
Finding long chains in kidney exchange using the
traveling salesman problem
Ross Andersona, Itai Ashlagib, David Gamarnikb, and Alvin E. Rothc,1

aOperation Research Center and bSloan School of Management, Massachusetts Institute of Technology, Cambridge, MA 02142; and cDepartment of
Economics, Stanford University, Stanford, CA 94305

Contributed by Alvin E. Roth, November 18, 2014 (sent for review July 15, 2014; reviewed by Peter Biro)

As of May 2014 there were more than 100,000 patients on the
waiting list for a kidney transplant from a deceased donor. Although
the preferred treatment is a kidney transplant, every year there are
fewer donors than new patients, so the wait for a transplant
continues to grow. To address this shortage, kidney paired donation
(KPD) programs allow patients with living but biologically incom-
patible donors to exchange donors through cycles or chains initiated
by altruistic (nondirected) donors, thereby increasing the supply of
kidneys in the system. In many KPD programs a centralized algorithm
determines which exchanges will take place to maximize the total
number of transplants performed. This optimization problem has
proven challenging both in theory, because it is NP-hard, and in
practice, because the algorithms previously used were unable to
optimally search over all long chains. We give two new algorithms
that use integer programming to optimally solve this problem, one
of which is inspired by the techniques used to solve the traveling
salesman problem. These algorithms provide the tools needed to
find optimal solutions in practice.

kidney exchange | kidney paired donation | transplantation | algorithms |
computation

As of May 2014 there were over 100,000 patients on the
waiting list for a kidney transplant from a deceased donor.

Many of these patients have a friend or family member willing
to be a living kidney donor, but the donor is biologically in-
compatible. Kidney exchange, also called kidney paired donation
(KPD), arose to allow these patients with willing donors (re-
ferred to as patient–donor pairs) to exchange kidneys, thus in-
creasing the number of living donor transplants and reducing the
size of the waiting list.
In KPD, incompatible patient–donor pairs can exchange kid-

neys in cycles with other such pairs so that every patient receives
a kidney from a compatible donor (Fig. S1). Additionally, there
are a small number of altruistic donors who are willing to donate
their kidney to any patient without asking for anything in return.
In KPD, these donors initiate a chain of transplants with in-
compatible pairs, ending with a patient on the waiting list that
has no associated donor (Fig. S2).
Integrating both cycles and chains in KPD was proposed in

ref. 1, allowing both chains and cycles to be of unlimited size. To
ensure that every patient receives a kidney before her associated
donor donates her kidney, cycles are conducted simultaneously
(otherwise, if the intended donor is unable to donate to the
patient whose associated donor already gave her kidney the pair
not only did not receive a kidney, but also could not participate
in future exchanges). Because organizing many surgeries simul-
taneously is logistically very complex, the first implementations
of KPD by the New England Program for Kidney Exchange and
other clearinghouses used only two-way cyclic exchanges. After
a short period, clearinghouses have moved to allow three-way
exchanges as well.
In ref. 2 it was proposed to relax the requirement of simul-

taneity to the weaker requirement that every patient–donor pair
receive a kidney before they give a kidney. Although for
cycles this restriction still required all surgeries be performed

simultaneously, it did allow for nonsimultaneous chains. Note
that these nonsimultaneous chains still protected patient–donor
pairs from irreparable harm but allowed for the possibility of
donors’ backing out after their patient had received a transplant.
Since the first nonsimultaneous chain was arranged (3) chain-
type exchanges have accounted for a majority of the transplants
in kidney exchange clearinghouses. [Approximately 75% of
the transplants in the National Kidney Registry (NKR) and the
Alliance for Paired Donation (APD) are done through chains.]
Chains involving as many as 30 pairs have been performed in
practice, capturing significant public interest (4). Very long
chains are often planned in segments, in which the donor from
the final pair in a segment is used to begin another segment after
more patients arrive. Such donors are called “bridge donors.”
Once the segment is executed, the bridge donors and altruistic
donors are essentially identical for the purpose of planning fu-
ture transplants and are collectively referred to here as “non-
directed donors” (NDDs). The problem of determining how
to optimally select a set of cycles and chains to maximize the
number of transplants performed is the focus of this work.
We refer to the problem of finding the maximum (possibly

weighted) number of transplants for a pool of incompatible
patient–donor pairs and NDDs as the kidney exchange problem
(KEP). Optionally included in the problem are a maximum chain
length and a maximum cycle length. Weights can be used to
prioritize difficult-to-match patients. An example of a KEP in-
stance is shown in Fig. S3. When there is no bound on the chain
or cycle length, the problem can solved efficiently by reducing it
to a maximum weighted perfect matching problem on a bipartite
graph, as described in ref. 5. The special case in which only cycles

Significance

There are currently more than 100,000 patients on the waiting
list in the United States for a kidney transplant from a deceased
donor. To address this shortage, kidney exchange programs
allow patients with living incompatible donors to exchange
donors through cycles and chains initiated by altruistic non-
directed donors. To determine which exchanges will take place,
kidney exchange programs use algorithms for maximizing the
number of transplants under constraints about the size of
feasible exchanges. This problem is NP-hard, and algorithms
previously used were unable to optimize when chains could be
long. We developed two algorithms that use integer pro-
gramming to solve this problem, one of which is inspired by
the traveling salesman, that together can find optimal sol-
utions in practice.

Author contributions: R.A., I.A., D.G., and A.E.R. designed research; R.A. and I.A. per-
formed research; A.E.R. contributed new reagents/analytic tools; R.A., I.A., and D.G. an-
alyzed data; and R.A., I.A., D.G., and A.E.R. wrote the paper.

Reviewers included: P.B., Institute of Economics, Hungarian Academy of Sciences.

The authors declare no conflict of interest.
1To whom correspondence should be addressed. Email: alroth@stanford.edu.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.
1073/pnas.1421853112/-/DCSupplemental.

www.pnas.org/cgi/doi/10.1073/pnas.1421853112 PNAS Early Edition | 1 of 6

A
PP

LI
ED

M
A
TH

EM
A
TI
CS

EC
O
N
O
M
IC

SC
IE
N
CE

S

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1421853112/-/DCSupplemental/pnas.201421853SI.pdf?targetid=nameddest=SF1
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1421853112/-/DCSupplemental/pnas.201421853SI.pdf?targetid=nameddest=SF2
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1421853112/-/DCSupplemental/pnas.201421853SI.pdf?targetid=nameddest=SF3
mailto:alroth@stanford.edu
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1421853112/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1421853112/-/DCSupplemental
www.pnas.org/cgi/doi/10.1073/pnas.1421853112


of length two are used can be exactly solved very efficiently, be-
cause it is trivially equivalent to the maximum matching problem.
In ref. 5, the case of this problem where only cycles of length two
and three are used was shown to be NP-hard, meaning that it is
unlikely there will be an algorithm that always finds the optimal
solution quickly in every instance of the problem; see ref. 6 for
a stronger negative result in this special case. However, integer
programming (IP) techniques have been used by a variety of
authors to solve special cases of the KEP without chains or
with chains of bounded length, as first proposed in ref. 7. In
ref. 5, by improving the IP formulation of ref. 7 and devising
good heuristics the authors were able to solve KEP instances
with thousands of donor pairs, but without chains. Alternate IP
formulations were further explored for this special case in ref. 8.
In ref. 1, a heuristic to produce feasible solutions when using
chains and cycles of bounded length was suggested. However, no
optimization algorithm was given, opening a major algorithmic
challenge to reliably solve large-scale instances of the general
KEP. The technique of ref. 5 was extended in refs. 9–12 to solve
large instances with bounded cycles and bounded chains. How-
ever, the algorithm became impractical when the maximum
chain length was beyond four or five, because the formulation
required a decision variable for each chain up to the maximum
chain length. As seen in Table S1, the number of chains of length
up to k grows very quickly with k, at least when creating instances
using patient–donor pairs drawn at random from the historical
dataset (a more thorough explanation is given in Supporting In-
formation). When both chains and cycles are bounded by length
k, the relaxed version of the IP formulation (as a linear program)
provides a good approximation to the original formulation (13,
14), and a large body of literature suggests that such problems
can be effectively solvable in practice. However, this approxi-
mation property does not seem to hold if chains are unbounded
(15), and hence this problem is likely to be much more chal-
lenging than the bounded case, as confirmed by our computa-
tional experiments.
The primary challenge addressed in this paper is to find an

algorithm to solve real instances of the KEP without bounding
the maximum chain length. Solving this optimization problem is
critical to the operations of KPD programs, which form long
chains in practice but previously relied on heuristics that could
lead to suboptimal solutions. We emphasize that we focus on
real instances drawn from historical data, as opposed to synthetic
instances, because the statistics of instances encountered in
practice are quite complicated, making it difficult to generate
representative random instances (a patient–donor pair waiting to
be matched is on average more difficult to match than a patient–
donor pair randomly selected from historical data, because the
easy-to-match patients are on average matched more quickly).
The second challenge we address in this paper is finding an al-
gorithm that can solve instances using chains and cycles with an
arbitrary bound on the maximum cycle length (with no maximum
cycle length, the problem can be solved trivially). Although in
practice cycles longer than three are rarely formed owing to lo-
gistical issues, there is some evidence that there may be benefits
to considering longer cycles (16). Finally, in Supporting Infor-
mation we demonstrate how our approach can be extended to
efficiently deal with the case of bounded chain lengths as well as
a stochastic version with “edge failures” (see refs. 17 and 18).
We propose two new algorithms for the KEP that address

these challenges. The first algorithm is a recursion based on
a direct IP formulation for the KEP. Despite the NP hardness of
the underlying problem, the algorithm is surprisingly effective in
practice in most instances, as we will show in a later section
devoted to the computational results. Additionally, the algorithm
does not break down as the maximum cycle length is increased.
On the contrary, as the bound on the maximum cycle length
increases, the performance improves. At the same time there are

several KEP instances of moderate size that have been en-
countered in practice on real data drawn from a particular KPD
program that our algorithm was unable to solve. Thus, we have
devised a second algorithm to reliably solve nearly all KEP
instances of practical interest. The algorithm is motivated by an
IP formulation of the so-called prize-collecting traveling sales-
man problem (PC-TSP), another NP-hard problem. The PC-TSP
is a variant of the classical traveling salesman problem (TSP),
one of the most widely studied NP-hard problems in combina-
torial optimization. Although our PC-TSP–based algorithm was
able to solve every instance we have encountered, somewhat sur-
prisingly we have discovered that it is at times orders of magnitude
slower than the direct recursive algorithm described above.
The two algorithms described above allow us to optimally al-

locate kidneys transplanted in KPD with arbitrary chain lengths.
These algorithms were capable of solving to optimality all real
data instances we have encountered, using only a single desktop
computer. Furthermore, several of the most active KPD pro-
grams are using our implementations of these algorithms in
conducting their kidney exchanges, including Methodist Spe-
cialty and Transplant Hospital in San Antonio, Texas and the
Northwestern University Medical Center in Chicago.
The remainder of the paper is organized as follows. First, we

formally define the KEP as an optimization problem on a graph.
Then, we describe the recursive algorithm and PC-TSP–based
algorithm for the KEP. Both algorithms are based on formu-
lating associated IP problems. Next, we demonstrate the value of
being able to find long chains by measuring the number of ad-
ditional transplants they enable using simulations based on his-
torical clinical data. We then compare the performance of our
two algorithms in KEP instances found in actual data from the
KPD programs, demonstrating the relative strength of the PC-TSP–
based algorithm compared with the recursion-based algorithm. To
provide some insight into the power of the PC-TSP–based al-
gorithm we state a result showing that the formulation of the IP
problem associated with the PC-TSP is stronger than the IP
problem corresponding to the recursive algorithm. The proof of
this result can be found in Supporting Information. Furthermore,
we provide an example of a pathological instance of the KEP for
which the recursive algorithm takes a very long time, whereas the
PC-TSP–based algorithm solves this instance very quickly. Fi-
nally, we conclude with a summary of our results. Some technical
results can be found in Supporting Information.

KEP
An instance of the KEP is described as follows:

• a list of NDDs,
• a list of patient–donor pairs (in which the donor wants to

donate to the paired patient but is not compatible with
this patient),

• the compatibility information between all donors and patients,
• the “weight,” or priority, of each potential transplant, and
• a bound on the maximum cycle length.

The goal is then to find a set of transplants, organized into
cycles and chains initiated by NDDs that uses each donor and
patient at most once and maximizes the sum of the weights of all
transplants performed. If all transplants have weight one, then
we are simply trying to find the arrangement that maximizes the
total number of transplants. In Supporting Information we will
show how this definition can be supplemented to include an
optional bound on the maximum chain length.
We now formalize this definition of the KEP in graph theo-

retic terms. We are given a directed graph G= ðV ;EÞ, a weight
vector w= ðw1; . . . ;wjEjÞ, and a nonnegative integer parameter k.
The set V is partitioned into sets N (the NDDs) and P (the pairs
of incompatible donors and patients). For u; v∈V ; a directed

2 of 6 | www.pnas.org/cgi/doi/10.1073/pnas.1421853112 Anderson et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1421853112/-/DCSupplemental/pnas.201421853SI.pdf?targetid=nameddest=ST1
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1421853112/-/DCSupplemental/pnas.201421853SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1421853112/-/DCSupplemental/pnas.201421853SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1421853112/-/DCSupplemental/pnas.201421853SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1421853112/-/DCSupplemental/pnas.201421853SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1421853112/-/DCSupplemental/pnas.201421853SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1421853112/-/DCSupplemental/pnas.201421853SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1421853112/-/DCSupplemental/pnas.201421853SI.pdf?targetid=nameddest=STXT
www.pnas.org/cgi/doi/10.1073/pnas.1421853112


edge from u to v in E indicates that the donor in node u is
compatible with the patient in node v. Because the nodes of N
have no patient, they all must have in-degree zero (although
there can be nodes in P with in-degree zero as well). The values we
for each edge e∈E are weights for the edges, indicating the im-
portance of this transplant, and our goal is to find a maximum
weight node disjoint cycle and chain packing, where the cycles can
use at most k nodes and the chains must originate from nodes in N.
We introduce some notation. For each v∈V , let δ−ðvÞ be the

edges pointing to v and δ+ðvÞ be the edges outgoing from v.
Likewise, for a set of nodes S⊂V , let δ−ðSÞ be the set of edges
into S and δ+ðSÞ be the set of edges out of S. For every S⊂V , let
EðSÞ be the set of all edges with both endpoints in S. For a set of
edges D⊂E, let V ðDÞ be the set of vertices that are of the
endpoints of edges in D. Let C be the set of all simple cycles inG,
where each cycle C∈ C is represented by a collection of edges,
that is, C⊂E. Let Ck be the subset of C consisting of cycles that
use k or fewer edges. For each v∈V , let CkðvÞ be the cycles from
Ck containing an edge incident to v. Given a cycle C, let
wC =

P
e∈Cwe be the total weight of the cycle according to our

weight vector w.

Recursive Algorithm for the KEP
We now describe the first of our two algorithms. The algorithm
uses a straightforward IP formulation of the KEP, with a binary
variable for every edge, and constraints so that each node is used
at most once and no long cycles occur.
We first formulate the problem so that the objective is to

maximize a weighted number of matches subject to the con-
straint that no cycle in the graph of length more than k is chosen.
Because the number of such constraints is too large, the algo-
rithm will only add these constraints when necessary. In partic-
ular, the algorithm first solves the relaxed problem where the
bound on the cycle length is dropped, and then if it finds a so-
lution with cycles longer than permitted it adds the corre-
sponding constraints to eliminate these cycles and resolves the
corresponding optimization problem.
Formally, we use decision variables ye for e∈E and f iv (flow in)

and f ov (flow out) for v∈V , and solve

max
P
e∈E

weye

s:t:
P

e∈δ−ðvÞ
ye= f iv v∈V

P
e∈δ+ðvÞ

ye= f ov v∈V

[1]

f ov ≤ f iv ≤ 1 v∈P; [2]

f ov ≤ 1 v∈N; [3]

X

e∈C
ye ≤ jCj− 1 C∈ CnCk; [4]

ye ∈ f0; 1g e∈E: [5]

Note that we introduce some auxiliary variables f iv and f ov for
all v∈V to simplify the formulation, although because they are
defined by the equality constraints they can be eliminated. In
words, 2 says that for the patient–donor pair nodes the flow
out is at most the flow in, and the flow in is at most one; 3 says
that for the NDD nodes the flow out is at most one; and in 4 the
“cycle inequalities” say that for any cycle C of length greater than
k the number of edges we can use is at most jCj− 1, thus pro-
hibiting long cycles when y is integral.

The number of constraints in the IP above is exponential in
jEj, owing to 4. As a result, for large instances we cannot simply
enumerate all of these constraints and give them directly to the
IP solver. Instead, we use a simple recursive algorithm to solve
the problem. First, we eliminate all of the constraints in 4 and
solve the integer program to optimality. Then, we check whether
the proposed solution contains any cycles of length greater than
k. If so, we add the violated constraint from 4 and resolve. We
repeat this procedure until our solution contains no cycles longer
than k. This methodology is generally referred to using “lazy
constraints.” The effectiveness of this technique depends on our
not having to generate too many of the constraints from 4 on
a typical input. In the worst case, we might have to solve expo-
nentially many IPs, and to solve each IP may take an exponential
amount of time. However, as we will show, this technique is often
quite effective in practice. Finally, note that the efficiency of this
procedure relies on the fact that we can very quickly detect
whether any of the constraints from 4 are violated for an integer
solution, because we can (trivially) find the largest cycle in a
degree-two graph in linear time.

PC-TSP–Based Algorithm for the KEP
We now describe our second algorithm for solving the KEP,
inspired by a solution to the PC-TSP. Recall that in the TSP one
is given a list of cities and the cost of going between pairs of
cities, and the goal is to find a cycle visiting each city exactly once
at the minimum cost (19). In the PC-TSP, again one must find
a cycle visiting each city at most once, but now one has the option
of skipping some cities entirely and paying a penalty (see ref. 20
or, more recently, ref. 21). Qualitatively, the PC-TSP problem is
similar to the KEP in that one wants to find long paths in a graph
(which the PC-TSP then closes off as a cycle) without the need to
visit every node. As we will see below, our solution is similar to
the solution for the PC-TSP.
For each cycle C of length at most k, we introduce a new

variable zC that indicates whether we are using the cycle C. We
make the natural updates to 1 so the objective value does not
change when the same edges are used and to 2 so that edges
cannot be used both in a zC variable and a ye variable. Finally, we
add 7 to block cycles longer than length k, similarly to 4.

max
P
e∈E

weye +
P
C∈Ck

wCzC

s:t:
P

e∈δ−ðvÞ
ye= f iv v∈V

P
e∈δ+ðvÞ

ye= f ov v∈V

f ov +
P

C∈CkðvÞ
zC≤ f iv +

P
C∈CkðvÞ

zC ≤ 1 v∈P;

[6]

f ov ≤ 1 v∈N;P
e∈δ−ðSÞ

ye≥ f iv S⊆P;  v∈ S

ye ∈ f0; 1g e∈E;

zC ∈ f0; 1g C∈ Ck:

[7]

The constraint 7 is very similar to the cut set inequalities for the
TSP (19) as adapted to the PC-TSP by several authors (see ref.
21 and references therein). Fig. S4 provides a clarifying example
explaining these constraints. Essentially, they work as follows.
Suppose that a chain is reaching some node v, and as a result
f iv equals one. Now suppose that we cut the graph into two pieces
such that the half containing v does not contain any of the NDD
nodes from N. Because every chain begins at some node in N
(and thus does not begin in S), in order for our chain to reach

Anderson et al. PNAS Early Edition | 3 of 6

A
PP

LI
ED

M
A
TH

EM
A
TI
CS

EC
O
N
O
M
IC

SC
IE
N
CE

S

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1421853112/-/DCSupplemental/pnas.201421853SI.pdf?targetid=nameddest=SF4


v∈ S it must use an edge that begins not in S and ends in S, that
is, an edge e∈ δ−ðSÞ. Thus, our constraint requires that whenever
there is flow into v, for every way that v can be cut off from the
NDDs N there is at least this much flow over the cut.
Observe that the use of cycles is important for this formulation

to be feasible, which makes it quite novel. For example, consider
a graph that contains just a set of short disjoint cycles, which is
therefore also the optimal solution. Using only constraint 7 with
the set S=V and any v∈V implies that the flow going into each
of the nodes has to be zero.
Again, the IP formulation has exponentially many constraints

from 7, so we cannot enumerate them and feed them directly to
the IP solver. We could simply use the same recursive heuristic
(lazy constraints) from the previous section to obtain a correct al-
gorithm. Our solution still relaxes the constraints 7, but instead we
more aggressively attempt to find violated constraints and add them
sooner, using a technique called “cutting planes” (or “user cuts”).
To apply this method, we needed an efficient algorithm that given
a potentially fractional solution can either find a violated constraint
from 7 or determine that none exists. This problem is known in the
field of optimization as the separation problem.

Theorem 1. The separation problem for 7 can be solved by solving
OðjPjÞ network flow problems.
A proof is given in Supporting Information. See ref. 19 for more

on the separation problem and on the network flow problem.
The solution is again very similar to the solution used to solve
separation problems for the TSP and PC-TSP.

Measuring the Value of Long Chains with Clinical Data
To demonstrate the need for long chains in practice, we give
an analysis of the number of additional transplants long chains
enable, and the types of patients that receive these additional
transplants. A patient’s so-called percentage reactive antibody
(PRA) measures the percentage of the donor pool that a patient
has a tissue type incompatibility with (thus patients with a PRA near
100 are very difficult to match, whereas patients with a PRA near
zero are easier to match). Patients with a PRA above 80 are com-
monly referred to as highly sensitized patients. In ref. 16 it was
shown for a random model of kidney exchange that when there are
many highly sensitized patients allowing for long chains will signif-
icantly increase the total number of transplants performed, and that
the extra transplants will largely benefit the population of highly
sensitized patients. In the data obtained from the APD and NKR
exchange programs, we found that in the current exchange pools
more than 35% of the patients are highly sensitized, so ref. 16
suggests that we should get some benefit out of allowing long chains.
To assess the added benefit of long chains, we used the fol-

lowing two-stage experiment. First, we repeatedly simulated the
dynamic environment of a kidney exchange pool using clinical
data (we use 650 patient–donor pairs and 33 altruistic donors
from a period of 2.5 y and to create a large set of realistic
snapshots of the exchange pool. We measured the effect of
changing the maximum chain length on (i) the total number of
transplants performed and (ii) the number of transplants
performed on highly sensitized patients.
Note that this experiment is designed to demonstrate that long

chains will often provide immediate opportunities to perform
more transplants. This experiment, however, does not assess the
long-run implications of using long chains or the effect of using
long chains on the dynamics of the exchange pool (because in
practice matched pairs leave the pool, whereas matched pairs
may still be present in subsequent matchings during the simu-
lation). Although demonstrating the latter would make a stron-
ger case for the value of long chains, doing so requires dealing
with several subtleties that are beyond the scope of this work.
In particular, to understand long-run pool performance it is
insufficient to simply look at the total number of transplants

performed over the entire time horizon, because given enough
time in a model with no exit of patients and donors eventually
everyone will be matched. To get the full picture, the time
patients spend waiting to be matched should also be considered.
However, to accurately model this requires more complicated
simulations of the pool dynamics than are used here that account
for real-world features such as exit, edge failures, and the time to
schedule transplants. Thus, we choose not to demonstrate the
value of long chains by computing the long-term gains from their
use, because these calculations are sufficiently complicated to be
a separate problem. We instead attempt the more modest goal of
demonstrating that in the types of pools that would be generated
by the natural kidney exchange dynamics using longer chains
enables more immediate transplants.
Finally, note that to create snapshots that are representative of

actual instances encountered by a KPD program it is insufficient
to simply take altruistic donors and patient–donor pairs at ran-
dom from a historical dataset, because the patients that are left
over after each match run statistically tend to be harder to match
than a randomly selected patient (the easy-to-match patients are
more likely to be matched immediately).
We now describe our two-stage experiment design in full detail:

i) Generate a set of realistic snapshots of the exchange pool
by performing 50 trials of the procedure below and saving
all snapshots generated (every trial involves more than
100 snaphots):

• Assign each patient–donor pair and altruistic donor an
arrival date by shuffling their historical arrival dates (i.e.,
select a permutation uniformly at random).

• Wait for the arrival of eight new participants to the
exchange pool (either patient–donor pairs or altruistic
donors) and record the current pool of those not yet
matched as a snapshot.

• Solve the KEP for the current snapshot with the objective
of maximizing the total number of transplants, a maximum
cycle length of three, and a maximum chain length of five.

• Remove all matched patient–donor pairs from the current
pool. The unmatched pairs stay in the pool. Now, if there
are more arrivals remaining, we return to the second step
(where we wait for new patient donor pairs), and we re-
peat in this manner until all pairs have arrived.

ii) Produce the following measures of improvement from allow-
ing unbounded maximum chain length in comparison with a
bounded chain length. In particular, for every bounded chain
length j for j∈ f3; 4; 5; 6g we measure the following.

• Chance of more highly sensitized patients receiving a trans-
plant: For each snapshot we count the increase percentage of
highly sensitized patients (with PRA above 95) matched by
allowing unbounded chains vs. bounded chain length of j.

• For each snapshot we measure the increase percentage of
all matched patients by allowing unbounded chains vs.
bounded chain length of j.

• We measure the number of instances in which there was at
least one highly sensitized patient matched and measure
the percentage of instances in which more highly sensi-
tized patients were matched using unbounded chains vs.
bounded chains of length j.

Note that in our method of generating snapshots bounding the
maximum chain of length of five is somewhat arbitrary. Although
this method is not ideal, because the method used to generate
snapshots affects the statistics of subsequent snapshots, studying the
dynamic optimization problem is beyond the scope of this paper.
The results of our experiment are summarized in Table S2.

Allowing longer chains allows matching more of the most highly
sensitized patients (with PRA at least 95) and also increases the

4 of 6 | www.pnas.org/cgi/doi/10.1073/pnas.1421853112 Anderson et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1421853112/-/DCSupplemental/pnas.201421853SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1421853112/-/DCSupplemental/pnas.201421853SI.pdf?targetid=nameddest=ST2
www.pnas.org/cgi/doi/10.1073/pnas.1421853112


total number of matched patients. Note also that the percentage
of instances in which more highly sensitized patients are matched
using unbounded chains in comparison with bounded chains of
length j= 3; 4; 5; 6 is nonnegligible (between 35% and 23%).

Algorithm Performance in Practice
We briefly summarize computational results for both the recursive
formulation and the PC-TSP formulation described above. Table S3
provides the running time of both formulations on a series of
“difficult” but realistic KEP instances encountered in practice.
To create these difficult but realistic instances we adapted the

method from the previous section for generating realistic snap-
shots. However, when generating instances for this section we
rotated through many combinations of the following three sim-
ulation parameters (all of these were fixed when generating
snapshots previously):

i) We considered several objective functions giving varying
degrees of priority for hard-to-match patients.

ii) We considered a maximum chain length of 3, 4, 5, 6,
and unbounded.

iii) We varied the number of arrivals between reoptimizations
from 1 to 64.

Finally, because we are interested in performance in difficult
instances for Table S3 we only retained the instances where at
least one algorithm had to generate at least 500 constraints of
the type 4 or 7 in the recursive and PC-TSP algorithms, re-
spectively. Thus, these instances represent more of a worst case
than an average case for real data.
Table S3 contains the running time of both algorithms on

these difficult instances, with a maximum attempted solve time
of 20 min. In particular, in all instances with the reported run-
ning time less than 20 min the optimal solution was found.
Looking at the table, we make the following observations in
comparing the performance of the two algorithms:

• Both algorithms are able to solve most instances to optimality
quickly.

• The PC-TSP formulation solves all instances to optimality.
• The PC-TSP algorithm is usually faster, although for the

easier of these difficult instances the difference is sometimes
negligible.

• On several inputs, the PC-TSP algorithm is orders of magni-
tude faster.

We stress again that these instances are the worst-case instances,
in that we only showed results for problems where at least one
algorithm had to generate a large number of constraints. These
worst-case inputs are only a small fraction of all of the simulated
inputs and, generally speaking, both algorithms can solve most of
these instances to optimality very quickly.
To demonstrate that our algorithms can solve instances even

larger than those occurring in implementing algorithms online
we also ran our algorithms on the entire historical datasets
for the KPD programs NKR and APD. Each dataset contains
around 1,000 patients (although arriving over the span of several
years), making these instances much larger than the instances
described in Table S3. The running time for our algorithms
on these instances is shown in Table S4. We see that i) both
algorithms can solve both instances and ii) the recursive algo-
rithm is much faster.
Although the second point may seem surprising, we do have

some explanation as to why this is taking place. First, and most
importantly, these instances are substantially different from
the instances that KPDs encounter in practice, in that they do
not contain a disproportionately high fraction of hard-to-match
patients. As a result, there is a very large number of two and
three cycles, making the number of variables in the PC-TSP

formulation very large. Second, these instances are both “easy”
instances, in that very few of the constraints 4 and 7 must be
added by the algorithm to solve the integer programs, unlike the
instances in Table S3. As we will see in the next section, the
advantages of using the PC-TSP algorithm over the recursive
algorithm depend on the constraints 4 and 7 being binding in the
optimization problem.
For the purposes of comparing algorithms it would be pref-

erable to have more realistic large-scale instances beyond the
two described above, but the current historical data do not
produce such large-scale instances. In an attempt to produce
more realistic large-scale instances from the historical dataset we
experimented with removing fractions of the altruistic donors at
random. We found that these did not significantly change the
performance of either algorithm.

Understanding the Power of the PC-TSP Formulation
We now describe a theoretical result that explains why the
PC-TSP algorithm has much better performance than the
recursive algorithm on the “difficult” instances from Table S3.
To do so, we must first introduce some standard concepts
from optimization theory.
Suppose two formulations of an integer program are given.

Without the loss of generality, assume the underlying problem is
of the maximization type. The linear programming relaxation of
an integer program is the value of the optimal solution obtained
when the integrality constraints are removed and the problem is
solved as a linear programming problem. Let Z1 and Z2 be the
optimal solutions to the linear programming relaxations for the
given two formulations.

Definition 1: If Z1 ≤Z2 for every problem instance, then for-
mulation one is defined to be at least as strong as formulation
two. We use the notation Z1 ≤Z2. If in addition there exists
a problem instance such that Z1 <Z2, then we say that formu-
lation one is stronger than formulation two and use the notation
Z1 ≺Z2.
Very often in practice the stronger formulations greatly reduce

the actual running time of the IP problems (19).
We compare the strength of our formulations presented using

Definition 1. Let the optimal values of the linear programming
relaxations of the IP problems corresponding to the recursive
algorithm and the PC-TSP–based algorithms be given by Zrec and
Ztsp, respectively.

Theorem 2. The PC-TSP formulation is stronger than the recursive
formulation, that is, Ztsp ≺Zrec.
The proof can be found in Supporting Information.
The idea behind this theorem is demonstrated by a somewhat

pathological instance of the KEP shown in Fig. S5. This instance
has no altruistic donors and a maximum cycle length of three,
and all edges have weight one. Compared with the real instances
we considered, this is a small instance with only 30 nodes and 120
edges. The 30 nodes are arranged in a single large directed cycle,
with a few additional edges. This graph has two important
properties: There are no cycles of length three or less, but it has
a very large number of cycles of length 30. Because there are no
NDDs or short cycles, the optimal solution is zero. It is easy to
see that the linear programming relaxation for the PC-TSP for-
mulation is also zero. Thus, for this instance, solving the IP
problem is no harder than solving a single linear programming
problem with the PC-TSP formulation. Further, to solve the LP,
we only need to generate a single cut from the exponential family
of 7 (any cut where S=P will do). As a result, we are able to
solve this instance almost instantly with the PC-TSP algorithm.
In contrast, for the IP problem corresponding to the recursive
algorithm, the linear programming relaxation has the optimal
value 29, because it can simply assign value 29/30 to every edge
on the length-30 cycle. Worse yet, after 2 h of the running time

Anderson et al. PNAS Early Edition | 5 of 6

A
PP

LI
ED

M
A
TH

EM
A
TI
CS

EC
O
N
O
M
IC

SC
IE
N
CE

S

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1421853112/-/DCSupplemental/pnas.201421853SI.pdf?targetid=nameddest=ST3
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1421853112/-/DCSupplemental/pnas.201421853SI.pdf?targetid=nameddest=ST3
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1421853112/-/DCSupplemental/pnas.201421853SI.pdf?targetid=nameddest=ST3
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1421853112/-/DCSupplemental/pnas.201421853SI.pdf?targetid=nameddest=ST3
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1421853112/-/DCSupplemental/pnas.201421853SI.pdf?targetid=nameddest=ST4
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1421853112/-/DCSupplemental/pnas.201421853SI.pdf?targetid=nameddest=ST3
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1421853112/-/DCSupplemental/pnas.201421853SI.pdf?targetid=nameddest=ST3
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1421853112/-/DCSupplemental/pnas.201421853SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1421853112/-/DCSupplemental/pnas.201421853SI.pdf?targetid=nameddest=SF5


the best upper bound that the recursive formulation gives is still
30, because the high redundancy in the structure of the graph
results in many possible cycles of length 30. The constraints for
each of these cycles need to be added to obtain an upper bound
of 29. For similar reasons, branch and bound is very ineffective.
In the proof, we use two formulations, subtour elimination and
a cycles formulation, which are shown to be weaker than the
recursive formulation but stronger than the PC-TSP–based
formulation (see also Figs. S6–S8).

Conclusion
We provide two new algorithms that solve realistic instances of
the KEP encountered in practice. The first algorithm creates an
integer program with a variable for each possible transplant and

constraints ensuring that each donor and patient are in at most
one transplant and then recursively resolves this IP and adds
constraints to prevent the long cycles appearing in solutions. The
second algorithm uses an IP based on formulation similar to the
PC-TSP. To generate realistic instances of the KEP, we simu-
lated dynamics of the patient pool in a kidney exchange using
clinical data from the two major KPD Programs: NKR and the
APD. Our algorithms have been able to solve all real data
instances encountered in practice thus far. Our algorithms find
optimal solutions for large-scale practical instances of the KEP
with long chains after a very short running time, with the PC-
TSP–based algorithm outperforming the recursion-based algo-
rithm in many instances.

1. Roth AE, Sönmez T, Unver MU (2004) Kidney exchange. Q J Econ 119(2):457–488.
2. Roth AE, Sönmez T, Unver MU, Delmonico FL, Saidman SL (2006) Utilizing list ex-

change and nondirected donation through ‘chain’ paired kidney donations. Am J
Transplant 6(11):2694–2705.

3. Rees MA, et al. (2009) A non-simultaneous extended altruistic donor chain. New Engl J
Med 360(11):1096–1101.

4. Sack K (February 18, 2012) 60 lives, 30 kidneys, all linked. NY Times. Available at www.
nytimes.com/2012/02/19/health/lives-forever-linked-through-kidney-transplant-chain-
124.html. Accessed December 23, 2014.

5. Abraham DJ, Blum A, Sandholm T (2007) Clearing algorithms for barter exchange
markets: Enabling nationwide kidney exchanges. Proceedings of the 8th ACM
Conference on Electronic Commerce (Assoc Computing Machinery, New York),
pp 295–304.

6. Biró P, Manlove DF, Rizzi R (2009) Maximum weight cycle packing in directed graphs,
with application to kidney exchange programs. Discrete Mathematics Algorithms
Applications 1(04):499–517.

7. Roth AE, Sönmez T, Ünver MU (2007) Efficient kidney exchange: Coincidence of wants
in markets with compatibility-based preferences. Am Econ Rev 97(3):828–851.

8. Constantino M, Klimentova X, Viana A, Rais A (2013) New insights on integer-
programming models for the kidney exchange problem. Eur J Oper Res 231(1):57–68.

9. Dickerson JP, Procaccia AD, Sandholm T (2012) Optimizing kidney exchange with
transplant chains: Theory and reality. Proceedings of the 11th International Confer-
ence on Autonomous Agents and Multiagent Systems (Assoc Computing Machinery,
New York), Vol 2, pp 711–718.

10. Manlove DF, O’Malley G (2012) Paired and altruistic kidney donation in the UK: Al-
gorithms and experimentation. Experimental Algorithms, Lecture Notes in Computer
Science (Springer, Berlin), Vol 7276, pp 271–282.

11. Glorie KM, Wagelmans APM, Van de Klundert J (2012) Iterative branch-and-price for
hierarchical multi-criteria kidney exchange. Econometric Institute Research Paper EI
2012-11 (Econometric Inst, Erasmus Univ, Rotterdam).

12. Klimentova X, Alvelos F, Viana A (2014) A new branch-and-price approach for the
kidney exchange problem. Computational Science and Its Applications – ICCSA 2014,
Lecture Notes in Computer Science (Springer, Berlin), Vol 8580, pp 237–252.

13. Füredi Z, Kahn J, Seymour PD (1993) On the fractional matching polytope of a hy-
pergraph. Combinatorica 13(2):167–180.

14. Hazan E, Safra S, Schwartz O (2006) On the complexity of approximating k-set
packing. Computational Complexity 15(1):20–39.

15. Björklund A, Husfeldt T, Khanna S (2004) Approximating longest directed paths and
cycles. Automata, Languages and Programming, Lecture Notes in Computer Science
(Springer, Berlin), Vol 3142, pp 222–233.

16. Ashlagi I, Gamarnik D, Rees MA, Roth AE (2012) The need for (long) chains in kidney
exchange. (National Bureau of Economic Res, Cambridge, MA).

17. Dickerson JP, Procaccia AD, Sandholm T (2013) Failure-aware kidney exchange.
Proceedings of the Fourteenth ACM Conference on Electronic Commerce (Assoc
Computing Machinery, New York), pp 323–340.

18. Chen Y, et al. (2012) Graph-based optimization algorithm and software on kidney
exchanges. IEEE Trans Biomed Eng 59(7):1985–1991.

19. Bertsimas D, Weismantel R (2005) Optimization over Integers (Dynamic Ideas,
Belmont, MA), Vol 13.

20. Bienstock D, Goemans MX, Simchi-Levi D, Williamson D (1993) A note on the prize
collecting traveling salesman problem. Math Program 59(1):413–420.

21. Goemans MX (2009) Combining approximation algorithms for the prize-collecting
TSP. arXiv:0910.0553,.

6 of 6 | www.pnas.org/cgi/doi/10.1073/pnas.1421853112 Anderson et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1421853112/-/DCSupplemental/pnas.201421853SI.pdf?targetid=nameddest=SF6
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1421853112/-/DCSupplemental/pnas.201421853SI.pdf?targetid=nameddest=SF8
http://www.nytimes.com/2012/02/19/health/lives-forever-linked-through-kidney-transplant-chain-124.html
http://www.nytimes.com/2012/02/19/health/lives-forever-linked-through-kidney-transplant-chain-124.html
http://www.nytimes.com/2012/02/19/health/lives-forever-linked-through-kidney-transplant-chain-124.html
www.pnas.org/cgi/doi/10.1073/pnas.1421853112


Supporting Information
Anderson et al. 10.1073/pnas.1421853112
Proof of Theorem 1

Proof: Let ðy; zÞ be the point for which we must determine
whether the constrain in Eq. 7 is satisfied. Following the well-
known procedure for PC-TSP, first we form a directed
weighted graphG= ðV ;E;wÞ where V = fsg∪V where s is an extra
node, E=E∪ fðs; nÞjn∈Ng, and weights we for e∈E are given by

we =
�
ye e∈E;
1 otherwise;

(the edges with we = 1 each go from the super source to a node inN).
Then, for every v∈P where f iv > 0 we solve the max flow min

cut problem with source s and sink v. If we find a cut of weight
less than f iv, then by taking S to be the set of nodes on the sink
side of the cut we have found a violated constraint. As we are
optimizing over all cuts separating v from the super source and
then checking all v we in fact check all of the constraints in Eq. 7.

Proof of Theorem 2: Before proving the result, we introduce two
auxiliary IP formulations.

Subtour Elimination Formulation
We propose an alternative formulation on the same set of var-
iables as the PC-TSP formulation, called the subtour formulation.
The name is derived from the subtour elimination formulation of
the TSP, as in ref. 1. In the subtour elimination formulation, all
of the constraints are the same as the PC-TSP formulation ex-
cept that Eq. 7 is replaced byP

e∈EðSÞ
ye +

P
D∈Ck

V ðDÞ⊆S

ðjDj− 1ÞzD

+
P
D∈Ck

V ðDÞ⊈S

jD∩EðSÞjzD ≤ jSj− 1 S⊂P:
[S1]

The idea of the constraint is that subset S of the nodes, the number
of edges used to make chains, should be at most jSj− 1. The IP
formulation would still be correct without the second and third
sums; however, their addition strengths the inequality.

Cycles Formulation
We propose another alternative formulation on the same set of
variables as the PC-TSP and subtour formulations, the cycles
formulation. In the cycles formulation all of the constraints are
the same as in the PC-TSP and subtour formulations except that
Eq. 2 is replaced byX

e∈C
ye +

X
D∈Ck
D≠C

jD∩CjzD ≤ jCj− 1 C∈ C: [S2]

The idea of the constraint is to prevent the edges of C from forming
a cycle, unless the variable zC is used (should the variable exist).
Obviously, if ye = 1 for e∈C, they would form a cycle, but the
constraint prevents this. Again, the IP formulation would still be
correct without the second sum in the constraint, but including this
sum makes the formulation stronger. In Fig. S6 we give an example
of an instance where, if the second sum were not included, the cycle
formulation would be weaker than the recursive formulation.

Proof of Result
Let Zcyc and Zsub be the value of the LP relaxation for the cycle
and subtour formulations of the KEP, respectively. Let Prec, Pcyc,

Psub, and Ptsp be the polyhedrons for the LP relaxations of each
formulation. We will now show

Ztsp ≺Zsub ≺Zcyc WZrec:

Because the relations above are transitive, this will imply Theorem 2.
Proof: First, we show that Ptsp ⊆Psub, which immediately implies

that Ztsp WZsub, because the two formulations share the same
objective function. It suffices to show that each of the subtour
elimination constraints from Eq. 8 are implied by the entire cut
set formulation. Fix S⊆P and assume that y is feasible for the cut
set formulation. Fix some u∈ S. First, we claim thatP

D∈Ck
V ðDÞ⊆S

ðjDj− 1ÞzD +
P
D∈Ck

V ðDÞ⊈S

jD∩EðSÞjzD

≤
P
D∈Ck

V ðDÞ∩S≠Ø

ðjV ðDÞ∩ Sj− 1ÞzD
[S3]

≤
X
v∈S
v≠u

X
D∈CkðvÞ

zD: [S4]

To justify Eq. S3, observe that for cycles D such that V ðDÞ⊆ S
we immediately have jDj= jV ðDÞj= jV ðDÞ∩ Sj, so for these zD
terms, we have jDj− 1= jV ðDÞ∩ Sj− 1. For D such that
V ðDÞ⊈ S, we have two cases:

• If V ðDÞ∩ S= Ø, then D∩EðSÞ= Ø as well, so these terms can
be dropped.

• If D has ℓ vertices in S, where 0< ℓ< jDj, then at most ℓ− 1 of
the edges of D will have both endpoints in S.

Thus, Eq. S3 has been shown. To justify Eq. S4, by a simple
counting argument we have the following:

• If u∉V ðDÞ, then the term zD will appear jV ðDÞ∩ Sj times in
Eq. S4.

• If u∈V ðDÞ, then the term zD will appear jV ðDÞ∩ Sj− 1 times
in Eq. S4.

Thus, Eq. S4 has been shown. Applying this inequality, we
now haveP

e∈EðSÞ
ye +

P
D∈Ck

V ðDÞ⊆S

ðjDj− 1ÞzD +
P
D∈Ck

V ðDÞ⊈S

jD∩EðSÞjzD

≤
P
e∈EðSÞ

ye +
P
v∈S
v≠u

P
D∈CkðvÞ

zD

=
P
v∈S

f iv −
P

e∈δ−ðSÞ
ye +
P
v∈S
v≠u

P
D∈CkðvÞ

zD

= f iu −
P

e∈δ−ðSÞ
ye +
P
v∈S
v≠u

 
f iv +

P
D∈CkðvÞ

zD

!
[S5]

≤
X
v∈S
v≠u

 
f iv +

X
D∈CkðvÞ

zD

!
[S6]

≤jSj− 1; [S7]

Anderson et al. www.pnas.org/cgi/content/short/1421853112 1 of 7

www.pnas.org/cgi/content/short/1421853112


where Eq. S5 follows as for a set of nodes S; all edges incoming
to a node in S have their other endpoint either in S or outside of
S. Eq. S6 follows from applying Eq. S2 (multiplied by −1) for the
set S and the vertex u, and Eq. S7 follows from applying the
upper bound from the flow constraint in Eq. S6 jSj− 1 times.
Next, we show that Psub ⊆Pcyc and thus Zsub ≤Zcyc. It suffices to

show that for any cycle C Eq. S9 is directly implied by Eq. S8
taking S=V ðCÞ. To bound the first term of the left-hand side of
Eq. S9, we have X

e∈C
ye ≤

X
e∈EðSÞ

ye:

For the second term, we will partition D∈ Ck;D≠C into two sets,
those where V ðDÞ⊆ S and D≠C, or those where V ðDÞ⊈ S, that is,X

D∈Ck
D≠C

jD∩CjzD =
X
D∈Ck

V ðDÞ⊆S
D≠C

jD∩CjzD +
X
D∈Ck

V ðDÞ⊈S

jD∩CjzD:

For the first sum, we have jD∩Cj≤ jDj− 1, because D≠C (and
D⊄C because both D and C are simple cycles). Thus,X

D∈Ck
V ðDÞ⊆S
D≠C

jD∩CjzD ≤
X
D∈Ck

V ðDÞ⊆S
D≠C

ðjDj− 1ÞzD ≤
X
D∈Ck

V ðDÞ⊆S

ðjDj− 1ÞzD:

For the second sum, because C⊂EðSÞ, we have jD∩Cj≤
jD∩EðSÞj for all D∈ Ck, and thusX

D∈Ck
V ðDÞ⊈S

jD∩CjzD ≤
X
D∈Ck

V ðDÞ⊈S

jD∩EðSÞjzD:

Putting everything together then applying Eq. S8 we haveP
e∈C

ye +
P
D∈Ck
D≠C

jD∩CjzD

≤
P
e∈EðSÞ

ye +
P
D∈Ck

V ðDÞ⊆S

ðjDj− 1ÞzD +
P
D∈Ck

V ðDÞ⊈S

jD∩EðSÞjzD

≤ jSj− 1= jCj− 1;

showing the claim.
To show that Zcyc WZrec, consider ðyp; zpÞ∈Pcyc that is optimal

for the cycle formulation (the values of f iv and f ov are implied by
yp). If we let

xe = ype +
X

C∈Ck ; e∈C
zpC;

then we claim that x∈Prec (again with the values of the flow
variables being determined by x). To show this, it suffices to
verify Eqs. S2–S4 hold for x. To obtain Eq. S2

X
e∈δ+ðvÞ

xe =
X

e∈δ+ðvÞ

 
ype +

X
C∈Ck ; e∈C

zpC

!
[S8]

=
X

e∈δ+ðvÞ
ype +

X
C∈CkðvÞ

zpC [S9]

where in Eq. S8 we applied the definition of xe, and in Eq. S9 we
used that CkðvÞ, the set of cycles hitting v, is equal to the disjoint
union over all e going out of v of the set of cycles containing e

(the union is disjoint as each cycle contains exactly one edge out
of v). Likewise, we haveX

e∈δ−ðvÞ
xe =

X
e∈δ−ðvÞ

ype +
X

C∈CkðvÞ
zpC:

Thus, Eq. S6 from the cycles formulation implies Eq. S2 in the
recursive formulation. An analogous argument immediately
gives us Eq. S3 as well. Finally, to obtain Eq. S4 we have for
any cycle C with jCj> k,

P
e∈C

xe =
P
e∈C

ype +
P
D∈Ck
e∈D

zpe

0
BB@

1
CCA

=
P
e∈C

ype +
P
D∈Ck
D≠C

jD∩CjzD
[S10]

≤jCj− 1; [S11]

where in Eq. S10 we are counting, and using that jCj> k implies
that there is no D∈ Ck such that D=C, and in Eq. S11 we are
applying Eq. S9. Thus, we conclude that x is feasible. Using
feasibility, we can obtain the result as follows:

Zrec ≥
P
e∈E

cexe

=
P
e∈E

ce ype +
P
C∈Ck
e∈C

zpe

0
BB@

1
CCA

=
P
e∈E

ceype +
P
C∈Ck

cCzpe

=Zcyc:

In Fig. S7 we give a family of problem instances where Ztsp <Zsub.
In Fig. S8 we give an instance where Zsub <Zcyc.

The KEP with Bounded Chain Lengths. We show how to adapt the
PC-TSP formulation to allow for a maximum chain length ℓ, al-
though the technique would work for any of the four for-
mulations presented (the adaptation is trivial for the cycle and
subtour formulations). For each NDD n ∈ N and each edge e ∈ E,
we introduce auxiliary edge variables yne and likewise f i;nv and f o;nv
indicating flow that must begin at n. The formulation becomes

max
P
e∈E

weye +
P
C∈Ck

wCzC

�
y; z; f i; fo

�
∈PtspP

n∈N
yne = ye e∈E

[S12]

X
e∈E

yne ≤ ℓ n∈N [S13]

X
e∈δ−ðvÞ

yne = f i;nv v∈V ; n∈N [S14]

X
e∈δ+ðvÞ

yne = f o;nv v∈V ; n∈N [S15]

f o;nv ≤ f i;v ≤ 1 v∈V ; n∈N [S16]

Anderson et al. www.pnas.org/cgi/content/short/1421853112 2 of 7

www.pnas.org/cgi/content/short/1421853112


ye ∈ f0; 1g e∈E
zC ∈ f0; 1g C∈ Ck
yne ∈ f0; 1g e∈E;   n∈N:

The new constraints are briefly explained as follows. From Eq.
S12 we have that each edge used (ye) must be part of a chain
beginning at some NDD n. From Eq. S13 we obtain that each
chain can use at most ℓ edges, thus giving the maximum chain
length. In Eqs. S14 and S15 we just define auxiliary variables
denoting whether an edge used in a chain starting at n comes
into/out of v. Finally, in Eq. S16 we enforce that the edges used
in the chain starting at n are consecutive. The remaining con-
straints are exactly the same as the PC-TSP constraints with no
maximum chain length.

Stochastic Optimization for the KEP. Here we present a general
framework for dealing with the possibility that after an edge is
selected it might become ineligible for the matching, an event we
refer to as an “edge failure.” Edge failures occur commonly in
practice for a variety of reasons (e.g., a donor backs out, a pa-
tient dies, or a biological incompatibility is discovered).
We propose a two-phase system for planning exchanges that

anticipates edge failures occurring at random and plans to maxi-
mize the number of transplants performed once the failed edges
have been identified and removed. In the first phase, a subset of the
edges in the graph are selected to be tested for edge failures.
Operational constraints restrict this set, where the basic idea is that
it is not practical to check all of the edges. Some natural examples of
phase-one edge sets to test include the following:

• Use at most m edges in phase one.
• Each node has in-degree at most mi and out-degree at most mo.
• The edges used in phase one must be a feasible solution to

the KEP.

The only restriction on the rule used to select phase one edges
is that there exists a polyhedron P such that y∈P ∩ZjEj iff y
corresponds to a valid set of phase one edges (i.e., the set of
phase-one edges must be describable as a mixed-integer pro-
gram). After the phase-one selections are made, we learn which
of the edges that we tested in phase one failed, and in phase two
we solve the regular KEP using only edges that we checked and
that did not fail in phase one. Because we do not know which
edges will fail before we make our phase-one decision, we use
the objective of maximizing the expected weight of our phase-
two KEP solution when picking our phase-one solution. Next, we
describe the probabilistic framework we use for edge failures, and
then the computational technique used to compute our phase-one
solution.
We assume that there is a family of random variables Xe for

e∈E, taking the value one if the edge e can be used in the
matching and zero otherwise. We make no assumptions about
the independence structure of the variables Xe. However, we do
assume that we can jointly sample the vector of Xe variables.
We now define a two-stage stochastic integer optimization

problem. We have decision variables ye for e∈E that indicate the
edges we wish to test in stage one. In stage two, we observe our
realization ω∈Ω of XeðωÞ for the edges where ye = 1 (the edges
we tested), and then we form an optimal cycle packing using only
edges that we tested in phase one and where XeðωÞ= 1. We se-
lect our phase-one edges y, integer and in P, to maximize the
expected size of the phase-two packing.
This problem can be solved using themethod of sample average

approximation, as described and mathematically justified in refs.
2–4. Suppose that we sample the vector of Xe jointly n times, and
let x je for j= 1; . . . ; n be the realization of Xe in the jth sample. Let
y je be one if we use edge e in realization j and zero otherwise, and
likewise let z jC be one if we use cycle C in the jth realization. Let

P j
tsp be the cut set polyhedron on the variables y je and z jC. Our

formulation is then as follows:

max
Xn
j=1

 X
e∈E

cey je +
X
C∈Ck

cCz
j
C

!
[S17]

s:t: y∈P;�
y j; z j

�
∈P j

tsp;

y je ≤ ye e∈E; j= 1; . . . ; n;

y je ≤ x je e∈E; j= 1; . . . ; n;

z jC ≤ ye C∈ Ck; e∈C; j= 1; . . . ; n;

z jC ≤ x je C∈ Ck; e∈C; j= 1; . . . ; n;
ye ∈ f0; 1g e∈E;

y je ∈ f0; 1g e∈E; j= 1; . . . ; n;

z jC ∈ f0; 1g C∈ Ck; j= 1; . . . ; n:

This model has a few very attractive features. First, it allows for
a general probabilistic model for edge failures, which in practice
should be much more accurate than simply independently and
identically distributed edge failures. For example:

• If an edge failed because the donor or receiver became ill or
backed out, then all edges involving that donor/receiver would
be ruled out simultaneously.

• If an edge failed because a receiver developed a new HLA
antibody, then all edges from donors with that HLA antigen
would fail simultaneously.

• If an edge failed because a doctor or transplant center
deemed a donor to be of inadequate quality for the recipient
(e.g., too old), then possibly other edges pointing to the same
doctor/transplant center would fail, but not necessarily all of
them, because a highly sensitized recipient may have lower
standards than a standard recipient.

Clearly, a very sophisticated model could be made to predict
edge failures. Further, it will likely be easier to draw samples
from such a model than to explicitly work out the joint distri-
bution of edge failures.
Another good feature of this model is that we have a great deal

of flexibility in choosing P (the set of edges we are allowed to pick
in phase one). Our flexibility in choosing P allows us to adapt to
various operational constraints of actually running a kidney ex-
change. Additionally, we can use P to try and influence “agents”
(e.g., donors, recipients, doctors, hospitals, and transplant cen-
ters) into taking actions that maximize global welfare. For ex-
ample, if we select more than one incoming edge to a node in
phase one, then the receiver, the doctor, the hospital, and the
transplant center may be incentivized to reject the worse of the
two edges to try and get a higher quality donor. One very simple
fix is to restrict the edges tested in phase one to give each node
an in-degree of at most one. Then as no one will receive multiple
offers, no one will be incentivized to turn down a kidney they
otherwise would have accepted.
Finally, note that it is at times desirable to add additional

decision variables to the phase-one problem. For example, if we
were to restrict our phase-one solution to be a feasible solution to
the KEP, while we could take P=Prec, it is computationally more
efficient to use the PC-TSP formulation instead. One way of
accomplishing this is as follows: Add decision variables ~ye for
e∈E and ~zC for each cycle C∈ Ck, let

ye =~ye +
X
C∈Ck
e∈C

~zC;

Anderson et al. www.pnas.org/cgi/content/short/1421853112 3 of 7

www.pnas.org/cgi/content/short/1421853112


and then take P to be the PC-TSP polyhedron applied to ~y and ~z,
along with the constraint above relating y to ~y and ~z. Further,
note that the cut set constraints for the P j

tsp polyhedrons would
automatically be implied by the cut set constraints from Ptsp on
ð~y;~zÞ and thus could be eliminated.
Our model and can easily solve problems with up to 30 scenarios

on a desktop computer. Various heuristics designed for the sample
average approximation approach can provide close to optimal
results for larger problems. One may also consider solving a fully

stochastic and dynamic optimizationmodel; however, such amodel
is not tractable because it would include an infinite horizon sto-
chastic dynamic program with a state for every possible graph and
a large decision space for every state. One interesting way to tackle
this is through approximate dynamic programming (see e.g., ref. 5).
Previous studies have shown that a large class of dynamic algo-
rithms do not improve outcomes significantly beyond greedy al-
gorithms (see, e.g., ref. 6 and references therein), and thus solving
the one-shot optimization problems is an important challenge.

1. Bertsimas D, Weismantel R (2005) Optimization over Integers (Dynamic Ideas, Belmont,
MA), Vol 13.

2. Swamy C, Shmoys DB (2005) Sampling-based approximation algorithms for multi-stage
stochastic optimization. Proceedings of the 46th Annual IEEE Symposium on Founda-
tions of Computer Science (IEEE, New York), pp 357–366.

3. Kleywegt AJ, Shapiro A, Homem-de Mello T (2002) The sample average approximation
method for stochastic discrete optimization. SIAM J Optim 12(2):479–502.

4. Ahmed S, Shapiro A (2002) The sample average approximation method for stochastic
programs with integer recourse. SIAM J Optim 12:479–502.

5. Hutter F, Hoos HH, Leyton-Brown K, Stützle T (2009) ParamILS: An automatic algorithm
configuration framework. J Artif Intell Res 36(1):267–306.

6. Anderson R, Ashlagi I, Gamarnik D, Kanoria Y (2013) A dynamic model for barter ex-
change. ACM technical report (Assoc Computing Machinery, New York).

Fig. S1. A cyclic exchange involving two patient–donor pairs. Each pair is represented by a node, where the blue half of the node represents the donor and
the red half represents the patient.

Fig. S2. A chain exchange involving an altruistic donor, d0, four patient–donor pairs, and a patient with no donor p5. Each pair is represented by a node,
where the blue half of the node represents the donor and the red half represents the patient.

Fig. S3. An example of a KEP instance. The node labeled n is an NDD, and the remaining nodes p1 through p7 correspond to patient–donor pairs. Edges
indicate possible transplants from the donor in the source node to the patient in the target node. In the optimal solution for this instance, indicated by the bold
edges, we form the chain n, p1, p2, p3, p7, and the two cycle with p5 and p6, leaving p4 unmatched.

Anderson et al. www.pnas.org/cgi/content/short/1421853112 4 of 7

www.pnas.org/cgi/content/short/1421853112


Fig. S4. An example of a cut set constraint. The graph contains a single NDD in green, labeled n. Observe that if node v is to be involved in any chain (i.e.,
f iv = 1), then we must use at least one of the edges a or b that go across the cut separating S from the remaining nodes and NDD.

Fig. S5. A pathological instance of the KEP that is very difficult for the direct formulation but is solved trivially by the TSP formulation. The optimal solution is zero.

Fig. S6. The figure represents two fractional solutions to demonstrate the necessity of the second sum from the left-hand side of inequality S9. In this in-
stance, P = fp1, . . . ,p5g, N=∅, the edges are as indicated in the figure above, and all edges have weight one. The numbers next to the edges indicate fractional
solutions, namely ye for the recursive formulation, and ye +

P
C∈Ck ,e∈CzC for the cycle formulation. Observe that the solution on the left has greater weight than

the solution on the right. The solution on the left is infeasible for the recursive formulation, because the constraint on the cycle fðp1,p2Þ,ðp2,p3Þ,ðp3,p4Þ,ðp4,p1Þg
is violated. The solution on the right is optimal for the recursive formulation. For the cycles formulation, letting the cycle D= fð3;4Þ,ð4; 5Þ,ð5; 3Þg, without the
second sum from the left-hand side of S9, we could take zD = 1=4 and ye = 3=4 for e= ð1; 2Þ,ð2; 3Þ,ð3;4Þ,ð4; 1Þ and then fractional solution on the left would be
feasible. This would break the result that Zcyc WZrec. However, by including the variable zD in the constraint against the four cycles, we again have that the
solution on the right is optimal for the cycles formulation.

Anderson et al. www.pnas.org/cgi/content/short/1421853112 5 of 7

www.pnas.org/cgi/content/short/1421853112


Fig. S7. Consider the family of problem instances on n≥ 4 nodes where P = fp1, . . . ,png, N=∅, there are n edges forming a single cycle of length n, and we = 1
for every edge. Above is the instance where n= 8. The optimal solution for the IP and the PC-TSP LP relaxation are both zero, but the subtour elimination LP
relaxation has an optimal solution n− 1 [each node has ye = ðn− 1Þ=n].

Fig. S8. In the instance on six nodes above, where k= 3, N=Ø, P = fp1, . . . ,p6g, and each edge has weight one, the IP optimum is zero. Taking ye to be the
edge labels in the figure above, we get a feasible solution to the LP relaxation of Zcyc = 6. However, the LP optimum for the subtour formulation is Zsub = 5. We
can attain this value by taking yði,i+1Þ =5=6 and yð6;1Þ = 5=6. To show that 5 is optimal, we apply constraints S8 taking S= P, to obtain that

P
e∈EðPÞye ≤ 5, and then

observe that
P

e∈EðPÞye is equal to the objective function.

Table S1. Average number of chains of size k (k=3;4; 5; 6) in
random pools of various sizes and a single altruistic donor

Nodes k = 3 k = 4 k = 5 k = 6

150 4,520 69,780 1,063,727 16,116,117
200 5,147 99,046 1,884,160 35,304,432
250 15,407 370,071 8,807,015 207,347,121

Table S2. Additional patients matched for incremental increases in the maximum chain length

Measures ð3,∞Þ, % ð4,∞Þ, % ð5,∞Þ, % ð6,∞Þ, %
Additional highly sensitized (PRA >95) matched 35 27 21 16
Additional patients matched 21 17 14 12
Instances with more highly sensitized matched 35 32 25 23

Anderson et al. www.pnas.org/cgi/content/short/1421853112 6 of 7

www.pnas.org/cgi/content/short/1421853112


Table S3. Performance of the recursive and TSP algorithms for
“difficult” real-data KEP instances

Running time, s

NDDs Patient–donor pairs Edges Recursive TSP

3 202 4,706 0.148 0.031
10 156 1,109 13.093 0.022
6 263 8,939 59.158 1.655
5 284 10,126 71.066 0.807
6 324 13,175 418.27 0.981
6 328 13,711 474.947 1.947
6 312 13,045 1,200* 0.157*
10 152 1,125 48.56 0.054
3 269 2,642 40.506 0.134
10 257 2,461 67.783 0.258
7 255 2,390 85.475 0.268
6 215 6,145 248.46 0.532
10 255 2,550 216.48 0.126
1 310 4,463 721.66 0.555
11 257 2,502 1,039.105 0.125
6 261 8,915 1,200 4.435
10 256 2,411 587.238 0.114
6 330 13,399 1,200 1.621
10 256 2,347 1,200 0.305
7 291 3,771 1,200* 0.221
8 275 3,158 1,200* 0.224
4 289 3,499 1,200* 0.2
3 199 2,581 1,200* 0.041
7 198 4,882 1,200* 8.204
2 389 8,346 1,200* 0.096

Timeouts (optimal solution not found) are indicated by an asterisk.

Table S4. KEP on very large historical datasets with the recursive and TSP algorithms

Recursive algorithm TSP algorithm

Instance NDDs Patient–donor pairs Edges Running time, s RAM, GB Running time, s RAM, GB

APD 47 931 190,820 1.79 1 104 25
NKR 162 1,179 346,608 3.074 1 314 37

Anderson et al. www.pnas.org/cgi/content/short/1421853112 7 of 7

www.pnas.org/cgi/content/short/1421853112



