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We analyze 2-terminal routing games with linear cost functions and with unknown
number of active players. We deal with both splittable and unsplittable models. We prove
the existence and uniqueness of a symmetric safety-level equilibrium in such games and
show that in many cases every player benefits from the common ignorance about the
number of players. Furthermore, we prove new theorems on existence and uniqueness of
equilibrium in 2-terminal convex routing games with complete information.
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1. Introduction

The study of congestion games [20,17,14] is central to game theory, transportation engineering, multi-agent systems,
CS/AI, electronic commerce, and communication networks. In the last decade congestion games have been a central ingre-
dient in the border of the above disciplines.1 Most of the related studies assume complete information about the set (and
in particular the number) of participants in the system.2 However, in many settings, although the set of registered/potential
participants may be known, the actual set of active participants is unknown. Hence, incorporating uncertainty about the set
of actual participants into congestion settings is a desirable task.

A routing game is defined by a congestion network and a set of players. A congestion network consists of a directed
graph, a vector of edge cost functions, and a set of source-target pairs. Each player is associated with a source-target pair.
Every player has to move one unit of good from her source to her target. In a splittable routing game, the player can split
her unit amongst the paths that connect the source to the target, and in an unsplittable routing game the players cannot
split their units. The edge cost functions determine the cost of every user of the edge as a function of the number of users.
Routing games are a special type of congestion games.3 In this paper we focus on routing games that are determined by

✩ This paper is based on an extended abstract, titled “Symmetric routing games with an unknown set of active players”, presented at AAMAS-07, and
a paper titled “Resource Selection Games with Unknown Number of Players”, presented at AAMAS-06. This article presents a unified approach and contains
all proofs.
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1 See e.g. [10,9,12].
2 Some recent works deal with incomplete information about other parameters in the Bayesian setting [6,7].
3 Congestion games are defined by congestion forms/model, which is a particular structure consisting of a set of resources together with a class of

subsets of this set (see e.g. [13]). Every congestion form, and a finite set of users uniquely define a congestion game. However, distinct congestion forms
can generate identical congestion games. A particular type of form is the one generated by a congestion network.
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two-terminal congestion networks. That is, there is a single source-target pair, which is associated with all users. From
[13] it can derived that every symmetric congestion game is a 2-terminal routing game.4 In this paper, when dealing with
splittable routing games we assume that the edge cost functions are increasing, continuously differentiable, and convex.
When dealing with unsplittable routing games we assume only that they are non-decreasing. In a routing game with
complete information every player knows the network structure, the cost functions, and the number of users. In a routing
game with incomplete information discussed in this paper, every active player knows all of the above except for the number
of active players; she does know the number of potential players.5 In this paper we assume that there is no commonly
known prior probability distribution over the possible number of active players. Hence we suggest to model behavior of the
players in these games by the concept of safety-level equilibrium, which was recently defined for games with incomplete
information in [1]. A safety-level equilibrium is a strategy profile in which each agent minimizes her worst case cost over
all possible states of the environment, assuming the other agents stick to their prescribed strategies. In the context of
routing games discussed in this paper, the possible states of the environment correspond to the possible sets of active
players. A useful observation is that the worst case cost for a player occurs when all players are active. This follows since
the edge cost functions are non-decreasing. Let c(k) be the cost of each player in equilibrium in the complete information
case when there are k players, and c(k,n) be the cost of each player in a safety-level equilibrium in the related game with
incomplete information when there are k active players and n potential players. We define the value of ignorance to be
ν(k,n) = c(k) − c(k,n). If this value is non-negative, ignorance is beneficial (in the weak sense) for the players.6 In order
for the above index of the value of ignorance to make sense the cost in equilibrium at each of the above settings should
be uniquely defined. Therefore, parts of this paper are devoted to proving existence and uniqueness of equilibrium results.
While analysis of the value of ignorance is performed only for congestion networks with linear cost functions, our existence
and uniqueness theorem are proved for more general cost functions.

Our results concerning the value of ignorance in models with linear cost functions are as follows: Fix the number, k � 1,
of active players. We show the following structure of the function ν(k,n) for k � n < ∞:
In symmetric splittable routing games: ν(k,n) is non-negative and non-decreasing in n at the interval [k,2k − 1], and it is
non-increasing in n at the interval [2k − 1,∞). More refined structure is proved for the subclass of
splittable parallel routing games: if k is sufficiently large, it is proved that ν(k,n) � 0 for k < n � k(k + 1) − 1, and it
vanishes at n = k(k + 1) − 1. Consequently, for n > k(k + 1) − 1, the value of ignorance is not positive. That is, knowledge is
a desirable good. Finally, we prove for
unsplittable parallel routing games: For sufficiently large k, ν(k,n) � 0 for every n > k, and it is maximized over n ∈ [k,∞)

at n = 2k − 1.
Our results have interesting implications in the context of protocol design in congestion settings with incomplete infor-

mation. Consider an organizer who knows the number of participants at each given point, and wishes to maximize social
surplus. That is, the organizer’s goal is to minimize the agents’ costs. In ranges in which the value of ignorance is positive
(e.g., when the number of potential participants is not too large with respect to the number of active participants) the orga-
nizer should not reveal the number of actual participants. Analogously, in ranges in which the value of ignorance is negative
the organizer should reveal the number of actual participants. Note that if the costs are paid to a revenue-maximizing
organizer, the above policies should be reversed.

The paper is organized as follows: Sections 2–4 are devoted to the analysis of 2-terminal splittable routing games with
complete information. In Sections 5–6 we analyze the value of ignorance in 2-terminal splittable routing games. In Section 7
we analyze parallel unsplittable routing games (which we call resource selection games) with complete information, and in
Section 8 we discuss the value of ignorance for such games.

2. Congestion networks

A congestion network consists of a directed graph, a set of source-target pairs, and a vector of edge cost functions. In
this paper we deal only with 2-terminal congestion networks, i.e. congestion networks which posses a single source-target
pair.

2.1. 2-terminal congestion networks

Let G = (V , E, vs, vt) be a 2-terminal directed graph without self-loops, where V is a finite set of nodes, E is a finite set
of edges, and vs, vt ∈ V are two distinct nodes called the source node and the target node, respectively. For every v ∈ V
we denote by Out(v) and In(v) the set of out-going and in-coming edges of v , respectively. A route is a directed path with
distinct nodes that connects vs to vt . For every edge e ∈ E and a route R we write e ∈ R whenever e is part of the route R .
Let RO be the set of routes. We assume that RO �= ∅.

4 It is not known whether every congestion game is a routing game.
5 In our model there is a finite number of agents. The initial research of congestion games [20], as well as much of the recent research [19,18] discuss

congestion games with continuum of agents, which are called non-atomic congestion games.
6 We chose to refer to the “value of ignorance” rather than to the “value of knowledge” because it turns out that ignorance is often beneficial to the

players.
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Every edge e ∈ E is associated with a cost function de : � → � which, unless we say otherwise, satisfies the following
properties:

– de is continuously differentiable, convex, increasing, and de(x) > 0 for every x > 0.7

de(x) is interpreted as the cost per unit that is moved through e when the load on e is x.8 A congestion network is
called linear if for every edge e there exist constants ae,be such that de(x) = aex + be for every e ∈ E and for every x ∈ �.
Obviously, in a linear cost function satisfying the above conditions ae > 0 and be � 0 for every e ∈ E . Much of the literature
on congestion networks deals with linear congestion networks. In addition to its mathematical convenience, this type of
assumption is quite natural in settings in which the cost function captures the delay on an edge; the assumption that the
delay on edge is a linear function of the load is quite intuitive.

Let d = (de)e∈E be the vector of edge cost functions. The tuple N = (G,d) is called a 2-terminal congestion network.
A 2-terminal congestion network is called parallel if V = {vs, vt}. The study of parallel congestion networks is most popular
in the literature. One reason for that is the fact they capture the classical situation of alternative resources that can be
chosen from by a set of parties, each of which having its own job/task. This is the canonical situation studied in Operations
Research and related communities.

2.2. Route flows and edge flows

Consider an agent who has to move a continuously divisible unit of good from the source to the target. A splitting policy
for such an agent is therefore a function g : RO → [0,1] with

∑
R∈RO g(R) = 1. That is, for every route R , g(R) is interpreted

as the proportion of the unit sent through the route R . Such a splitting policy is also called a route flow. For every route
flow g and for every e ∈ E let f e

g = ∑
R∈RO|e∈R g(R). That is, f e

g is the number of units routed through e. It is well known
that for every route flow g the following two conditions hold for the vector f = ( f e)e∈E = ( f e

g )e∈E :

∑
e∈Out(v)

f e =
∑

e∈In(v)

f e + rv for every v ∈ V , (1)

f e � 0, for every e ∈ E, (2)

where

rv =
{

1, v = vs ,
−1, v = vt ,
0 otherwise.

Every vector f = ( f e)e∈E that satisfies the above two conditions is called an edge flow, and f g is called the edge flow
induced by the route flow g . The set of route flows is denoted by Δ(RO), and the set of edge flows is denoted by F . Hence
every route flow g ∈ Δ(RO) induces an edge flow f g ∈ F , but it is obvious, and well known that not every edge flow is
induced by some route flow. A sufficient condition for an edge flow to be induced by a route flow is given below. A cycle
in G is a simple closed directed path. Let f be an edge flow, and let C be a cycle. We say that C is positive with respect to
f if f e > 0 for every e ∈ C .

Lemma 1. Let N be a 2-terminal congestion network. Every flow f with no positive cycles is induced by some route flow.

Proof. The proof follows from a more general theorem, named the flow decomposition theorem (see e.g. [2]). �
Note that an edge flow may be induced by several distinct route flows.

3. Routing games

Every congestion network, a set of players, and an association of a single source-target pair to each player defines a
congestion game, which is called a routing game. In this game every player has to move a unit of good from her source
to her target. When every player can split her unit amongst the available routes, the associated game is called a splittable
routing game. When the units are not divisible we get an unsplittable routing game. When the congestion network is 2-ter-
minal we get a 2-terminal routing game. Obviously, a 2-terminal routing game is a symmetric game. Similarly, a linear
congestion network generates a linear routing game, and a parallel congestion network generates a parallel routing game.

7 In this paper we call increasing what other may call strictly increasing.
8 The values of de(x) for x < 0 are not relevant to any of our discussions, but it is technically useful to let de be defined over the whole real line.
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4. Equilibrium in 2-terminal splittable routing games with complete information

Let N = (G,d) be a 2-terminal congestion network, and let I be a non-empty finite set of players. Whenever it is
convenient and harmless we assume that I = {1, . . . ,n}, n � 1. We are about to define actions and cost functions in the
corresponding 2-terminal splittable routing game denoted by ΓN (I). In this game, every player i chooses a route flow gi ,
and thus a route flow profile g = (g1, g2, . . . , gn) ∈ Δ(RO)I is generated. Each such profile of route flows generates a profile of
edge flows, fg = ( f g1 , f g2 , . . . , f gn ) ∈ F I . The cost function of every player, ci(g) would depend on the profile of edge flows
fg via the formula

ci(g) = Ci(fg),

where Ci : F I → � is a function defined over profiles of edge flows as follows:

Ci(f) =
∑
e∈E

f e
i de(fe), (3)

where

fe =
n∑

i=1

f e
i for every e ∈ E.

A route flow profile g is in equilibrium in ΓN (I) if

ci(g) � ci(hi,g−i)

for every player i and for every route flow hi , where g−i denotes the profile of route flows of all players but i.
In the following theorem we show that every 2-terminal splittable routing game possesses an equilibrium. We further

show that although the game may have multiple equilibria, the concept of equilibrium cost is well-defined. That is, there
exists a level of cost c(n) such that in every equilibrium profile g in ΓN (I), every player pays c(n). That is, ci(g) = c(n) for
every player i.9

Theorem 1. Let N = (G,d) be a 2-terminal congestion network, let n be a positive integer, and let I be a set of n players.

1. ΓN (I) possesses an equilibrium.
2. There exists a symmetric profile of edge flows, f[n] = ( f [n], . . . , f [n]) such that every equilibrium route flow profile in ΓN (I)

induces f. That is, for every equilibrium g, fg = f[n].
3. Consequently, there exists a level of cost, c(n) such that in every equilibrium of ΓN (I) every player pays c(n); c(n) is called the

equilibrium cost in ΓN (I).

Proof. It is useful to extend the splittable routing game to a game in which the players can choose edge flows directly. In
this game, which we call the edge flow splittable routing game and denote it by Γ̃N (I), every player is able to choose an edge
flow rather then just a route flow. Hence, the action set of every player is F , and the cost function of player i is given in (3).

It was proved in Theorem 5 in [16] that there exists a unique equilibrium in Γ̃N (I). Obviously every permutation of this
equilibrium profile is also an equilibrium implying that the unique equilibrium must be symmetric. In order to complete
the proof of the theorem we have to relate route equilibrium profiles in the splittable routing game ΓN (I) to the unique
edge equilibrium profile in Γ̃N (I).

Let f an equilibrium in Γ̃N (I). Since the edge cost functions are positive in (0,∞) every edge flow f i does not contain
a positive cycle. Therefore by Lemma 1 f i is induced by some route flow gi . Finally, observe that if g ∈ Δ(RO)I is an
equilibrium in ΓN (I) then fg is an equilibrium profile in Γ̃N (I). �
5. Equilibrium in 2-terminal splittable routing games with an unknown set of active players

Splittable routing games with unknown active players, are pre-Bayesian games as discussed in [3] and [1]. In this paper
we don’t use the general concept but rather use the concept in our particular setup. Let N be a 2-terminal congestion
network, and let I = {1,2, . . . ,n} be a finite set of potential players.
Terminology: During our discussion we will deal with splittable routing games of the form ΓN (K ), where K ⊆ I is a non-
empty subset of players. The cost function of player i ∈ K at this game should be denoted by cK

i . However, with a slight
abuse of notation we will denote it by ck

i , where k = |K |. In addition, whenever the set of players and their number is clear
we may also omit the superscript k.

9 It is shown in [5] that uniqueness fails outside 2-terminal networks.
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A state is a non-empty subset of players, K . That is, the set of states is Ω = 2I \ {∅}. The set of active players at the
state K is K . An active player knows that he is active, but he does not know the true state. Hence, an active player does
not know who or how many players are active. All such a player knows is an upper bound on the number of active players,
determined by the number of potential players. In a 2-terminal splittable routing game with unknown active players, denoted
by H N (I), at every state K the players in K are playing the game ΓN (K ), but they do not know it. A strategy for every
potential player i in H N (I) is a route flow gi , which he will use once he is active. Note however, that an active player
cannot compute his cost even if he knows the complete route flow profile g = (gi)

n
i=1. All he knows is that he will get

ck
i (gK) if the set of active players is K , where gK = (gi)i∈K . When players are considering worst-case scenarios regarding

the missing information about the set of active players, and they are in equilibrium, they form a safety-level equilibrium as
defined in [1].

Formally, in our context, a profile of route flows g is a safety level equilibrium in H N (I) if for every player i the minimal
value of max{K⊆I|i∈K } ck

i (hi,gK\{i}) over all hi ∈ Δ(RO) is obtained at hi = gi .
Since all cost functions are increasing the worst case scenario, that is max{K⊆I|i∈K } ck

i (hi,gK\{i}), is obtained in state
K = I . Therefore, we obtain the following result:

Lemma 2. Let N = (G,d) be a 2-terminal congestion network, and let I be a finite set of players. Let g ∈ Δ(RO)I be a route flow profile.
g is a safety-level equilibrium in the associated routing game with incomplete information H N (I) if and only if g is an equilibrium in
the associated game with complete information ΓN (I).

Proof. Assume g ∈ Δ(RO)I is an equilibrium in ΓN (I). Let i be an active player. By the comment we made before the
statement of this lemma,

min
hi∈Δ(R O )

max
{K⊆I|i∈K }

ck
i (hi,gK\{i}) = min

hi∈Δ(RO)
cn

i (hi,g). (4)

Because g is an equilibrium in ΓN (I), the min in the right-hand side of Eq. (4) is attained at gi . Therefore, g is a safety-level
equilibrium in H N (I). An analogous argument proves the if part of the lemma. �

Theorem 1 and Lemma 2 imply that when there are n potential players and k active players, each of the active players
is using at every safety-level equilibrium a route flow that induces the edge flow f [n], which is the edge flow induced in
equilibrium in the complete information game with n players. Let c(k,n) be the actual cost of each of the active k players
when each of them is using f [n]. That is, for an arbitrary player i,

c(k,n) = Ck
i

(
f[n]K

)
.

6. The value of ignorance – splittable games

We proceed to analyze the value of ignorance in 2-terminal splittable routing games as a function of the relationship
between the number of active participants, k, and the number of potential participants, n.

Consider a 2-terminal congestion network N = (G,d), and the associated splittable routing game with unknown active
players, H N (I), where |I| = n. Suppose that the real state of the world is K where |K | = k and k < n. If this state is
commonly known then each player i ∈ K pays c(k). If the real state is unknown then every active player pays c(k,n) as
defined at the end of the previous section. Therefore it is natural to call the difference, c(k) − c(k,n) the value of ignorance.
We denote the value of ignorance by ν(k,n). That is,

ν(k,n) = c(k) − c(k,n).

The value of ignorance indicates how much players “enjoy” the ignorance about the actual set of players. Observe that
ignorance is beneficial (in a weak sense) for the players if and only if ν(k,n) � 0. In the following example we demonstrate
the value of ignorance in a parallel routing game.

Example 1. Consider the congestion network N in Fig. 1. Let I = {1,2,3}, i.e. there are 3 potential players. Let the real
state be K = {1,2}. Hence, there are two active players. First we find the equilibrium in the routing game with complete
information with two players. Assume the first player sends y � 0 on the upper edge and 1− y � 0 on the lower edge. Then
the second player’s objective is to minimize x(x+ y)+ (1 − x)(1 − x+ 1 − y + 1), where x is the amount she will send on the
upper edge. The solution to this is x = 2−y

2 . Since by Theorem 1 the induced edge flow profile in equilibrium is symmetric,
it must be that x = y. Therefore x = 2

3 . The cost for each of the players in this case is c(2) = 2
3 ∗ 4

3 + 1
3 ∗ ( 2

3 + 1) = 13
9 .

We next find the equilibrium in the splittable routing game with complete information with three players.
Assuming the total amount two players send in the upper edge is y � 0, then the third player’s objective is to minimize

x(x+ y)+ (1− x)(1− x+2− y +1), where x is the amount she will send on the upper edge. The solution to this is x = 5−2y
4 .

By the symmetry of the induced edge flow profile in equilibrium we obtain x = 5−4x
4 and therefore x = 5

8 . If the state K is

not known to the players, then by playing the safety-level equilibrium each of the players in K will send 5
8 in the upper

edge an therefore their costs will be c(2,3) = 5 ∗ 10 + 3 ( 6 + 1) = 23 . Hence the value of ignorance is ν(2,3) = 13 − 23 > 0.
8 8 8 8 16 9 16
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Fig. 1.

In Example 1 we showed that the value of ignorance may be positive. In our next results we show a rich class of games
in which this phenomenon occurs. In the next section we proceed to estimate the value of ignorance in linear splittable
routing games in general 2-terminal congestion networks. More refined results will be obtained in the section following it
for parallel networks.

6.1. Linear 2-terminal splittable routing games

The following is our main result for splittable routing games:

Theorem 2. Let N = (G,d) be a linear 2-terminal congestion network. Let k,n � 1 be integers. If 2k − 1 � n > k then ν(k,n) � 0,
and ν(k,n − 1) � ν(k,n). Moreover, if there exists an edge e for which f e[n] admits at least two different values at the interval
n ∈ [k,2k − 1], the above inequalities are strict.

The key to the proof of Theorem 2 is Lemma 3 below. Recall that f [n] is the unique edge flow equilibrium profile
in ΓN (I). In this lemma we show that if there are n � 1 players and these players are restricted to use the same edge
flow, then the cost is minimized when all player use the edge flow f [2n − 1]. First we need some preparations. Let n � 1
and t � 1. We consider the following two optimization problems, PRi,n and SYMt . In PRi,n there are n players, and player i
optimizes her cost (chooses an edge flow) given that all other players but i use the edge flow f [n]. Formally,

PRi,n

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

min
∑

e∈E ze
i de(ze

i + (n − 1) f e[n])
s.t. zi ∈ �E and∑

e∈Out(v) ze
i = ∑

e∈In(v) ze
i + ri

v , v ∈ V ,

ze
i � 0, for every e ∈ E.

In (SYM)t there are t � 1 players, and the objective is to minimize the cost of some arbitrary player, say i, given that all
players are restricted to choose the same edge flow (not necessarily an equilibrium flow). Formally,

(SYM)t : min
f ∈F

∑
e∈E

aet
(

f e)2 + be f e.

The following lemma is a key in our proof of Theorem 2. We show that if there are t players for some t � 1, and all players
are restricted to use the same edge flow then the optimal cost will be attained f [2t − 1]. The lemma also provides a useful
and related inequality. Lemma 3 and its proof are in the spirit of Lemma 4.3 in [18].10 The proof idea is as follows. Suppose
there are n � 1 players. Since by Theorem 1 ( f [n], . . . , f [n]) is the unique edge flow equilibrium, f [n] optimizes for i the
cost in problem PRi,n . Therefore, the cost for i in the second optimization is lower or equal than the cost for i in the first
optimization problem. Both problems are convex optimization problems, and as it turns out the KKT conditions of these
two optimization problems are very similar also due to the linearity of the cost functions. The relation between the KKT
conditions yields our result.

Lemma 3. Let N = (G,d) be a linear congestion network and let n � 1. f ∈ F is a solution to (SYM)n if and only if f = f [2n − 1]. In
addition∑

e∈E

f e[n]
(

ae n + 1

2
f e[n] + be

)
�

∑
e∈E

f e[k]
(

ae n + 1

2
f e[k] + be

)
(5)

for every integer k � 1.

Proof. We need some preparations. Recall that an edge flow is a vector f ∈ R E that satisfies conditions (1) and (2). However,
the right-hand side of (3) is well-defined for every vector indexed by the edges. This enables us to extend the cost functions
Ci to (�E )I .

10 The model in [18] is the non-atomic model, where each player carries a negligible amount of load. Their lemma nor their proof does not imply our
lemma.
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Let f ∈ (�E )I . The marginal cost of each user i ∈ I on the edge e with respect to f e
i is

∂Ci(f)

∂ f e
i

= de(fe) + f e
i
∂de(fe)

∂fe
.

We further need the following notation. For every fictitious edge flow profile f and every couple of reals α,β ∈ � let
Ki(f,α,β) = ∂Ci(f)

∂ f e
i

+ α − β .

As the objective function in PRi,n is convex, and all constraints are defined by linear inequalities and equalities, PRi,n is a
convex minimization problem with linear constraints.

Therefore by KKT theorem in Appendix A, necessary and sufficient conditions for optimality are provided by the Karush–
Kuhn–Tucker (KKT) conditions. Thus, f i ∈ F is an optimal solution for PRi,n if and only if there exist Lagrange multipliers
λv

i , v ∈ V such that for every edge e ∈ E:

Ki
(
f, λt̂(e)

i , λ
ĥ(e)
i

)
� 0, and Ki

(
f, λt̂(e)

i , λ
ĥ(e)
i

)
f e

i = 0, (6)

where t̂(e) and ĥ(e) are the tail and head nodes of the edge e respectively, f−i = ( f [n], . . . , f [n]), and
As de(x) = aex + be , and I = {1, . . . ,n},

Ki
(
f, λt̂(e)

i , λ
ĥ(e)
i

) = 2ae f e
i + ae(n − 1) f e[n] + be + λ

t̂(e)
i − λ

ĥ(e)
i . (7)

By Theorem 1, ( f [n], . . . , f [n]) is the unique edge flow profile induced by every route flow equilibrium. Therefore, for
f i = f [n] there exist Lagrange multipliers λv , v ∈ V such that for all e ∈ E:

(n + 1)ae f e[n] + be + λt̂(e) − λĥ(e) � 0, and[
(n + 1)ae f e[n] + be + λt̂(e) − λĥ(e)] f e[n] = 0. (8)

Note that we have dropped the subscript i as for every player j the same conditions are drawn for PR j,n .11

Similarly, by the KKT Theorem in Appendix A, f ∈ F is an optimal solution for (SY M)t if and only if there exist Lagrange
multipliers λu , u ∈ V such that for every edge e ∈ E:

2tae f e + be + λt̂(e) − λĥ(e) � 0 and[
2tae f e + be + λt̂(e) − λĥ(e)] f e = 0. (9)

Finally, the proof follows by observing that by setting t = n+1
2 in (9) we get (8). �

We can now prove Theorem 2.

Proof of Theorem 2. To prove the first part we need we show that c(k,n + 1) � c(k,n) for every n such that 2k − 2 �
n � k. For every integer n̂ > 0 we extend the function c(·, n̂) to non-integer positive numbers α as follows: c(α,n) =∑

e∈E f e[n̂](aeα f e[n̂] + be).
Note that

c(k,n) = Ak
(

f [n]) + B
(

f [n]),
where

Ak
(

f [n]) = k
∑
e∈E

ae( f e[n])2

and

B
(

f [n]) =
∑
e∈E

be f e[n].

Let 2k − 2 � n � k. By (5) in Lemma 3, c(n+1
2 ,n) � c(n+1

2 ,n + 1), and also c(n+2
2 ,n) � c(n+2

2 ,n + 1). Therefore

c

(
n + 2

2
,n

)
− c

(
n + 2

2
,n + 1

)
= A n+2

2

(
f [n]) + B

(
f [n]) − A n+2

2

(
f [n + 1]) − B

(
f [n + 1])

= s
[

A n+1
2

(
f [n]) − A n+1

2

(
f [n + 1])] + B

(
f [n]) − B

(
f [n + 1]) � 0,

where s = n+2
2 /n+1

2 .

11 See [16] for a more detailed discussion.
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Let

D(t) = t
[

A n+1
2

(
f [n]) − A n+1

2

(
f [n + 1])] + B

(
f [n]) − B

(
f [n + 1]).

We showed that D(1) � 0 and D(s) � 0. Therefore D(t) � 0 for every t � s by the monotonicity of D(t) in t . However
k � n+2

2 . Therefore by setting t = k/n+1
2 we obtain the desired result since t � s. If f e[n] �= f e[n + 1] for some e ∈ E then

c(k,n + 1) < c(k,n) by the convexity of the program (SY M)n . �
Next we show that ν(k,n) is non-increasing in n for n � 2k − 1.

Theorem 3. Let N = (G,d) be a linear congestion network. Let k � 1 be an integer. ν(k,n + 1) � ν(k,n) for every n such that
n � 2k − 1.

Proof. We need the following claim.

Claim 2 (Punishment lemma). Let ρk � 0, k = 1,2, . . . , be an increasing sequence of real numbers. Let F : R
m+ → R+ and let

G : R
m+ → R+ . Define H : R

m+ × N → R+ by H(x,k) = F (x) +ρkG(x). Let xk be a solution of the minimization problem of H(x,k) s.t.
x ∈ D ⊂ R

m+ where D is a bounded convex set. F (xk) � F (xk+1) for every k � 1.

Proof (Claim 2). Notice that for every k � 1 H(xk,k) � H(xk+1,k + 1) since ρk � ρk+1. We next show that G(xk) � G(xk+1).
Observe that

F (xk) + ρkG(xk) � F (xk+1) + ρkG(xk+1)

and that

F (xk+1) + ρk+1G(xk+1) � F (xk) + ρk+1G(xk).

Therefore

(ρk+1 − ρk)G(xk) � (ρk+1 − ρk)G(xk+1)

which yields G(xk) � G(xk+1). Since

F (xk+1) + ρkG(xk+1) � F (xk) + ρkG(xk)

it must be that F (xk) � F (xk+1). �
We proceed with the main proof. Let i be some arbitrary player. For every edge flow f ∈ F we define F ( f ) =∑

e∈E f e(aekf e + be) and G( f ) = ∑
e∈E ae( f e)2. Let H( f ,m) = F ( f ) + m

2 G( f ). By Lemma 3, for every m = 0,1,2, . . . the
optimization problem min f ∈F H( f ,m) is minimized at f = f [2k + m − 1]. Therefore by Claim 2 F ( f [n + 1]) � F ( f [n]) for
every n � 2k − 1. Observe that c(k,n) = F ( f [n]). Hence c(k,n + 1) � c(k,n) for every n � 2k − 1. �

To summarize: fix the number, k � 1, of active players. Together, when we fix the number k � 1 of active players,
Theorems 2 and 3 imply the following structure of the function ν(k,n) for k � n < ∞: It is non-negative and non-decreasing
at the interval [k,2k − 1], and it is non-increasing at the interval [2k − 1,∞).

More information about this function is obtained for parallel routing games as is shown at the next section. For such
games, if k is sufficiently large, it is proved that ν(k,n) vanishes at n = k(k + 1)− 1. Consequently, for n � k(k + 1), the value
of ignorance is not positive. That is, knowledge is a desirable good.

6.2. Linear splittable parallel routing games

In this section we deal with a linear parallel congestion network, N = (G,d) in which de(x) = aex + be for every edge e.

Theorem 4. Let N = (G,d) be a parallel and linear congestion network. There exist an integer T (N ) such that for every k � T (N ).

1. ν(k,n) � 0 for every k(k+1)−1 > n > k. Moreover, the inequality is strict if and only if there exists e1, e2 ∈ E such that be1 �= be2 .
2. ν(k,n) � 0 for every n > k(k + 1) − 1. Moreover, the inequality is strict if and only if there exists e1, e2 ∈ E such that be1 �= be2 .
3. For n = k(k + 1) − 1, ν(k,n) = 0.

In order to prove Theorem 4 we need the following lemma:

Lemma 4. (See [8].) Let N = (G,d) be a parallel linear congestion network. For every n let ΓN (n) be the associated splittable routing
game with n players. Let A = ∑

e∈E
1
e and let B = ∑

e∈E
be

e .
a a



I. Ashlagi et al. / Artificial Intelligence 173 (2009) 1441–1455 1449
1. If at equilibrium each player sends a positive amount on each edge, that is f e[n] > 0 for every e ∈ E, then

f e[n] = 1

ae A

[
1 + B − be A

n + 1

]
for every e ∈ E. (10)

2. f e[n] > 0 for every e ∈ E if and only if

1

A

[
1 + B

n + 1

]
> max

e∈E

be

n + 1
. (11)

Proof of Theorem 4. By part 2 of Lemma 4 there exists an integer T depending on N such that for every n � T inequality

(11) holds. Let T (N ) = T , and let n > k � T (N ). Denote C = ∑
e∈E

be 2

ae . We are about to prove that

ν(k,n) = (AC − B2)((n − k)(k2 + k − n − 1))

A(n + 1)2(k + 1)2
, (12)

where A and B are defined in the statement of Lemma 4. Since be2 + bl2 � 2bebl for every e, l ∈ E , AC − B2 � 0. Moreover,
AC − B2 > 0 if and only if there exist a couple of edges, ê, l̂ such that bê �= bl̂ . In addition k2 + k − n − 1 is positive for
n < k(k + 1) − 1, negative for n > k(k + 1) − 1 and zero otherwise. Therefore the proof of the theorem follows from (12).
We have to prove (12). Indeed, by Lemma 4 and because (10) holds, for every e ∈ E , f e[n] = 1

ae A [1 + B−be A
(n+1)

], and f e[k] =
1

ae A [1 + B−be A
(k+1)

]. Therefore,

ν(k,n) =
∑
e∈E

kae[( f e[k])2 − (
f e[n])2] +

∑
e∈E

be( f e[k] − f e[n]). (13)

As

∑
e∈E

be( f e[k] − f e[n]) =
∑
e∈E

(B − be A)(n − k)be

(n + 1)(k + 1)ae A
= (B2 − AC)(n − k)

(n + 1)(k + 1)A
, (14)

and

∑
e∈E

kae[( f e[k])2 − (
f e[n])2] = k

∑
e∈E

ae
[(

1

ae A
+ B − be A

(k + 1)ae A

)2]
− k

∑
e∈E

ae
[(

1

ae A
+ B − be A

(n + 1)ae A

)2]

= k
∑
e∈E

[
2(B − be A)(n − k)

(n + 1)(k + 1)ae A2

]
+ k

∑
e∈E

[
(B − be A)2

(k + 1)2ae A2
− (B − be A)2

(n + 1)2ae A2

]

= k
∑
e∈E

[
(B − be A)2

(k + 1)2ae A2
− (B − be A)2

(n + 1)2ae A2

]

= k

[
C A − B2

(k + 1)2 A
− C A − B2

(n + 1)2 A

]
. (15)

Since ν(k,n) = (14) + (15) we obtain that

ν(k,n) = (AC − B2)[k(n + 1)2 − k(k + 1)2 − (n − k)(n + 1)(k + 1)]
A(n + 1)2(k + 1)2

.

Since

k(n + 1)2 − k(k + 1)2 − (n − k)(n + 1)(k + 1)

= k
[
(n − k)(n + k) + 2(n − k)

] − (n − k)(n + 1)(k + 1)

= (n − k)
(
k2 + k − n − 1

)
,

(12) follows. �
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7. Unsplittable routing games

In an unsplittable routing game a player cannot split her unit, and therefore she has to choose a single route that
connects her source to her target. Unsplittable routing games are a special type of congestion games as defined by [17].
Therefore, by [17] each such game has a pure strategy equilibrium. However, a symmetric equilibrium in a symmetric
unsplittable routing game cannot, in general, be pure. Hence, in general, an unsplittable symmetric routing game will have
more than one equilibrium profile, and moreover, it can be easily verified that it would have more than one equilibrium
cost. Hence, the existence of a unique equilibrium cost, which was crucial for our analysis of the value of ignorance in
the splittable model is not guaranteed in the unsplittable model. One can hope that when restricting attention only to
symmetric (necessarily mixed-action) equilibrium we will have a unique equilibrium cost. This is indeed our conjecture.
However, we have been able to prove this conjecture only for parallel unsplittable routing games. Therefore, in what follows
we will deal only with parallel routing games. Parallel routing games are also called, for obvious reasons, resource selection
games, and we will refer to them with the later name.

7.1. Equilibrium in resource selection games with complete information

Let N = (G,d) be a parallel congestion network. The graph G is practically defined by the set of parallel edges E =
{1,2, . . . ,m}. Therefore we will use the notation N = (E,d). Every edge j ∈ E is called a resource. When we dealt with
splittable models we assumed that every cost function d j is defined over [0,∞) and it is positive, increasing, convex and
continuously differentiable. When dealing with unsplittable models we assume d j is defined only for positive integers, and
that it is increasing and non-negative. Let I be a set of n players. Let ΓN (I) be the unsplittable parallel routing game defined
by N and I , which we call a resource selection game.

The action set of every player i in ΓN (I) is the set of resources E . For every profile of resources x ∈ En let σ j(x) be the
number of all players i ∈ I for which xi = j. Let cn

i (x) = dxi (σxi (x)) be the cost of player i when the players use the resource
profile x.

Let p ∈ Δ(E) be a mixed action of an arbitrary player. That is, p = (p1, . . . , pm), where p j is the probability that a player
who uses the mixed action p will select resource j. We denote the support of p by supp(p). That is supp(p) = { j ∈ E |
p j > 0}. Denote by cn(p, j) the expected cost of a player that chooses resource j when each of the other n − 1 players in
ΓN (I) is using‘p. Let cn(p) be the expected cost of every player when each of the n players in ΓN (I) is choosing p.

For every n � 1, and for every 0 � α � 1, let Y n
α ∼ Bin(n,α) be a binomial random variable. That is, f n

α(k) = P (Y n
α = k) =(n

k

)
αk(1 − α)n−k for every 0 � k � n. Let F n

α(k) = P (Y n
α � k) be the cumulative distribution function of Y n

α . Obviously

cn(p, j) = E
(
d j(1 + Y n−1

p j

))
, (16)

where E stands for the expectation operator. That is,

cn(p, j) =
n−1∑
s=0

d j(s + 1) f n−1
p j

(s). (17)

Let (q, . . . ,q) ∈ Δ(E)n be a symmetric mixed-action equilibrium profile in ΓN (I). We will refer to q as a symmetric-
equilibrium mixed action.

Theorem 5. Every resource selection game with at least two players and with increasing12 resource cost functions possesses a unique
symmetric mixed-action equilibrium.

In order to prove Theorem 5 we need some preparations.
The following lemma is well known, and is left as an exercise to the reader.

Lemma 5. Let n � 1. F n
α(k) is a strictly decreasing function of α for every 0 � k � n − 1.

In the following lemma we show that if all players choose the same mixed action, then the expected cost for a player
that uses resource j is increasing with the probability that resource j is given by the players.

Lemma 6. Let ΓN (I) be a resource selection game with at least two players. Let q, p ∈ Δ(E) be mixed actions, and let j ∈ E be a
resource such that d j is increasing in {1,2, . . . ,n}. If p j > q j then cn(p, j) > cn(q, j).

Proof. We have to show that cn(p, j) is increasing in p j .
By manipulating (17)

12 That is, d j(k) < d j(k + 1) for all j and k.
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cn(p, j) =
n−1∑
k=1

((
d j(k) − d j(k + 1)

) k−1∑
l=0

f n−1
p j

(l)

)
+ d j(n)

n−1∑
l=0

f n−1
p j

(l)

= d j(n) −
[

n−1∑
k=1

(
d j(k + 1) − d j(k)

)
F n−1

p j
(k − 1)

]
,

where the last equality follows from the fact that
∑n−1

k=0 f n−1
p j

(k) = 1.

By Lemma 5, F n−1
p j

(k) is strictly decreasing in p j for every k = 0, . . . ,n − 2. In addition, d j is strictly increasing, and
therefore cn(p, j) is strictly increasing in p j . �

We are now ready to prove Theorem 5. Roughly speaking, the proof follows since all resources in the support must have
the same expected cost in equilibrium, and if in negation there are two different equilibria then at least two resources are
assigned different probabilities in these equilibria.

Proof of Theorem 5. We only need to prove the uniqueness.13 Suppose in negation that there is more than one mixed-
action symmetric equilibrium in ΓN (I). Let q and p be two symmetric equilibrium actions with p �= q. Since p �= q there
exists j ∈ E with q j �= p j . W.l.o.g. q j > p j . Therefore there exist a resource r ∈ E such that r �= j and qr < pr . We get a
contradiction from the following sequence of inequalities: cn(q, j) > cn(p, j) � cn(p, r) > cn(q, r) � cn(q, j), where the strict
inequalities follow from Lemma 6 and the other inequalities hold because q and p are equilibrium actions. �

For every n � 1 we will denote the unique symmetric equilibrium mixed action in ΓN (I) by pn , and we denote by
c(n) = cn(pn) the equilibrium cost of a player in ΓN (I).

We say that a resource cost function d j is convex if it can be extended to a convex function on [1,∞).
The following lemma will be useful later. It states that when resource cost functions are convex, then for a sufficient

number of players the support of the unique symmetric equilibrium is full.

Lemma 7. Let N = (E,d) be a parallel congestion network with increasing and convex cost functions. There exists an integer T � 2,
T = T (N ) such that for every n � T , the unique symmetric-equilibrium mixed action in the game ΓN (I), pn ∈ Δ(E), has a full
support. That is, pn

r > 0 for every 1 � r � m.

Proof. Recall that pn is the unique symmetric-equilibrium mixed action in ΓN (I), and that c(n) = cn(pn) is the symmetric-
equilibrium cost of every player. As pn is an equilibrium mixed action, cn(pn, j) = c(n) for every j ∈ supp(pn). For every
resource j we denote by d j the convex extension of d j to [0,∞). As d j is convex,

cn(pn, j
) = E

(
d j(1 + Y n−1

pn
j

))
� d j(1 + E

(
Y n−1

pn
j

)) = d j(1 + pn
j (n − 1)

)
,

where the first equality follows from (16), the inequality follows from the convexity of d j .
Obviously, there exists j ∈ supp(p) for which pn

j � 1
m . For this resource j

c(n) = cn(pn, j
)
� d j

(
1 + 1

m
(n − 1)

)
�

m
min
r=1

dr
(

1 + 1

m
(n − 1)

)
.

Therefore since for every resource j, d j is increasing and convex, limn→∞ c(n) = ∞. Hence, there exists T such that for every
n � T c(n) > maxm

j=1 d j(1). This implies that pn
r > 0 for every 1 � r � m, otherwise a player will benefit from deviating a

resource r′ for which pn
r = 0. �

7.2. Resource selection games with an unknown set of active players

Consider a fixed parallel congestion network N = (E,d) with the set of resources E = {1, . . . ,m}, m � 1, and resource
cost functions d = (d j)m

j=1. Let I = {1,2, . . . ,n}, n � 1, be the set of potential players.
Analogously to what we did in Section 5, we proceed to describe the associated resource selection game with unknown

set of active players.
A state is a non-empty subset, K of players. That is, the set of states is Ω = 2I \ {∅}. The set of active players at the

state K is K itself. An active player knows that he is active, but he does not know the true state. Hence, an active player
knows nothing about the other players (except for an upper bound determined by the number of potential players), and in
particular he does not know the number of active players. In a resource selection game with unknown active players, denoted

13 Existence is proved in [15].
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by H N (I), at every state K the players in K are playing the game ΓN (K ), but they do not know it. The lack of knowledge
about the set of active players does not have an effect on the set of strategies available to each potential player. A strategy
for every potential player i in H N (I) is a resource xi ∈ E , which he will use once he is active. A mixed strategy for i is,
therefore, a probability distribution q[i] ∈ Δ(E). Note however, that an active player cannot compute his cost even if he
knows the complete resource profile x = (xi)

n
i=1 ∈ En . All he knows is that he will get ck

i (xK) if the set of active players is K ,
where xK = (xi)i∈K . When players are considering worst-case scenarios regarding the missing information about the set of
active players, they are using mixed strategies, and they are in equilibrium, they form a mixed strategy safety-level equilibrium
as described in Section 5. Formally, a profile μ = (q[1], . . . ,q[n]) of mixed strategies in H N (I) is a mixed strategy safety-
level equilibrium if for every player i the minimal value of max{K⊆I|i∈K } ck

i (p[i],μK\{i}) over all p[i] ∈ Δ(E) is obtained at
p[i] = q[i].

Since all cost functions are increasing the worst case scenario, that is max{K⊆I|i∈K } ck
i (p[i],μK\{i}), is obtained in the state

K = I . Therefore, we obtain the following result whose proof is omitted because of its similarity to the proof of Lemma 2.

Lemma 8. Let N = (E,d) be a parallel congestion network, and let I be a finite set of players. Let μ ∈ Δ(E)I be a mixed action profile.
μ is a mixed strategy safety-level equilibrium in the resource selection game with incomplete information H N (I) if and only if μ is a
mixed action equilibrium in ΓN (I).

We proceed to prove a uniqueness result:

Theorem 6. Let N be a parallel congestion network in which the resource cost functions are increasing, and let I be a set of n players.
H N (I) has a unique mixed strategy symmetric safety-level equilibrium. In this mixed strategy symmetric safety-level equilibrium every
player is using the mixed strategy pn, where pn is the unique symmetric-equilibrium mixed action in ΓN (I).

Proof. The proof follows directly from Theorem 5 and Lemma 8. �
By Theorem 6, each of the players in H N (I) is using the mixed strategy pn , where pn is the unique symmetric-

equilibrium mixed action in ΓN (I). However, the cost of each active player in H N (I) is not c(n) = cn(pn), and depends
on the true state. If the true state is K , that is K is the set of active players, and |K | = k, the cost of each active player i is
ck(pn). Denote this cost by c(k,n).

8. The value of ignorance – unsplittable routing games

As we did in the splittable routing model we denote the value of ignorance by ν(k,n). That is,

ν(k,n) = c(k) − c(k,n).

Theorem 7. Let N be a linear and parallel congestion network with increasing resource cost functions. There exist an integer
T = T (N ), T � 2 such that for all n > k � T :

1. ν(k,n) � 0.
2. All inequalities above are strict if and only if there exists j1, j2 ∈ E such that d j2 (1) �= d j1 (1).

Proof. 1. Let j ∈ E . By Lemma 7 there exist an integer T such that for every n � T the unique symmetric equilibrium mixed
action in ΓN (I) has full support for every set of players, I , with n players. We show that c(k) � c(k,n) for every n > k � T .

Since pk is an equilibrium in ΓN (K ) where K is a set of k players, then ck(pk, j) = ck(pk, r) for every pair of resources
j, r ∈ supp(pk). Since pk has a full support, by (16) and

c(k) = ck(pk) = d j(1) + (k − 1)a j pk
j . (18)

Similarly,

c(k,n) = ck(pn) =
m∑

j=1

pn
j c

k(pn, j
)

=
m∑

j=1

pn
j

[
c(n) − (n − k)a j pn

j

] = c(n) − (n − k)

m∑
j=1

a j(pn
j

)2
.

It remains to show that

c(n) − c(k) � (n − k)

m∑
a j(pn

j

)2
. (19)
j=1
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By Eq. (18) applied to c(k) and c(n)

pn
j = c(n) − d j(1)

a j(n − 1)
, pk

j = c(k) − d j(1)

a j(k − 1)
.

Let A = ∑m
j=1

1
a j and B = ∑m

j=1
d j(1)

a j . Since
∑m

j=1 pk
j = ∑m

j=1 pn
j = 1 we have that c(n) = (n−1)+B

A and c(k) = (k−1)+B
A . Hence

c(n) − c(k) = n − k

A
.

Because of (19) it remains to show that

A
m∑

j=1

a j(pn
j

)2 � 1.

Let L = ∑m
j=1

(d j(1))2

a j . Hence we have

A
m∑

j=1

a j(pn
j

)2 = A
m∑

j=1

(c(n) − d j(1))2

a j(n − 1)2
= A

(n − 1)2

[(
c(n)

)2
A − 2c(n)B + L

]

= 1

(n − 1)2

[(
(n − 1) + B

)2 − 2
(
(n − 1) + B

)
B + L A

]
= 1

(n − 1)2

[
(n − 1)2 − B2 + L A

] = 1 − B2 − L A

(n − 1)2
. (20)

It remains to show that L A − B2 � 0. This is immediate since for every couple of resources j, r ∈ E such that j �= r, (d j(1))2 +
(dr(1))2 � 2d j(1)dr(1).

2. Observe that L A − B2 = 0 if and only if d j(1) = dr(1) for every j, r ∈ E . �
We further analyze the properties of the function ν(k,n) in linear models:

Theorem 8. Let N be a parallel congestion network with linear and increasing resource cost functions. There exist T such that the
following assertions hold:

1. For every n � T pn
j = n−1+B−d j(1)A

Aa j(n−1)
, where A = ∑m

j=1
1
a j , and B = ∑m

j=1
d j(1)

a j .

2. For every k � T , for a set of k players, K , the minimal social cost in ΓN (K ) attained with symmetric mixed-action profiles is
attained at p2k−1 . Consequently, ν(k,n) = c(k) − c(k,n) is maximized for a fixed k at n = 2k − 1.

Proof. Let qn
j = 1

Aa j + B−d j(1)A
Aa j(n−1)

for every j ∈ E . Let T be the smallest integer t such that qt
j > 0 for every j ∈ E .

1. Observe that for every n � T qn
j > 0 for every j ∈ E . Notice that for every n,

∑m
j=1 qn

j = 1. Let n � T . In order to prove
that qn is in equilibrium it suffices to prove that for every player i, if all players but i play the mixed-action qn then player
i is indifferent between all resources. That is we want to show that

cn(qn, j
) = cn(qn, r

)
for every j, r ∈ E . Indeed, cn(qn, j) = d j(1) + (n − 1)a jqn

j = n−1
A + B

A , which doesn’t depend on j.

2. Let k � T . We need to show that ck(p) = ∑m
j=1 p jck(p, j) is minimized over p ∈ Δ(E) at p = p2k−1. Note that,

m∑
j=1

p jc
k(p, j) =

m∑
j=1

[
p2

j d
j(k − 1) + p jd

j(1)
]
.

Hence, minimizing ck(p) over p ∈ Δ(E) is a convex program with a differentiable objective function. Therefore, by the
Karush–Kuhn–Tucker theorem in Appendix A, every p ∈ Δ(E) for which there exists a Lagrange multiplier λ that satisfies

2p jd
j(k − 1) + d j(1) = λ ∀ j ∈ E (21)

is an optimal solution. By (21) and since
∑m

j=1 p j = 1, λ = 2(k−1)+B
A . Therefore p j = 2(k−1)+B−d j(1)A

2(k−1)Aa j . Observe that p j has

the same form of pn where n = 2(k − 1) + 1 = 2k − 1, which completes the proof. �
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9. Discussion and future work

In this work we have shown that between knowing or not knowing the number of active players in a routing game,
players are often better off not knowing this number. Our work is just a first step in analyzing the value of ignorance in
congestion games. The main point we leave open is the analysis of the value of ignorance in the unsplittable setting in a
general (not parallel) network. To answer this one needs to answer whether in every symmetric equilibrium the cost of
a player is identical, which is an intriguing question on its own. In this paper we focused on the linear setting, a natural
candidate when one treats the cost function of an edge as its associated delay. Characterizing the value of ignorance for
concave/convex cost functions is a direct extension to this work, which we leave as an open question.

In our setting players choose the worst case scenario under the incomplete information setting. One might think that this
behavior may be too conservative for the players. This suggests one may also consider a study of a corresponding Bayesian
setting, where there exists a common prior distribution over the number of active players, and players wish to minimize
their expected costs.

A central related topic that was studied extensively in the last decade is the “price of anarchy”, namely the ratio between
the social cost in a worst equilibrium and the optimal social cost (see e.g. [18,11]). Intuitively the larger this number is,
the more “social cost” is lost due to selfish behavior. The price of anarchy has been studied under a complete information
setting. As our results suggest, one way to reduce the price of anarchy but still allow selfish behavior is to “make sure”
the number of active participants remains unknown. In this paper we do not quantify the exact amount (nor give an upper
bound) on how much players gain from not knowing the number of participants. We leave this as an intriguing open
problem.

Other directions to proceed are:

– Assume players adopt other qualitative decision criteria, such as minmax regret.
– Assume players have different upper bounds on the number of active players.
– Study different types of incomplete information, e.g., assume the edge cost functions are not common knowledge.

Appendix A. The Karush–Kuhn–Tucker (KKT) conditions

In this section we describe the relevant theory of the Karush–Kuhn–Tucker (KKT) conditions that is required in our
proofs. The material is taken from [4].

Consider the following problem:

(IC) min
{

f (x): g j(x) � 0, j = 1, . . . ,m, hk(x) = 0, k = 1, . . . , p, xi � 0, i = 1, . . . ,n, x ∈ Rn}.
We say that (IC) is a convex program if f , g1, . . . , gm are real valued convex and differentiable functions on �n , and

h1, . . . ,hp are linear.
For every x ∈ �n let

L(x) = f (x) +
m∑

j=1

μ j g j(x) +
p∑

k=1

λkhk(x).

The following are the well known Karush–Kuhn–Tucker (KKT) conditions at a feasible point x∗:

KKT

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

There exist Lagrange multipliers μ j , j = 1, . . . ,m,

and λk , k = 1, . . . , p, such that

μ j g j(x∗) = 0, μ j � 0, j = 1, . . . ,m,

∂L(x∗)
∂xi

� 0, x∗
i

∂L(x∗)
∂xi

= 0, i = 1, . . . ,n.

The Karush–Kuhn–Tucker (KKT) Theorem. Let (IC) be a convex program and let x∗ be a feasible solution to (IC). If there exists
x̄ ∈ Rn+ such that at x̄ the non-linear g j are strictly negative, and linear g j are non-positive then the KKT conditions are both necessary
and sufficient for x∗ to be optimal for (IC).

References

[1] M. Aghassi, D. Bertsimas, Robust game theory, Mathematical Programming 107 (1) (2006) 231–273.
[2] R.K. Ahuja, T.L. Magnanti, J.B. Orlin, Network Flows: Theory, Algorithms, and Applications, Prentice Hall, New Jersey, 1993.
[3] I. Ashlagi, D. Monderer, M. Tennenholtz, Resource selection games with unknown number of players, in: Proceedings of the 5th International Joint

Conference on Autonomous Agents and Multiagent Systems, 2006, pp. 819–825.
[4] A. Ben-Tal, A. Nemirovski, Lecture notes, optimization i–ii, convex analysis, non-linear programming theory, non-linear programming algorithms,

http://www2.isye.gatech.edu/~nemirovs/Lect_OptI-II.pdf, 2004.
[5] U. Bhaskar, L. Fleischer, D. Hoy, C.-C. Huang, Equilibria of atomic flow games are not unique, in: Proceedings of the 20th Annual Symposium on Discrete

Algorithms, 2009, pp. 748–757.

http://www2.isye.gatech.edu/~nemirovs/Lect_OptI-II.pdf


I. Ashlagi et al. / Artificial Intelligence 173 (2009) 1441–1455 1455
[6] M. Gairing, B. Monien, K. Tiemnann, Selfish routing with incomplete information, in: Proc. of the Seventeenth Annual ACM Symposium on Parallelism
in Algorithms and Architectures, Las Vegas, NV, USA, 2005, pp. 203–212.

[7] D. Garg, Y. Narahari, Price of anarchy of network routing games with incomplete information, in: Proc. of 1st Workshop on Internet and Network
Economic, in: Lecture Notes in Computer Science, vol. 3828, Springer-Verlag, 2005, pp. 1066–1075.

[8] T. Jimenez, E. Altman, T. Basar, N. Shimkin, Competitive routing in networks with polynomial cost, IEEE Transactions on Automatic Control 47 (2002)
92–96.

[9] E. Koutsoupias, C. Papadimitriou, Worst-case equilibria, in: Proceedings of the 16th Annual Symposium on Theoretical Aspects of Computer Science,
1999, pp. 404–413.

[10] C.B. McGuire, M. Beckmann, C.B. Winsten, Studies in the Economics of Transportation, Yale University Press, New Haven, 1956.
[11] M. Marvonicolas, P. Spirakis, The price of selfish routing, in: Proceedings of the 33rd Symposium on Theory of Computing, 2001, pp. 510–519.
[12] I. Milchtaich, Congestion games with player-specific payoff functions, Games and Economic Behavior 13 (1996) 111–124.
[13] D. Monderer, Multipotential games, in: Twentieth International Joint Conference on Artificial Intelligence, IJCAI-07, 2007.
[14] D. Monderer, L.S. Shapley, Potential games, Games and Economic Behavior 14 (1996) 124–143.
[15] J. Nash, Noncooperative games, Annals of Mathematics 54 (1951) 286–295.
[16] A. Orda, R. Rom, N. Shimkin, Competitive routing in multiuser communication networks, IEEE/ACM Transactions on Networking (TON) 1 (5) (1993)

510–521.
[17] R.W. Rosenthal, A class of games possessing pure-strategy Nash equilibria, International Journal of Game Theory 2 (1973) 65–67.
[18] T. Roughgarden, E. Tardos, How bad is selfish routing? Journal of the ACM 49 (2) (2002) 236–259.
[19] W.H. Sandholm, Potential games with continuous player sets, Journal of Economic Theory 97 (2001) 81–108.
[20] J.G. Wardrop, Some theoretical aspects of road traffic research, Proceedings of the Institute of Civil Engineers, Pt. II 1 (1952) 325–378.


	Two-terminal routing games with unknown active players
	Introduction
	Congestion networks
	2-terminal congestion networks
	Route flows and edge flows

	Routing games
	Equilibrium in 2-terminal splittable routing games with complete information
	Equilibrium in 2-terminal splittable routing games with an unknown set of active players
	The value of ignorance - splittable games
	Linear 2-terminal splittable routing games
	Linear splittable parallel routing games

	Unsplittable routing games
	Equilibrium in resource selection games with complete information
	Resource selection games with an unknown set of active players

	The value of ignorance - unsplittable routing games
	Discussion and future work
	The Karush-Kuhn-Tucker (KKT) conditions
	References


