for which Lτ has been used as part of a Bayesian ratio-
nal analysis speaks further to the need for some more general type of justification.

As an analogy, consider the question of when we should expect a flexible
architecture, as opposed to a fixed behavioral repertoire, to be adaptive for an or-
ganism. On the one hand it is certainly not obvious that flexibility will always
be advantageous. But on the other hand, it would not be very illuminating to
say merely that it depends on details of the case. One would like a more general
characterization of conditions under which flexibility would be adaptive. Using
a similar (but much simpler) decision-theoretic framework of assessment to what
we proposed here, Godfrey-Smith analyzes this question, showing that, at least in
certain simplified circumstances, flexibility will be useful when there is variability
in environmental conditions that matter to the organism, but also stable correla-
tions between these conditions and states of the agent (Godfrey-Smith, 1996).
Our question is about a more specific, and more complicated, type of flexibility—
namely, when it makes sense to behave in an approximately Bayesian manner
according to Lτ—and we will thus need to make more substantial assumptions
at the outset. However, the goal is roughly the same: to find a helpful level of

6See Lewis et al. (2014) for examples involving very detailed assumptions about architectural
constraints involved in response ordering and eye movement tasks.
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analysis that is sufficiently anchored to details that matter, while also achieving
the kind of generality to which rational analysis aspires.

6 Entropic Cost Functions
One way of approaching questions about mental computation costs would be to
find an interpretation of Cπ(s) in terms of relatively concrete space or time re-
quirements incurred when program π processes stimulus s. This is undoubtedly
appropriate when possible, and indeed, a fair amount is known about the biophys-
ical and metabolic costs of neural computation in certain domains, e.g., in the
sensory system (Niven and Laughlin 2008). The problem with this approach in
the case of high-level cognition is that time and space costs are potentially sensi-
tive to computational architecture, and the latter is much of what we are attempt-
ing to understand. Of course, as in the work on Monte Carlo sampling described
above, one can profitably stipulate a certain kind of architecture together with
associated costs and explore the consequences of this stipulation. The bounded
rationality framework sketched earlier accommodates such approaches. A more
ambitious aim, however, is to try to derive sampling-like behavior from first prin-
ciples, based on (boundedly) rational analysis and reasonable, but perhaps more
general, assumptions about cost. The proposal explored in this section is some-
what speculative, but maintains this more ambitious aim.

A number of authors have suggested that we might be able to understand com-
putational resource bounds in terms of general thermodynamic costs associated
with computing.7 To help motivate the proposal, consider a simple thought ex-
periment about ideal gases from Feynman (1998), further extended by Ortega and
Braun (2013). Imagine a box X of gas with volume V1 containing N atoms, and
suppose we wanted to compress the gas to a smaller box Y with volume V2. As-
suming we can do this in a way that keeps the temperature T constant, the physical
work W involved in this process is given by the well known equation:

W = NkT log
V2
V1

(7)

where k is the Boltzmann constant. In order to forge a bridge to information and
computation, let us suppose there is only a single atom in X , and that moreover
X can be partitioned into some cells ϑ1, ϑ2, . . . , such that the smaller box Y is the

7The most detailed such account as applied to human decision making is offered by Ortega and
Braun (2013).
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union of some of these cells. Let us also define P (ϑ) = V1(ϑ)/V1, where V1(ϑ)
is the volume of ϑ in X , and likewise let Q(ϑ) = V2(ϑ)/V2. Assuming that the
atom could equally likely be in any position within box X before compression,
and anywhere in Y afterward, the probabilities P and Q = P ( · |Y ) quantify our
uncertainty about which cell the atom occupies. The situation is as in Fig. 1.

X Y

Figure 1: Compressing X (with volume V1) to Y (with volume V2)

We can thus think of W as capturing the work involved in reducing our uncer-
tainty about where the atom is, by shifting our distribution from P to the (sharper)
distribution Q, as though we “learned” the proposition Y . Notice that with this
shift in perspective on equation (7), we can see that the work is proportional to the
following quantity (cf. Ortega and Braun 2013, 4):

W ∝ log
V2
V1

=
∑
ϑ

Q(ϑ) log
(V2
V1

V1(ϑ)

V1(ϑ)

V2(ϑ)

V2(ϑ)

)
=

∑
ϑ

Q(ϑ) log
V2(ϑ)

V1(ϑ)
+
∑
ϑ

Q(ϑ) log
( V2
V2(ϑ)

V1(ϑ)

V1

)
=

∑
ϑ

Q(ϑ) log
V1(Y ∩ ϑ)

V1(ϑ)
−
∑
ϑ

Q(ϑ) log
Q(ϑ)

P (ϑ)

=
∑
ϑ

Q(ϑ) logP (Y |ϑ) +
∑
ϑ

Q(ϑ) logP (ϑ)−
∑
ϑ

Q(ϑ) logQ(ϑ)

=
∑
ϑ

Q(ϑ) logP (Y, ϑ) +H(Q)

That is, the work is proportional to (negative) total energy plus entropy H(Q) of
the smaller box Y . The negative of this quantity is sometimes referred to as the
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free energy (Feynman, 1998).8

Our question is whether this way of thinking about resources could justify the
sort of behavior characterized by Luce’s choice rule. In that direction, let us relate
this back to the problem of determining bounded fitness. The expression above
for work immediately suggests a cost for an arbitrary agent function A. Define
the cost of agent function A, given stimulus s, to be:

CA(s) = τ
∑
ϑ

A(s)(ϑ) logA(s)(ϑ)

= −τ H
(
A(s)

)
In other words, we assume very abstractly that the cost of implementing an agent
function A is given by (some multiple of) the negative entropy of the distribution
A(s) over actions.

The intuition here is simple. Without exercising any control over one’s ac-
tions, any action would be a priori as likely as any other. Configuring oneself to
ensure that a specific action is taken requires some physical work, including in
situations where such work takes the form of mere thinking (about what to do,
what the answer is, and so on). Even when one implicitly “knows” the right so-
lution to a problem, distilling this solution sufficiently that one may act upon it is
not a costless process. The assumption is that the cost of this work is inversely
proportional to the uncertainty remaining in the agent’s behavioral dispositions.9

Let us again assume Ψ = log, so that value is given in terms of log probabil-
ities, and let us otherwise assume we are in a standard prediction problem. For a
fixed s, writingQ = A(s), we can treat agent functionsA themselves as programs

8There has been much recent discussion in neuroscience and philosophy about a “free energy
principle” as one way of fleshing out hypotheses about predictive coding and “active inference” in
perception and cognition (see, e.g., Friston 2010). It is important to clarify that, apart from appeal
to some of the same mathematical ideas from information theory and thermodynamics, the present
proposal is in no way tied to these hypotheses. In particular, while the present proposal is certainly
compatible with specific hypotheses about predictive coding, modular hierarchical processing,
variational inference, and so on (see Sengupta et al. 2013), it in no way assumes them.

9It is worth noting that entropic cost functions have been independently proposed in economics
and game theory to formalize a closely related concept, cost of decision control. For instance,
Mattsson and Weibull (2002) draw upon representation theorems by Shannon and Hobson and
interpret their axioms as conditions on a measure of cost of control, deriving (some multiple of)
action entropy as the unique cost function.
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with costs in a uniform manner:

φ[A] =
∑
ϑ

logP (s, ϑ)σ[ϑ, s,A]− τ
∑
ϑ

Q(ϑ) logQ(ϑ)

=
∑
ϑ

Q(ϑ) logP (s, ϑ) + τ H(Q) (8)

Thus we arrive right back to our quantity that we just saw was proportional to
work. The crucial fact, which is a standard result in thermodynamics and in-
formation theory (Jaynes, 1957, 623), is that maximizing work, i.e., maximizing
fitness—trading off by τ expected utility maximization with entropy maximization—
gives us exactly the Luce choice rule with this value of τ :

Fact 2. Eq. (8) reaches a maximum with A = Lτ . That is, the Luce choice rule
is boundedly optimal in a standard prediction problem with entropic costs.

Fact 2 marks progress on our main question. Assuming a reasonable con-
version factor τ , and assuming the entropic cost function is appropriate to begin
with, this provides a boundedly rational analysis of posterior probability match-
ing: what looks like a suboptimal version of a deterministic strategy may instead
be optimal given the costs of effecting intelligent deterministic strategies. Specif-
ically, this result singles out algorithms that (behave as though they) approximate
Bayesian inference. An important question now is whether the entropic cost as-
sumption is a sensible one. Acknowledging that the hypothesis is somewhat spec-
ulative, we offer here only a preliminary defense for why it is nonetheless worth
taking seriously.

7 Role of Costs in (Boundedly) Rational Analysis
By defining costs in this very abstract way, applying directly to agent functions
A rather than more concrete agent programs π, we essentially define a partition
on any space Π of programs, whereby π1 and π2 are equally optimal if they lead
to the same action distributions, i.e., if Aπ1 = Aπ2 . This is more fine-grained
than merely looking at expected utilities, but it is certainly more coarse-grained
than, for example, looking at time or space consumption. A legitimate concern is
that this makes costs unhelpfully abstract. If we see that algorithm 1 produces the
same behavior as algorithm 2, but consumes less time and space in the process,
we would obviously say that algorithm 1 is more cost-efficient. The entropic
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cost function is blind to this difference. It was claimed above that this level of
generality should be seen as an advantage, and we now need to defend this claim.

The advantage emerges most clearly when we consider how assumptions about
computational costs fit into the broader methodological program of rational analy-
sis, the topic with which we began. When studying a given cognitive phenomenon
we face the daunting task of narrowing down some vast set Π of potential pro-
grams. The point of a rational analysis is to focus our attention on those programs
that solve the underlying problem well, and the point of boundedly rational analy-
sis is to incorporate computational cost as a central component of what it takes to
solve a problem well. Absent concrete information about costs, we would like to
start somewhere.

The hypothesis is that this entropic cost function C is a good place to start:
while it does not capture all aspects of computational costs, it does capture some
important aspects. Quite generally, mental resources are required to make distinc-
tions and to promote any particular action at the expense of potential alternatives.
Thus, plausibly, C charges for behaviors that are truly resource-intensive. Yet,
by design, such an abstract cost function as C cannot discriminate in a way that
depends on concrete details of the computational architecture, and it is in virtue of
this deliberate neutrality that C clearly cannot tell the whole story about cognitive
costs. After all, if we knew the whole story we would probably not be faced with
the identifiability problem in the first place. These considerations make it all the
more striking just how much progress we can achieve. In particular, as revealed
by Fact 2, with this relatively noncommittal assumption about cost we arrive at
optimal behavior that is much closer to what we empirically observe in behavior.

To illustrate further what Fact 2 achieves, consider a prima facie deficiency of
our cost model. Suppose there are just two equally likely states, ϑ1 and ϑ2, such
that for any data point s they still appear indistinguishable: P (ϑ1|s) = P (ϑ2|s) =
0.5. Agent A takes the time and effort to draw a sample state from the posterior,
conditioned on s, and thus has equal probability of choosing each. Agent B,
by contrast, does not think at all and merely chooses randomly between ϑ1 and
ϑ2. Somewhat counterintuitively, A and B suffer the same cost and are therefore
equally optimal.

This result, however, is no more anomalous than the situation itself. From
the perspective of rational analysis, we would not expect good performance in an
environment like this to reveal any interesting cognitive structure at all. Imag-
ine instead (as a simple idealization) that the possible data points come from the
interval (0, 1), and that we have likelihood density functions fϑ1(s) = 2s and
fϑ2(s) = 2− 2s, so that P (ϑ1|s) = s and P (ϑ2|s) = 1− s. In this case, an agent

20



clearly stands to gain by attending to s. Assuming entropic costs with τ = 1,
the optimal agent is L1, who expects fitness of 0. Any agent who ignores s and
steadfastly chooses ϑ1 with probability p will expect fitness −1 +H(p), which in
the best case (p = 0.5) achieves only −1 + log 2 ≈ −0.3.

The broader lesson of this illustration is that acting optimally across a suffi-
ciently wide range of problems, reflecting the true intricacy of typical cognitive
tasks our minds face, is non-trivial. While boundedly rational agents in this setting
may fall short of ideal Bayesian optimality—which make sense especially when
conditional probabilities P (ϑ|s) are difficult to determine—they must nonethe-
less move in the direction of what Bayes’ Rule dictates, acting as though they are
appropriately, if only partially, incorporating their evidence. This already offers
progress and potential insight into what kinds of agent programs should be the
focus of our modeling attention (assuming, of course, that we are confident in our
characterization of the underlying problem).

As we come to understand more details about inherent psychological costs and
constraints, we should certainly expectC to be refined, which in turn may result in
different optimality pronouncements. The working hypothesis is that such details
will genuinely build on the present hypothesis, allowing us to make yet further
distinctions. For example, perhaps among all possible algorithms instantiating
the Luce choice rule in standard prediction problems, later insights about compu-
tational constraints will single out specific Monte Carlo sampling algorithms as
uniquely optimal.

In closing, it is worth pointing out that our entropic cost assumption ought
to be less contentious than the (very common) assumption we highlighted earlier
in §4, namely that we are in a standard prediction problem. We have provided
tools for justifying approximate Bayesian behavior, but this depends on a partic-
ular way of characterizing the problems cognition is assumed to be solving. For
any specific cognitive function this characterization can be questioned (see, e.g.,
Murphy 1993 on Anderson 1990 on categorization). A full defense of (bound-
edly) Bayesian rational analysis would need to provide a convincing argument for
why this assumption is justified in any given instance.

8 Conclusion
While Bayesian models of cognition have been used profitably to account for a
wide range of psychological phenomena, the details of their application, coupled
with their generally prohibitive computational costs, have generated a fair amount
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of criticism. In particular, the question arises as to why it would make sense for an
agent to employ inferential or decision making strategies that merely approximate
“ideal” Bayesian solutions to these tasks, in the sense of asymptotic convergence
given enough time and resources. We have addressed this question by proposing a
very general way of theorizing about bounded rationality, which does not assume
from the start that a Bayesian agent will be optimal. Instead, the framework al-
lows a modular study of this question where we can explore different assumptions
about utility structure, environments, representational capacity, and even methods
of assessment. We demonstrated one example set of assumptions under which
ideal Bayesian agents would be optimal (Fact 1), and used this to explore a very
general hypothesis about computational cost under which sampling agents who
approximate Bayesian calculations would in fact be boundedly optimal (Fact 2).

The resulting framework casts debates about Bayesian rationality in a different
light, perhaps closer to an engineer’s perspective. Indeed, Bayesian models and
approximations thereto are ubiquitous in computational statistics, artificial intel-
ligence, and other domains where inferences must be made under uncertainty as
well as under tight resource constraints (MacKay, 2003). Such applications have
directly inspired many of the concrete implementations of Bayesian models in
cognitive science. This shift from ideal rationality to computationally bounded
rationality makes sense from both perspectives: not only in engineering, but also
in cognitive science, where we are searching for realistic, but nonetheless ef-
fective, mechanisms that a resource-bounded brain could plausibly implement,
through some combination of incremental phylogenetic and ontogenetic improve-
ment. The suggestion we have been exploring is that a kind of optimistic “com-
putational Bayesianism” may be justified on these grounds, both as a generally
good solution to a wide class of problems, and tentatively as part of a (boundedly)
rational analysis of particular cognitive functions.

On a program like that sketched in this article, the coupling between norma-
tive and descriptive considerations—between ‘ought’ and ‘is’—becomes intricate
and delicate. On the one hand, knowing what kinds of agents we are, and equally
critically, characterizing useful and realistic standards of rationality, is arguably
essential to the task of assessing and improving our own reasoning and deci-
sion making behavior. On the other hand, according to the framework sketched
here, this same kind of characterization—which we can use both for assessment
and for generating hypotheses in cognitive modeling—should draw significantly
upon facts about what we are like. Negotiating this precarious interdependence is
clearly a significant challenge, but one that promises to be rewarding.
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