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Many countries have adopted Payment for Ecosystem Services (PES) programs to reduce deforestation.

Empirical evaluations find such programs, which pay forest owners to conserve forest, can lead to anywhere

from no impact to a 50% reduction in deforestation level. To better understand the potential effectiveness

of PES contracts, we use a principal-agent model, in which the agent has an observable amount of initial

forest land and a privately-known baseline conservation level. Commonly-used conditional contracts perform

well when the environmental value of forest is sufficiently high or sufficiently low, but can do arbitrarily

poorly compared with the optimal contract for intermediate values. We identify a linear contract with a

distribution-free per-unit price that guarantees at least half of the optimal contract payoff. A numerical study

using United States land use data supports our findings and illustrate when linear or conditional contracts

are likely to be more effective.
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1. Introduction

The world has been losing tropical forests at an annual rate of 10 million hectares in the last two

decades (Butler 2019). These alarming levels are driven largely by land use changes such as defor-

estation and agricultural expansion, which generate almost a quarter of the total greenhouse gas

emissions worldwide (Hawken 2017). To mitigate climate change and to halt environmental degra-

dation, there has been an emergence of programs that pay owners of natural assets to conserve

their environmental resources. These Payment for Ecosystem Services (PES) programs are widely

implemented by governments and NGOs seeking cost-effective methods to slow down deforestation

and to combat climate change (Stern et al. 2006). Two prominent examples of forest PES programs

are the Pago por Servicios Ambientales (PSA) program run by the national government of Costa

Rica, which pays private forest owners 640 USD/ha over 10 years in exchange for forest protec-

tion (Porras et al. 2017), and the Reducing-Emissions from Deforestation and Forest Degradation

(REDD+) program run by the United Nations. There are now more than 550 PES programs in

the world, with combined annual payments over 36 billion USD (Salzman et al. 2018).

Governments and NGOs are typically interested in how much additional forest is conserved due to

the payment scheme. However, such information is difficult to obtain, as forest owners have private

1



2 Dai Li, Ashlagi, and Lo: Simple and Approximately Optimal Contracts for PES

information about their opportunity costs and the amount they plan to deforest in the absence

of any incentives. Empirical studies have found mixed results regarding the effectiveness of PES

programs, finding the payments led to anywhere from no impact to a 50% reduction in deforestation

(see Borner et al. 2017, for a survey). This suggests PES can be a potentially promising tool to

achieve environmental goals but its effectiveness is context-dependent. Ferraro (2008) argues for

the need to study asymmetric information in PES, yet theory is still limited in this space.

Most commonly-used contracts in PES programs are conditional contracts, which pay forest

owners in exchange for conserving their forests fully (Engel et al. 2008, Muñoz-Piña et al. 2008,

Porras et al. 2017).1 It is natural to ask when conditional contracts are effective, and whether other

simple contracts could perform better.

We address these questions by studying a principal-agent model similar to that in Mason and

Plantinga (2013). The model captures an important information asymmetry – the agent (forest

owner) has private information about their baseline conservation amount absent any incentives.

In addition, the agent cannot conserve more forest than their initial forest area. The principal

(program designer) seeks to maximize the environmental value for the amount of conserved forest

net payments. We use the optimal contract payoff (second best solution) as a benchmark to evaluate

the performances of simple and practical contracts.

Conditional contracts work well when the principal has a relatively high value for forests. However

we show that for some parameter regimes they can perform arbitrarily poorly. In such regimes,

conditional contracts may exclude a large population who find full conservation too costly even

with the PES payments, leading to low levels of take-up.

In addition, we consider linear contracts, a class of simple yet intuitive contracts which pay

the agent a fixed amount per unit of forest conserved. We identify a per-unit price independent

of the baseline conservation distribution, with which a linear contract always yields at least half

of the optimal contract payoff. This implies the best linear contract has the same approximation

guarantee, regardless of the principal’s environmental value or the agent’s conservation behavior.

In a numerical exercise, we use empirically-calibrated baseline conservation distributions and

conservation cost functions from United States land use data to illustrate and discuss the perfor-

mance of simple contracts. Three parameter regimes are of interest. First, when the environmental

value is relatively low, neither simple contract can improve upon the baseline scenario; we find

this regime applies to the majority of regions in the U.S. Second, when the environmental value is

relatively high, the best conditional contract achieves higher payoff than linear contracts. Finally,

when the environmental value is in an intermediate regime, linear contracts can improve upon

1 The requirement of full conservation in order to receive payments is termed conditionality in the PES literature
(Engel et al. 2008).



Dai Li, Ashlagi, and Lo: Simple and Approximately Optimal Contracts for PES 3

conditional contracts substantially if the baseline conservation level is low. We argue that this

parameter regime is relevant for developing countries with high baseline deforestation levels and

recommend PES designers consider linear contracts in this context.

Finally, we consider a generalization of both conditional and linear contracts. A conditional

linear contract pays the agent a linear price in the conserved forest area but only if the conserved

area exceeds a prespecified threshold. Such contracts allow the principal to adjust both the price

as well as the stringency level. We identify a distribution-free conditional linear contract with an

intermediate level of stringency that further improves upon the linear contract with the constant

approximation guarantee.

Relation to the literature. The first paper that uses a principal-agent framework to study

optimal contracting in the PES context is Mason and Plantinga (2013). We extend their model to

account for boundary solutions that naturally arise in this setting. In addition to characterizing the

optimal contract completely, we analyze the performance of simple and practical contracts relative

to the optimal one. Further, they are the first to empirically calibrate the baseline conservation

distributions and cost functions for the U.S. We use their calibrations in our numerical exercise.

This paper contributes to the environmental economics and land use literature on PES by bring-

ing in a new angle of contract design. Comprehensive reviews about PES programs implemented in

practice are given by Pattanayak et al. (2010), Engel et al. (2016), Alix-Garcia and Wolff (2014).

Teytelboym (2019) reviews market design approaches used in the natural capital context and high-

lights the challenge of effectively designing and implementing PES constraints due to heterogeneity

amongst landowners. Borner et al. (2017) reviews empirical results on evaluating PES programs.

Using a field experiment, Jayachandran et al. (2017) find that paying land owners not to deforest

led to 50% reduction in deforestation level. Several papers address other frictions arising in PES

programs: Jack and Jayachandran (2019) demonstrate the need for better targeting to alleviate

inefficiencies due to self-selection, Peterson et al. (2015) study transaction costs of PES programs

with uncertainty about the agent’s willingness to enroll, and Harstad and Mideksa (2017) discuss

theoretically how conservation policies can be affected by property rights.

The analysis of the principal-agent model is based on a well-established literature studying

optimal mechanisms and contracts (Mirrlees 1971, Myerson 1979). Optimal contracts often require

detailed knowledge of system parameters and distributions by the principal, and thus can be

difficult to use in practice. Recent studies consider robust contract design and find simple contracts

can provide approximation guarantees for the worst case outcome, when the principal has limited

distributional information (Carroll 2015, Dütting et al. 2019, Yu and Kong 2020). We take a similar

approach in analyzing linear contracts, and, specifically in the PES setting, provide guarantees on

performance when the principal has no distributional information on the agent’s type.
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Our work broadly contributes to the study of contract design in operations management and

sustainable OM. The OM community has long studied optimal contracts and their approximations

in the context of supply chain contracts (Corbett et al. 2004, Perakis and Roels 2007, Kim and

Netessine 2013, Bolandifar et al. 2018). The sustainable OM literature has flourished in recent

years (see, e.g. Lee and Tang 2018, Atasu et al. 2020), and has studied information asymmetry

in environmental disclosure policies (Kim 2015, Plambeck and Taylor 2016, Wang et al. 2016), as

well as environmentally-responsible sourcing strategies which can alleviate deforestation pressure

(Orsdemir et al. 2019, de Zegher et al. 2019). We bring together these strands of literature in

designing approximately optimal contracts to combat deforestation, and offer directions for future

study at this intersection.

Organization of the paper. Section 2 describes the model and the optimal contract. Conditional

contracts are studied in Section 3. Linear contracts are studied in Section 4. A numerical analysis

using U.S. data is given in Section 5. We discuss extensions in Section 6 and conclude with future

directions in Section 7. Omitted proofs are in the appendix, and a more in-depth description of

the numerical analysis is given in the e-companion to the paper.

2. Model

The agent has an initial forest area a0, which is publicly observable.2 The principal seeks to incen-

tivize the agent to conserve their forest area. The agent has a privately-known baseline conservation

proportion θ, drawn i.i.d. from a publicly known distribution F (θ) with support [θ, θ̄]⊆ [0,1]. That

is, in the baseline scenario absent incentives, the agent will conserve θa0 forest area. The agent

can choose their conservation action, a∈ [0, a0], and incurs a convex conservation cost c(a− θa0).3

The conservation cost function c(·) captures the opportunity cost of not deforesting. It is costless

for the agent to conserve up to the baseline amount θa0 but it becomes increasingly costly when

they conserve beyond the baseline amount. We assume that, for x := a−θa0 ≥ 0, c(x) = h
2
x2, where

h> 0, and for x< 0, c(x) = 0. Section 6 generalizes c(x) to general convex functions.

The principal, who does not own the land, has environmental value $k per unit area of conserved

forest. This can be interpreted as the carbon sequestration value or the biodiversity value of the

forest.4 Based on the principal’s knowledge of a0 and F (θ), the principal can offer a contract to

2 Assuming that the forest area is observable captures the recent advancement in satellite imaging technology, which
allows for monitoring forests and tree coverage at the level of individual landowners (Hansen et al. 2013, Jean et al.
2019, Lütjens et al. 2019).

3 We can equivalently normalize a0, but do not do so in order to emphasize the dependence of contracts on a0.

4 We assume the environmental value of forest is linear in the forest area; this is a non-trivial ecological assumption.
The linear assumption is reasonable if we only consider the carbon storage value of the forest and abstract away its
biodiversity value. The biodiversity value of the forest is often heterogeneous and complementary, and thus non-linear
in the forest area. The k in our model can be interpreted as the Social Cost of Carbon, or as the carbon price
transacted on carbon credit markets.
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the agent that specifies a payment for each conservation action, P (a). We only consider contracts

with limited liability, i.e. payments are assumed to be non-negative.5 The principal’s objective is

to design a contract that maximizes the following expected payoff

Eθ[ka−P (a)],

which captures the environmental value from conserved forest minus the amount paid to the agent.

The agent with type θ is risk neutral and chooses a conservation action a ∈ [0, a0] to maximize

their net utility

P (a)− c(a− θa0).

There is no loss of generality to restrict attention to payment rules that are non-decreasing in

the conservation amount. We assume that when indifferent, the agent chooses the conservation

action that is preferred by the principal. The utility-maximizing action a∗ is weakly greater than

the baseline conservation level θa0 for any such payment schemes. Observe that the principal’s

optimization problem is equivalent to maximizing the environmental value from the additional

conservation amount net pay, kE [a− θa0]−EP (a), where E [a− θa0] is the additional conservation

amount induced by the contract.

2.1. The Optimal Contract

The optimal contract maximizes the principal’s payoff given incentive compatibility (IC) and

individual rationality (IR) constraints. We consider the space of direct revelation contracts,

{(a(θ), P (θ))}θ∈[θ,θ̄], where a(θ) and P (θ) are the conservation amount and the payment level of an

agent with type θ.6 The optimal contract offers the agent a continuum menu of choices. Formally,

the principal’s optimization problem is given by

ObjOPT = max
{(a(θ),P (θ))}θ∈[θ,θ̄]

Eka(θ)−P (θ)

s.t. P (θ)− c(a(θ)− θa0)≥ 0,∀θ, (IR)

θ= arg max
θ′∈[θ,θ̄]

P (θ′)− c(a(θ′)− θa0),∀θ. (IC)

Standard analysis (e.g., Mirrlees 1971) shows that the principal’s expected payoff is equivalent

to the following expression that integrates the IC constraint into the objective:∫ θ̄

θ=θ

[ka(θ)− c(a(θ)− θa0)− 1−F (θ)

f(θ)
a0c
′(a(θ)− θa0)]f(θ)dθ. (1)

5 Fines for non-compliance are rarely used, although the PROFAFOR program in Ecuador asks forest owners to pay
back past payments if they do not comply (Wunder and Albán 2008).

6 The revelation principle (Dasgupta et al. 1979, Myerson 1979) states that without loss of implementability, we
only need to consider direct revelation contracts where the agent truthfully reports their type (baseline conservation
proportion θ), and the contract specifies an action-and-payment pair based on the agent’s type.
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In the optimal contract, the lowest type agent has a binding IR constraint; the optimal con-

servation quantity for each type, aOPT (θ), is solved to maximize J(θ) ≡ ka(θ)− c(a(θ)− θa0)−
1−F (θ)

f(θ)
a0c
′(a(θ)− θa0). For ease of exposition, we state the results assuming F (θ) has monotone

hazard rate, i.e. 1−F (θ)

f(θ)
is non-increasing in θ.7 Taking the boundary condition of a(θ) ∈ [θa0, a0]

into account, we have the following result:

Lemma 1. The optimal direct revelation contract (a(θ), P (θ)) is given by

a(θ) =


θa0, if θ≤ θ̂1,

θa0 + k
h
− 1−F (θ)

f(θ)
a0, if θ ∈ (θ̂1, θ̂2),

a0, if θ≥ θ̂2,

where θ̂1 is defined by 1−F (θ̂1)

f(θ̂1)
= k

ha0
if 1

f(θ)
≥ k

ha0
, and otherwise is given by θ̂1 = θ, and θ̂2 is defined

by 1− θ̂2 + 1−F (θ̂2)

f(θ̂2)
= k

ha0
if 1− θ+ 1

f(θ)
≥ k

ha0
, and otherwise is given by θ̂2 = θ. In each θ interval,

the payment level is given by

P (θ) = c(a(θ)− θa0) +

∫ θ

τ=θ

a0c
′(a(τ)− τa0)dτ.

Lemma 1 shows that in the optimal solution, the agent type space is divided into three regions.

The top types in the interval (θ ∈ [θ̂2, θ̄]) are pooled and conserve the maximal amount. Moreover,

it may be optimal to pool the bottom types in the interval (θ ∈ [θ, θ̂1]) and have them conserve at

their baseline levels without payments. The optimal contract screens the middle types where their

conservation amounts are interior solutions. The quantity k
ha0

measures how much the principal

values the forest relative to the agent’s conservation cost (and will be used throughout the paper).

Both thresholds θ̂1 and θ̂2 decrease as k
ha0

increases.

The optimal contract, as shown next, can also be implemented via a menu of affine contracts

{p(θ), T (θ)}θ, where each option is composed of a linear price p(θ) as well as a lump sum transfer

T (θ) that is independent of the agent’s conservation quantity (see, e.g., Laffont and Tirole (1986)).

So an agent that chooses option (p(θ), T (θ)) and conserves an amount a of forest receives a total

payment of p(θ)a+ T (θ). For this result, we assume F (θ) has monotone hazard rate for ease of

exposition.

Lemma 2. If 1−F (θ)

f(θ)
is non-increasing in θ, the optimal allocation can be implemented via a

menu of affine contracts {p(θ), T (θ)}θ where,

p(θ) =


0, if θ≤ θ̂1,

k−ha0
1−F (θ)

f(θ)
, if θ ∈ (θ̂1, θ̂2),

h(1− θ̂2)a0, if θ≥ θ̂2,

7 When F (θ) does not satisfy the monotone hazard rate assumption, standard “ironing” techniques can be applied
(Mussa and Rosen 1978). Additional details are provided in the appendix.
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and

T (θ) =


0, if θ≤ θ̂1,

− 1
2h

(k−ha0
1−F
f

(θ))2 +
∫ θ
θ1
a0(k−ha0

1−F
f

(τ))dτ, if θ ∈ (θ̂1, θ̂2),
h
2
(1− θ2)2a2

0−h(1− θ2)a2
0 +
∫ θ2
θ1
a0(k−ha0

1−F
f

(τ))dτ, if θ≥ θ̂2.

Here θ̂1 is defined implicitly by 1−F (θ̂1)

f(θ̂1)
= k

ha0
if 1

f(θ)
≥ k

ha0
, and otherwise is given by θ̂1 = θ, and θ̂2

is defined implicitly by 1− θ̂2 + 1−F (θ̂2)

f(θ̂2)
= k

ha0
if 1− θ+ 1

f(θ)
≥ k

ha0
, and otherwise is given by θ̂2 = θ.

Further, the principal’s payoff is identical to that in the optimal direct revelation contract.

Observe that optimal contracts require an infinite number of options. In practice PES contracts

between landowners and NGOs/governments are typically very simple; contracts offering a menu

with even a few options are considered complex and unlikely to be implemented, especially in

developing countries. Further, any optimal contract requires the principal to know the baseline

conservation distribution F (θ), which is unrealistic. With this in mind, we turn to analyzing simpler

contracts and let the optimal contract serve as a benchmark in our analysis of these contracts.

3. Conditional Contracts

A conditional contract is parametrized by a price p per unit area conserved. The principal pays a

lump sum amount pa0 if and only if the agent conserves the full amount a= a0.

The agent with type θ can choose to either conserve all the forest they own, receiving utility

pa0− h
2
(1−θ)2a2

0, or continue with baseline activity, receiving utility 0. Define θ̂(p)≡ 1−
√

2p
ha0

to be

the threshold type indifferent between the two options. If θ≤ θ̂(p), the agent conserves a(θ) = θa0;

otherwise, a(θ) = a0.

The principal’s objective can now be written as:

max
p
ObjC(p) = k

∫ θ̂

θ

θa0f(θ)dθ+ (k− p)
∫ θ̄

θ̂

a0f(θ)dθ. (2)

Denote by ObjC
∗

the payoff of the best conditional contract with price pC
∗
. In this section, we

assume F (θ) has monotone hazard rate in order to tractably characterize the outcome of the best

conditional contract.

When the environmental value is sufficiently high relative to the conservation cost parameter

h, the best conditional contract and the optimal contract both pay the agent for full conservation

regardless of their type. The best conditional price is set to fully compensate the agent with the

lowest baseline conservation level for their conservation cost.

Lemma 3. If k
ha0
≥ (1−θ)+ 1

f(θ)
, the optimal contract and the best conditional contract coincide,

thus ObjC
∗

=ObjOPT . Every agent type θ conserves fully, i.e., a(θ) = a0 and receives a payment of

h
2
(1− θ)2a2

0.
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When the relative environmental value k
ha0

is sufficiently low, the best conditional contract is

the baseline scenario. This is because the principal is not incentivized to set the price high enough

to induce any additional conservation from the agent.

Lemma 4. If k
ha0
≤ 1

2
(1 − θ̄), the best conditional contract is the baseline scenario. That is,

ObjC
∗

= kE[θ]a0 and pC
∗

= 0.

Next, we demonstrate that there exists baseline distributions such that the best conditional

contract can perform arbitrarily poorly compared to the optimal contract.

Example 1. When there is only one agent type θ = 0, i.e., F (θ) = δ(0), the best conditional

contract has objective value ObjC
∗

= max{0, ka0− h
2
a2

0}, because the principal will either ask the

agent to conserve fully and compensate their conservation cost, or not offer a conditional contract

at all. The optimal contract is to maximize the socially efficient objective ka− h
2
a2 where a is the

conservation amount of the agent type 0. Thus, a(0) = min{ k
h
, a0}, P (0) = min{k2

2h
, h

2
a2

0} resulting in

positive payoff ObjOPT = k2

2h
. When k

ha0
≤ 1

2
, ObjC

∗
= 0 and the best conditional contract recovers

0% of the optimal contract payoff.

The poor performance of conditional contracts can occur for general F (θ) distributions with

information asymmetry (i.e. more than one agent type) where the expectation of baseline conser-

vation is small at intermediate relative environmental values, as demonstrated below.

Example 2. Let F (θ) = 1−exp (−λθ)
1−exp (−λ)

be a bounded exponential distribution with parameter λ

with its support on [0,1]. At an intermediate relative environmental value k
ha0

= 1
2
, as λ tends to

infinity, i.e. the expected baseline conservation amount E[θ]a0 tends to 0, the ratio between the

best conditional contract and the optimal contract tends to 0. (See Appendix C for more details.)

The poor performance of the conditional contract manifests itself in low levels of take-up even

with a seemingly attractive conditional price. This is because when k
ha0

is intermediate, the opti-

mal contract achieves higher payoff than the baseline scenario by capturing intermediate levels of

additional conservation; in the conditional contract, for baseline distributions that are left-skewed,

the expected fraction of the population that commits to full conservation is still very low. As a

result, the best conditional contract payoff is not that different from the baseline scenario.

In practice, the principal may not be aware of the conditional contract’s potentially significant

inefficiency due to lack of take-up. First, the conditional contract price may not be optimized;

second, empirical studies often estimate the additional conservation from landowners who opt-

in the PES program relative to their estimated baseline conservation levels, but not the relative

performance between the conditional contract and the optimal contract outcome.

Next we consider another simple class of contracts that overcome the drawbacks of conditional

contracts.



Dai Li, Ashlagi, and Lo: Simple and Approximately Optimal Contracts for PES 9

4. Linear Contracts

A linear contract pays the agent a fixed price p per unit area conserved without any conditionality

requirement, and can be viewed as a uniform subsidy. Linear contracts are rare in practice as

conditionality is often required in PES schemes (Engel et al. 2016).

The agent’s best response to a linear contract with price p is to choose a conservation amount a

that maximizes pa− h
2
(a− θa0)2. Solving this yields that the agent of type θ chooses to conserve

an additional amount of p
h

beyond their baseline, or fully if their baseline conservation proportion

θ is high enough that the boundary condition is met.

Denote the lowest agent type that will conserve the full amount by θ̃(p)≡ 1− p
ha0

. The principal’s

objective can be written as:

max
p
ObjL(p) = max

p
(k− p)

(∫ min{θ̃,θ̄}

θ

(θa0 +
p

h
)f(θ)dθ+

∫ θ̄

min{θ̃,θ̄}
a0f(θ)dθ

)
. (3)

We let ObjL
∗

denote the objective of the best linear contract with price pL
∗
.

Analogous to Lemma 4, when k is relatively small, a positive linear price is not sufficient to

incentivize enough additional conservation:

Lemma 5. When k
ha0
≤ E[θ], the best linear contract is the baseline scenario; thus ObjL

∗
=

kE[θ]a0 and pL
∗

= 0.

Recall that when the baseline conservation level is at its worst case (i.e. E[θ] = 0), the best condi-

tional contract recovers 0% of the optimal contract payoff (Example 1). In contrast to conditional

contracts where a large fraction of population may not participate, linear contracts always induce

every agent to enroll and to conserve beyond their baseline level (except for the type θ = 1 who

already conserves fully). We study the linear contract for the same distribution:

Example 3. When there is only one agent type θ= 0, the ratio between the best linear contract

and the optimal contract payoff is 0.5 regardless of the relative environmental value k
ha0

. The

optimal contract is a(0) = min{ k
h
, a0}, P (0) = min{k2

2h
, h

2
a2

0} (equivalent to a per-unit price of k
2

when k < ha0), leading to an objective value ObjOPT = k2

2h
; the best linear contract is a(0) = k

2h
,

per-unit price pL
∗

= k
2
, leading to an objective value ObjL

∗
= k2

4h
, which is half of the optimal payoff.

The next result shows that a linear contract with price p= k
2

always achieves at least half of the

optimal contract payoff for any environmental value k and any distribution F (θ). Thus, the best

linear contract always guarantees at least half the payoff of the optimal contract. The minimal

ratio between the two contracts occurs when there is only one agent type 0. The intuition for why

this is the worst case is because when there is only a single agent type there is no information

asymmetry, so the optimal contract is fully efficient, which maximizes the gap between the two

contracts. (Due to the convexity of the cost function, linear contracts cannot recover full efficiency

even with no information asymmetry.)
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Theorem 1. For all k > 0 and any F (θ), a linear contract with price pL = k
2

achieves at least

half of the optimal contract payoff. Therefore, the best linear contract always yields at least half of

the optimal contract payoff.

Proof Sketch. We provide a proof sketch assuming F (θ) has monotone hazard rate; a proof

without this assumption is given in Appendix D. First, we construct an upper bound for the

optimal payoff, denoted by Obj
OPT

, which is the environmental outcome at the optimal contract

minus the agent’s conservation cost (i.e., the optimal payoff without the information rent). Using

Equation (1), we have:

ObjOPT =

∫ θ̄

θ=θ

[kaOPT (θ)− c(aOPT (θ)− θa0)− 1−F (θ)

f(θ)
a0c
′(aOPT (θ)− θa0)]f(θ)dθ (4)

≤
∫ θ̄

θ=θ

[kaOPT (θ)− c(aOPT (θ)− θa0)]f(θ)dθ≡ObjOPT . (5)

Explicitly substituting the optimal contract solution aOPT (θ) from Lemma 1 (which holds when

F (θ) satisfies the monotone hazard rate assumption) and simplifying the optimal payoff upper

bound leads to:

Obj
OPT

=

∫ θ̂1

θ

kθa0f(θ)dθ+

∫ θ̂2

θ̂1

kθa0 +
k2

2h
− h

2
(
1−F (θ)

f(θ)
a0)2f(θ)dθ+

∫ θ̄

θ̂2

ka0−
h

2
(1− θ)2a2

0f(θ)dθ. (6)

Next, applying Equation (3) with a price of p= k
2

to obtain the linear contract payoff and doubling

both sides of the equation, we obtain

2ObjL(p=
k

2
) =

∫ θ̃

θ

(
kθa0 +

k2

2h

)
f(θ)dθ+

∫ θ̄

θ̃

ka0f(θ)dθ. (7)

Then, we show that, for any agent type θ, the integrand in Equation (7) is weakly larger than

the integrand in Equation (6). When F (θ) does not have a monotone hazard rate, the optimal

allocation aOPT (θ) is still continuous in θ, allowing us to show that the integrand in (7) is weakly

larger than the optimal payoff for any agent type. This completes the proof. �

In addition to guaranteeing a constant fraction of the optimal payoff, this simple linear contract

with price k
2

is robust to misspecifications of the model parameters {F (θ), h, a0}, which are often

difficult for the principal to know precisely. The linear price k
2

is independent of the agent type

distribution F (θ), the agent’s opportunity cost and the initial land size a0. Further, Theorem 1

naturally generalizes to a model where the agents are endowed with different levels of initial forest

areas.8 This is particularly useful because the PES designer can use a single contract uniformly

even when agents are heterogeneous in the amounts of forest land they own.

8 Since k
2

is independent of a0 the same contract can be used for agents with different initial land size a0.
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5. A Numerical Study Using U.S. Land Use Data

The theory suggests that there are three interesting regimes for comparing the performance of

conditional and linear contracts. These regimes depend on the value of k
ha0

, which measures the

value of conserving forest relative to its opportunity cost. Recall that in all these regimes the

linear contract provides a 0.5-approximation to the optimal contract (Theorem 1); however the

relative performance of the linear and conditional contracts varies. In this section, we discuss the

implications of the theory and illustrate which contract is desirable via a numerical study, which

uses baseline conservation distributions and conservation cost functions calibrated using U.S. land

use data.

The distributions and cost functions we consider are based on empirically-calibrated data from

Mason and Plantinga (2013) for 140 regions in the U.S. classified into 4 land qualities. Land quality

class indicates the level of opportunity costs of forestation and is a rough measure of how profitable

it may be to develop the land into non-forest uses. Higher (lower) land quality class regions have the

higher (lower) conservation cost and lower (higher) baseline conservation levels, and hence higher

(lower) baseline deforestation levels. We directly apply the baseline conservation distributions in

Mason and Plantinga (2013), and calibrate the parameter h in the conservation cost function

c(x) = h
2
x2 using their cost functions. A detailed explanation of the baseline distributions and the

cost functions is given in the e-companion (EC.1).

The environmental value of forests k (per unit area) used in this numerical study is roughly twice

the price of carbon per ton.9 While we can evaluate the performance of simple contracts in terms of

any environmental value k, we center our discussion around the social cost of carbon as most PES

programs are implemented by national governments. The Social Cost of Carbon instated by the

Biden administration in 2021 is $50 per ton of carbon, equivalent to $k= 100 (Chemnick 2021). If

the principal is a carbon buyer from the private sector, it is also reasonable to use the prevailing

carbon price in a carbon market as the environmental value k. For example, in the California

Cap-and-Trade auction, the carbon price is about $20/ton which is equivalent to k= $40.

Small relative value for conservation. In the first regime, when k
ha0

is very small, neither of

the simple contracts can improve upon the baseline scenario, where the agent continues with their

baseline conservation amount and no incentives are introduced (Lemma 4 and Lemma 5). At an

environmental value of k = $100 per unit area, 130 (119) of the 140 regions in the U.S. fall in the

small k
ha0

regimes where conditional (linear) contracts cannot improve upon the baseline. We show

the performance of simple contracts for such a region in the e-companion (EC.2) and verify that

9 Mason and Plantinga (2013) used an environmental value k= $100 per unit area, which is based on the estimate in
Lubowski et al. (2006) of a value of $50 per ton of carbon.
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Figure 1 Ratios between simple contracts and OPT at different values of k in Montana

they do not improve upon the baseline scenario. The small k
ha0

regime is likely to be less relevant

in developing countries, where land development revenue is lower relative to the U.S.

Large relative value for conservation. In the second regime when k
ha0

is large, the best con-

ditional contract is equivalent to the optimal contract (Lemma 3). Figure 1 plots the percentage

of the optimal contract payoff that the two simple contracts, as well as the baseline scenario, are

able to achieve, for high and low land quality classes in Montana. In the high land quality class

(Figure 1a), the best conditional contract coincides with the optimal contract for sufficiently large

k (larger than $500 per unit area), and outperforms the best linear contract for k larger than $350

per unit area. Similarly, in the low land quality class (Figure 1b), the best conditional contracts

coincide with the optimal contracts when k is larger than $280 per unit area, and outperform the

best linear contracts when k is larger than $150 per unit area.

Intermediate relative value for conservation. Finally, in the intermediate parameter region of

k
ha0

and when baseline conservation is low, we have shown that conditional contracts can perform

arbitrarily poorly, while linear contracts are guaranteed to provide at least half of the optimal

contract payoff (Theorem 1). This can be seen in the high land quality region in Montana: in

Figure 1a, for k between $45 to $350 per unit area (the grey region), the best linear contracts

outperform the best conditional contracts; the best conditional contract is only about 30% of the

optimal contract payoff, while the best linear contract always achieves more than 50%. More states

that exhibit similar patterns are provided in the e-companion (EC.2).

Ideally, one would repeat the above exercise for many other countries. This requires empirical

estimation of the value k of environmental conservation, as well as reliable estimates of the dis-

tribution of baseline conservation and other conservation cost parameters. The former is enabled

by high quality fine-grained data on the global carbon stock and biodiversity benefits, which are
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becoming increasingly available (Strassburg et al. 2020). However, the latter requires sophisticated

econometric analysis using detailed parcel-level land use data, as done in Lubowski et al. (2006). As

data on conservation costs and deforestation activity are often reported in aggregate on a regional

level, aside from the dataset for the US provided in Mason and Plantinga (2013), similar datasets

for other countries are not currently available.

Nevertheless, back-of-the-envelope calculations can still provide some helpful benchmarks. We

take as an example Brazil, a developing country which continues to experience high levels of defor-

estation despite having forest conservation programs in place. By comparing the total agricultural

land size and agricultural revenue of Brazil to the US (public data from the OECD Land Cover

data set and the World Bank), we estimate that Brazil’s conservation cost function parameter h is

scaled down by a factor of more than 2 relative to the U.S.10 At an environmental value of k≈ $100

per unit area, halving the conservation cost parameter h is equivalent to scaling k up to $200 per

unit area. If we assume that Brazil’s baseline conservation distribution is similar to that of U.S.

regions with high land quality, k
ha0

will be in the intermediate regime (see Figure 1a at k≈ $200).

There are reasons to believe that many regions, like Brazil, currently experience the intermediate

regime of k
ha0

. On one hand, governments recognize the urgency of climate change and have joined

international efforts to mitigate climate change (e.g. the REDD+ program), suggesting that k
ha0

is

large enough to induce some government action. On the other hand, we still observe high rates of

deforestation in countries that already have PES programs set up (Hansen et al. 2013), suggesting

that not every country is able to pay for full conservation. In this intermediate regime, conditional

contracts can perform poorly and can be substantially improved upon by linear contracts.

6. Extensions

In this section we consider two natural extensions to our theory, for which we provide robustness

results.

6.1. Conditional Linear Contracts

Both the conditional contracts and the linear contracts belong to a class of simple contracts, which

we term conditional linear contracts. Conditional linear contracts pay the agent a linear price p

per unit area conserved, as long as the conserved area a is above a prespecified threshold wa0,

where w ∈ [0,1]. When w = 1, this contract is the conditional contract; when w = 0, this contract

is the linear contract. This contract allows the principal to adjust both the price paid and the level

of stringency of the contract.

10 Specifically, Brazil’s crop land size is about 2 million square kilometer and annual agricultural revenue is about $81
billion; the U.S.’ crop land size is about 1.9 million square kilometers and its annual agricultural revenue (in 2017)
is about $178 billion. This means the average revenue per square kilometer in Brazil and the U.S. are approximately
$40,000 and $94,000 respectively, yielding the factor of 2.35> 2.
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Figure 2 Ratios between the simple contracts and OPT

at different values of k in the High Land Quality Region of Montana

Our running example with a single agent type illustrates the benefit from a conditional lin-

ear contract. Detailed analysis of the example and conditional linear contracts can be found in

Appendix E.

Example 4. When there is only one agent type θ = 0: if k
ha0
≤ 1, the best conditional linear

contract is w = k
ha0

with price p= k
2
; otherwise, the best conditional linear contract is w = 1 with

price p= ha0
2

. Further, this best conditional linear contract achieves 100% of the optimal contract

payoff. However, that the best linear and the best conditional contracts guarantee only 50% and

0% of the optimal contract payoff respectively.

We build on the guarantees provided by linear contracts (Theorem 1) by showing that a

distribution-free conditional linear contract improves upon the distribution-free linear contract.

Theorem 2. For all k > 0 and any F (θ), the conditional linear contract with w = min{ k
ha0

,1}

and p= min{k
2
, ha0

2
} always achieves higher payoff than the linear contract with price k

2
, and guar-

antees at least half of the payoff of the optimal contract.

When k is relatively small, this distribution-free conditional linear contract uses the same price

as the distribution-free linear contract suggested in Theorem 1 but with an intermediate level of

stringency; as k gets larger, this conditional linear contract becomes a conditional contract that

pays enough so that any agent type conserves fully.

Figure 2 plots the simulated performances of the distribution-free conditional linear contracts

identified in Theorem 2 and the best conditional linear contracts in the high land quality region

of Montana. The best conditional linear contracts perform significantly better than both the best

conditional and the best linear contracts. Both the conditional and linear contracts only have a

single parameter (the price), but the conditional linear contracts have two parameters without

sacrificing much simplicity. As the principal increases the number of parameters to be optimized in
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a contract, the principal can get closer to the optimal payoff. More importantly, the distribution-

free conditional linear contracts significantly improve upon both the best conditional and the best

linear contracts in the region k≥ 100.

6.2. General Convex Cost Function

The model assumes the cost function to be quadratic. We discuss here how the results change under

a more general convex function c(x) with bounded second derivative, i.e. c′′(x)∈ [l, u], ∀x∈ [0, a0],

where u> l > 0.

First, when k
ua0

is large enough, the best conditional contract still coincides with the optimal

contract.

Lemma 6. When k
ua0
≥ (1 − θ + 1

f(θ)
), the optimal contract and the best conditional contract

coincide, thus ObjC
∗

=ObjOPT . Every agent type θ conserves fully, i.e., a(θ) = a0 and receives a

payment of u
2
(1− θ)2a2

0.

Next, when k
la0

is small enough, both kinds of simple contracts do not improve upon the baseline

scenario.

Lemma 7. When k
la0
≤ 1−θ̄

2
, the best conditional contract is the baseline scenario; thus ObjC

∗
=

kE[θ]a0. When k
la0
≤E[θ], the best linear contract is the baseline scenario; thus ObjL

∗
= kE[θ]a0.

The above two lemmas are simple extensions of Lemma 3 - 5 where we bound the objectives using

the appropriate u or l terms.

Finally, selecting the best contract out of the two kinds of simple contracts guarantees a constant-

factor approximation to the optimal payoff.

Theorem 3. For all k > 0 and F (θ), one of the simple contracts achieves at least l
2u

of the

optimal contract payoff. Further, there exists a threshold k∗ ≡ 2u2

u+l
a0, such that:

(i) if k≤ k∗, the linear contract with price pL = k
2

yields at least l
2u

of the optimal contract;

(ii) if k > k∗, the conditional contract with price pC = ua0
2

(1− θ)2 yields at least l
2u

of the optimal

contract.

In the general convex cost setting, in contrast with Theorem 1, a linear contract can no longer

offer the approximation guarantee when k is large. Moreover, the approximation factor depends

on the curvature of the cost function c(·).

The simple contracts in Theorem 3 are able to achieve the approximation guarantee with prices

that are not optimized to the specific parameters in the model. The linear contract price pL = k
2

is

the same as that used in Theorem 1 which is independent of the baseline conservation distribution;

the conditional contract price pC = ua0
2

(1− θ)2 is the generalized version of pC = h
2
(1− θ)2a0 in the

base model, which is the price used to induce full conservation regardless of the agent type.
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7. Conclusion

This paper compares the performance of conditional and linear contracts for Payments for Ecosys-

tem Services. We find that the commonly-used conditional contracts can have mixed outcomes:

they can perform poorly when the relative environmental value is intermediate. Linear contracts are

often overlooked, but we show that they have desirable robustness properties and can sometimes

improve upon conditional contracts. In particular, a linear contract with an easily-constructed per-

unit price guarantees half the optimal contract payoff. Existing contracts with full conditionality

should not be assumed to be a panacea for PES programs; relaxing the conditionality requirement

can actually improve conservation outcomes.

We believe that there is an abundance of research opportunity in using theoretical modeling

to help inform program design for dis-incentivizing deforestation. Our model abstracts away from

numerous features of potential interest. Contracts are typically offered over a long time period,

over which the conservation costs can be stochastic. Lessons from the development economics

literature can be helpful in better modeling agent behavior; for example, smallholder farmers in

developing countries typically face complex and stochastic financial constraints (Lansing 2017,

Jayachandran 2013). Monitoring conservation activities is still costly in practice at the moment,

suggesting the use for robust contract design (Carroll 2015, Dütting et al. 2019, Yu and Kong 2020).

Moreover, the value of natural assets are often heterogeneous and complementary; conserving one

contiguous parcel of forest is better than conserving two non-contiguous parcels of half the size.

Another important direction is to incorporate a richer action space to include sustainable land

management practices, instead of a single dimensional deforestation quantity; such an approach will

be especially valuable for achieving the UN Sustainable Development Goals. All of these directions

merit future exploration. Finally, to identify the potential payoff of contracts, there is need for

additional empirical research estimating conservation costs in high deforestation regions across the

world.

It is our hope that future interdisciplinary work can bring theoretical techniques from operations

management together with empirical and practical insights from environmental and development

economics to more holistically address problems at the heart of environmental sustainability.
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Appendix. Proofs of Statements

A. The Optimal Contract

First, we provide the version of Lemma 1 with explicit expressions of payment levels when F (θ) has monotone

hazard rate (i.e. 1−F (θ)

f(θ)
is weakly decreasing in θ). In the proof, we show how to apply the ironing technique

on the region where 1−F (θ)

f(θ)
is not weakly decreasing in θ.

Lemma 1 The optimal contract (when F (θ) has monotone hazard rate) is given by

(a(θ), P (θ)) =


(θa0,0) if θ≤ θ̂1,(
θa0 + k

h
− 1−F (θ)

f(θ)
a0,

h
2
( k
h
− 1−F (θ)

f(θ)
a0)2 +

∫ θ
θ̂1
ha0( k

h
− 1−F (τ)

f(τ)
a0)dτ

)
if θ ∈ (θ̂1, θ̂2),(

a0, min{h
2
( k
h
− 1−F (θ̂2)

f(θ̂2)
a0)2 +

∫ θ̂2
θ̂1
ha0( k

h
− 1−F (τ)

f(τ)
a0)dτ,h(1− θ)2a2

0}
)

if θ≥ θ̂2,
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where θ̂1 is defined by 1−F (θ̂1)

f(θ̂1)
= k

ha0
if 1

f(θ)
≥ k

ha0
and otherwise is given by θ̂1 = θ, and θ̂2 is defined by

1− θ̂2 + 1−F (θ̂2)

f(θ̂2)
= k

ha0
if 1− θ+ 1

f(θ)
≥ k

ha0
, and otherwise is given by θ̂2 = θ.

Proof of Lemma 1. Standard analysis (e.g., Mirrlees 1971) shows the principal’s problem is equivalent

to solving the following,

a(θ) = arg maxa(θ)∈[θa0,a0]

∫ θ̄
θ=θ

[ka(θ)− c(a(θ)− θa0)− 1−F (θ)

f(θ)
a0c
′(a(θ)− θa0)]f(θ)dθ, (8)

P (θ) = c(a(θ)− θa0) +
∫ θ
τ=θ

a0c
′(a(τ)− τa0)dτ, (9)

along with the monotonicity constraint that da(θ)

dθ
≥ 0. For each θ, a(θ) maximizes J(θ, a)≡ ka− c(a−θa0)−

1−F (θ)

f(θ)
a0c
′(a− θa0). When 1−F (θ)

f(θ)
is non-increasing in θ (monotone hazard rate), a(θ) can be determined by

its first order condition because δJ(θ, a)/δa is non-decreasing in θ. Explicitly,

δJ(θ)

δa
= k− c′(a− θa0)− 1−F (θ)

f(θ)
a0c
′′(a− θa0) = k−h(a− θa0)−ha0

1−F (θ)

f(θ)
. (10)

The boundary solution a = θa0 appears when θ ≤ θ̂1, where θ̂1 solves δJ(θ)

δa
|a=θ̂a0 = k − ha0

1−F (θ)

f(θ)
= 0

if k − ha0
1

f(θ)
≤ 0, else θ̂1 = θ. The other boundary solution a = a0 appears when θ ≥ θ̂2 where θ̂2 solves

δJ(θ)

δa
|a=a0 = k− h(1− θ)a0− ha0

1−F (θ)

f(θ)
= 0 if k− h(1− θ)a0− ha0

1
f(θ)
≤ 0, else θ̂2 = θ. The interior solution

has the first order condition δJ(θ)

δa
= 0, leading to a(θ) = θa0 + k

h
− 1−F (θ)

f(θ)
a0.

In the region of θ without monotone hazard rate, we cannot set δJ(θ)

δa
= 0 because otherwise a(θ) is decreas-

ing in θ thus violating the monotonicity constraint of a(θ). Instead, we apply standard ironing techniques,

identifying an interval [θ1, θ2] on which the monotonicity constraint is binding, i.e. a pooling solution a(θ) = â

for all θ ∈ [θ1, θ2]. The interval (θ1, θ2) is determined via,∫ θ2

θ1

δJ(θ, â)

δâ
f(θ)dθ= 0.

Explicitly, the optimal solution is pooling on the interval (θ1, θ2), i.e. a(θ1) = a(θ2) = â,∀θ ∈ (θ1, θ2). If θ1 < θ̂1

or θ2 > θ̂2, we can update the boundary solutions of θ̂1 and θ̂2 so that they are the largest θ such that

a(θ) = θa0 and the smallest θ such that a(θ) = a0, respectively.

Finally, calculating the payment rules for each interval of a(θ) using Equation (9) gives the stated payment

levels. �

Proof of Lemma 2. First, the principal’s optimization problem when using a menu of affine contracts

{p(θ), T (θ)}θ is given by:

ObjAFF = max
{p(θ),T (θ)}

E[ka(θ)− (p(θ)a(θ) +T (θ))]

s.t. p(θ)a(θ) +T (θ)− c(a(θ)− θa0)≥ 0, (IR)

θ= arg max
θ′∈[0,1]

p(θ′)a(θ′|θ) +T (θ′)− c(a(θ′|θ)− θa0), (ICI)

a(θ′|θ) = arg max
a∈[θa,a0]

p(θ′)a+T (θ′)− c(a− θa0),∀θ,∀θ′. (ICII)

The first IC constraint states that the agent of type θ most prefers the affine contract {p(θ), T (θ)}. The

second IC constraint states that the agent θ, having picked any contract {p(θ′), T (θ′)}, maximizes their

utility by choosing the best a(θ′|θ). Together, both IC constraints ensure a(θ′|θ) = a(θ).
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First, we find a(θ′|θ) by solving ICII. When an interior solution exists, we get:

d

da
(p(θ′)a+T (θ′)− c(a− θa0)) = p(θ′)− c′(a− θa0) = p(θ′)−h(a− θa0) = 0,

⇒ a(θ′|θ) =
1

h
p(θ′) + θa0.

Again, we integrate the constraint ICI into the objective to determine the exact pairs of {p(θ), T (θ)} via

information rent, i.e. first using Equation (1) to rewrite the objective and then establishing the payment by:

p(θ)a(θ) +T (θ) = c(a(θ)− θa0) +

∫ θ

τ=θ

a0c
′(a(τ)− τa0)dτ. (11)

Plugging in the solution of a(θ) into Equation (1),

ObjAFF =

∫ θ1

θ

kθa0dF (θ) +

∫ θ2

θ1

k(
1

h
p(θ) + θa0)− h

2
(
1

h
p(θ′))2− 1−F (θ)

f(θ)
a0p(θ)dF (θ)

+

∫ θ̄

θ2

ka0−
h

2
(1− θ)2a2

0−
1−F (θ)

f(θ)
h(1− θ)a2

0dF (θ),

where θ1, θ2 are the boundaries where the agent type is not at an interior solution.

For each θ, the optimal linear price p(θ) is set by maximizing the integrand of ObjAFF at θ. When an

interior solution exists,

d

dp
k(

1

h
p(θ) + θa0)− h

2
(
1

h
p(θ′))2− 1−F (θ)

f(θ)
a0p(θ) =

k

h
− p

h
− a0

1−F (θ)

f(θ)
= 0,

⇒ p(θ) = k−ha0

1−F (θ)

f(θ)
.

The boundary solutions are established by:

θ̂1 : p(θ̂1) = 0⇒ k

h
− 1−F (θ̂1)

f(θ̂1)
a0 = 0,

θ̂2 :
1

h
p(θ̂2) + θ̂2a0 = a0⇒

k

h
− (1− θ̂2)a0−

1−F (θ̂2)

f(θ̂2)
a0 = 0.

Note that θ̂1, θ̂2 are exactly the same boundaries that we established in the optimal allocation in Lemma 1.

Further, when θ≤ θ̂1, p(θ) = p(θ̂1) = 0 and when θ≥ θ̂2, p(θ) = p(θ̂2).

Now, we can establish T (θ) for each θ using Equation (11):

• When θ≤ θ̂1, p(θ̂1)θa0 +T (θ) = 0. Recall p(θ̂1) = 0, thus T (θ) = 0. In this region, no one participates.

• When θ ∈ (θ̂1, θ̂2), p(θ)a(θ) +T (θ) = h
2

p(θ)2

h2 +
∫ θ
θ̂1
a0p(τ)dτ . Thus:

T (θ) =
1

2h
p2(θ)− p(θ)a(θ) +

∫ θ

θ̂1

a0p(τ)dτ.

• When θ≥ θ̂2, similarly, we have

T (θ) =
h

2
(1− θ)2a2

0− p(θ̂2)a0 +

∫ θ̂2

θ1

a0p(τ)dτ +

∫ θ

θ̂2

h(1− τ)a2
0dτ

=
h

2
(1− θ)2a2

0− a2
0h(1− θ2) +

∫ θ̂2

θ̂1

a0(k−ha0

1−F
f

(τ))dτ +

∫ θ

θ̂2

h(1− τ)a2
0dτ

=
1

2
ha2

0(1− θ̂2)2− (1− θ̂2)ha2
0 +

∫ θ̂2

θ̂1

a0(k−ha0

1−F
f

(τ))dτ.

Further, this menu of affine contracts implement the optimal allocation because the conservation quantity

a(θ) and the payment P (θ) = p(θ)a(θ) +T (θ) are the same as those in Lemma 1. �
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B. Structure of Simple Contracts

We show that both simple contracts have quasiconcave or concave objectives which considerably simplifies

our analysis of the best prices and best possible payoffs for each contract.

For the next lemma on the objective of conditional contracts, we assume F (θ) has monotone hazard rate.

Lemma 8. When 1−F (θ)

f(θ)
is non-increasing in θ, the conditional contract objective ObjC is quasiconcave

in p. Hence, there exists a unique price p∈ [h(1− θ̄)2a0, h(1− θ)2a0] that maximizes the conditional contract

objective.

Proof of Lemma 8. Recall that θ̂(p) = 1 −
√

2p
ha0

is the threshold type at which the agent is indiffer-

ent between choosing full conservation and baseline conservation. We can rewrite the conditional objective

(Equation (2)) using Equation (1) by inserting the agent’s best response to a conditional contract, a(θ) = θa0

for θ≤ θ̂ and a(θ) = a0 for θ > θ̂, leading to:

ObjC(θ̂) =

∫ θ̂

θ

kθa0f(θ)dθ+

∫ θ̄

θ̂

(
ka0−

h

2
(1− θ)2a2

0−h(1− θ)1−F (θ)

f(θ)
a2

0

)
f(θ)dθ

= ka0Eθ+

∫ θ̄

θ̂

a0X(θ)(1− θ)f(θ)dθ,

where X(θ) ≡ k − h
2
(1− θ)a0 − h 1−F (θ)

f(θ)
a0. Observe that X(θ) is non-decreasing in θ when 1−F (θ)

f(θ)
is non-

increasing in θ.

To show that ObjC(p) is quasiconcave on p ∈ [h
2
(1− θ̄)2a0,

h
2
(1− θ)2a0], it is equivalent to show that for

ObjC(θ̂) is quasiconcave on θ̂ ∈ [θ, θ̄], i.e. for any θ < τ1 < τ2 ≤ θ̄:

ObjC(θ̂= λτ1 + (1−λ)τ2)>min{ObjC(τ1),ObjC(τ2)}.

The first order condition of the conditional contract objective is the following:

d

dθ̂
ObjC(θ̂) =−a0X(θ̂)(1− θ̂)f(θ̂) = 0.

The first order condition is satisfied at at most one point in (θ, θ) when X(θ̂) = 0, because X(θ̂) is non-

decreasing. Denote τ such that X(τ) = 0. We know that when θ̂ < τ , the conditional contract objec-

tive increases because d

dθ̂
ObjC(θ̂) > 0; when θ̂ > τ , the conditional contract objective decreases because

d

dθ̂
ObjC(θ̂)< 0. Thus the conditonal contract objective is quasiconcave. Further, there exists a unique price

that maximize the conditional objective. The best conditional price has an interior solution pC
∗ ∈ (h

2
(1−

θ̄)2a0,
h
2
(1− θ)2a0) when X(θ̂(pC

∗
)) = 0, otherwise it is a boundary solution. �

Lemma 9. The linear contract objective ObjL is concave in p∈ [0, h(1− θ)a0].

Proof of Lemma 9. We show that the objective’s second order derivative is negative. Recall that, depend-

ing on the price p, there may be agents whose conservation amount meets the boundary condition a= a0 in

the linear contract objective (Equation (3)); thus we need to consider two cases:

(i) If p∈ [0, h(1− θ̄)a0], all agents have a(θ) = θa0 + p

h
. dObjL

dp
= 1

h
(k− 2pL

∗
)−Eθa0, and d2ObjL

dp2
=− 2

h
< 0;
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(ii) Otherwise, all agents with θ ≤ θ̃(p) have conservation action a(θ) = θa0 + p

h
, and all other agents

with θ > θ̃(p) have a(θ) = a0. Differentiating the objective, we have dObjL

dp
= 1

h
(k − p)F (θ̃) −

a0

(∫ θ̃
θ
θdF (θ) + 1− θ̃F (θ̃)

)
; the second order derivative is

d2ObjL

dp2
=

1

h

(
(k− p)f(θ̃)

dθ̃

dp
−F (θ̃)

)
− a0

(
θ̃f(θ̃)− θ̃f(θ̃)−F (θ̃)

) dθ̃
dp

=− 1

h

(
1

ha0

(k− p)f(θ̃) + 2F (θ̃)

)
≤ 0.

Hence the objective is concave in p. �

Lemmas 8 and 9 imply that to find the optimal price for each type of contract it suffices to find the price

that satisfies the first order condition (and to pick a boundary price if no such price exists). Moreover, the

optimal prices for each type of contract are unique.

Corollary 1. The best conditional and linear contract are given by prices satisfying the following first

order conditions if an interior solution exists, and a boundary solution otherwise.

The best conditional price pC
∗ ∈ [h

2
(1− θ̄)2a0,

h
2
(1−θ)2a0] has an interior solution that solves the following

equation.

dObjC

dp

∣∣∣∣
pC
∗

= a0f(θ̂)

(
k

ha0

− 1

2

√
2pC∗

ha0

− 1−F (θ̂)

f(θ̂)

)
= 0, (12)

where θ̂= θ̂(pC
∗
) = 1−

√
2pC∗

ha0
.

The best linear price pL
∗ ∈ [0, h(1− θ)a0] has an interior solution that solves the following equation.

dObjL

dp

∣∣∣∣
pL
∗

=

{
1
h
(k− pL∗)F (θ̃)− a0

(∫ θ̃
θ
θdF (θ) + 1− θ̃F (θ̃)

)
= 0, if pL

∗ ≥ h(1− θ̄)a0,
1
h
(k− 2pL

∗
)−Eθa0 = 0, if pL

∗
<h(1− θ̄)a0,

(13)

where θ̃(p) = 1− p

ha0
.

C. Proofs for Section 3 (Conditional Contracts)

Proof of Lemma 3. Recall in Lemma 1, the optimal solution will pool agents with highest types θ ∈ [θ̂2, θ̄]

to fully conserve. When k
ha0

is large enough so that θ̂2 = θ, the optimal contract will pool the entire population

to fully conserve. Explicitly, when k
ha0
≥ (1− θ) + 1

f(θ)
, the optimal contract solution is a(θ) = a0, p(θ) =

h(1− θ)2a2
0 for all θ. Similarly in the conditional contract, if k

ha0
is large enough so that θ̂ = θ, the best

conditional price will be high enough such that the entire population will fully conserve. Using Corollary 1,

when k
ha0
≥ 1

2
(1− θ) + 1

f(θ)
, the best conditional contract has pC

∗
= h

2
(1− θ)2a0, thus θ̂(pC

∗
) = θ. Thus, the

solutions to the optimal contract and the best conditional contract overlap when k
ha0
≥ (1− θ) + 1

f(θ)
. �

Proof of Lemma 4. In a conditional contract, if the price is less than h
2
(1− θ̄)2a0, then no agent will

participate in the conditional contract thus resulting in the baseline scenario. To identify the sufficient

condition when the optimal conditional price is at most at pC
∗

= h
2
(1− θ̄)2a0, we use the first order condition

of the conditional contracts in Corollary 1: when k
ha0
≤ 1

2
(1− θ̄), dObjC

dp

∣∣∣∣
p= h

2
(1−θ̄)2a0

= f(θ̄)( k
ha0
− 1−θ̄

2
)≤ 0. �
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Proof of Example 2. Given an exponential distribution with support bounded between [0,1], F (θ) =
1−exp(−λθ)
1−exp(−λ)

, we show that limλ→∞
ObjC

∗

ObjOPT = 0 for k
ha0

= 1
2
.

First, we write out the optimal contract payoff by plugging the solution from Lemma 1 into Equation (8)

and then simplifying it:

ObjOPT =

∫ θ̂1

0

kθa0f(θ)dθ+

∫ 1

θ̂2

(
ka0−

h

2
(1− θ)2a2

0−h(1− θ)1−F (θ)

f(θ)
a2

0

)
f(θ)dθ

+

∫ θ̂2

θ̂1

(
k(θa0 +

k

h
− 1−F (θ)

f(θ)
a0)− h

2
(
k

h
− 1−F (θ)

f(θ)
a0)2−h(

k

h
− 1−F (θ)

f(θ)
a0)

1−F (θ)

f(θ)
a0

)
f(θ)dθ

=ka0E[θ] +

∫ θ̂2

θ̂1

h

2

(
k

h
− 1−F (θ)

f(θ)
a0

)2

f(θ)dθ+

∫ 1

θ̂2

(1− θ)a0

(
k− h

2
(1− θ)a0−h

1−F (θ)

f(θ)
a0

)
f(θ)dθ.

The objective for the conditional contract (Equation (2)) can be also be written as a function of

the threshold θ̂(p) = 1−
√

2p
ha0

:

ObjC(θ̂) = ka0

∫ θ̂

0

θf(θ)dθ+

(
k− h

2
(1− θ̂)2a0

)∫ 1

θ̂

f(θ)dθ= ka0E[θ]+a0

∫ 1

θ̂

(
k(1− θ)− h

2
(1− θ̂)2a0

)
f(θ)dθ.

When λ→∞, E[θ] tends to 0 and 1−F (θ)

f(θ)
= 1

λ

(
1− exp(−λ)

exp(−λθ)

)
approaches 0 pointwise. Recall the

optimality condition of the conditional contract (Corollary 1) in terms of θ̂ is 1−θ̂
2

+ 1−F (θ̂)

f(θ̂)
= k

ha0
= 1

2
.

This implies that when λ→∞, θ̂ approaches 0 from the right. In the best conditional contract,

a0

∫ 1

0

(
k(1− θ)− h

2
(1− θ̂)2a0

)
f(θ)dθ goes to 0.

Further, recall that in the optimal solution (Lemma 1), θ̂2 satisfies 1− θ̂2 + 1−F (θ̂2)

f(θ̂2)
= k

ha0
= 1

2
.

This implies that when λ→∞, θ̂2 approaches 1
2

from the left; because 1−F (0)

f(0)
< k

ha0
, thus θ̂1 = 0

(Lemma 1). In the optimal contract,
∫ 1

2

0
h
2

(
k
h
− 1−F (θ)

f(θ)
a0

)2

f(θ)dθ goes to k2

2h
and the rest of the

terms go to 0. Together we have, ObjC
∗

ObjOPT
goes to 0. �

D. Proofs for Section 4 (Linear Contracts)

Proof of Lemma 5. We show that the optimal linear contract only beats the baseline when k is

large enough. We need the sufficient condition when θ̃= 1 satisfies the first order condition of the

linear contract and p= 0 becomes the best linear price. According to Corollary 1, when k
ha0
≤Eθ,

dObjL

dp
|p=0 = k

h
−Eθa0 ≤ 0. �

Proof of Theorem 1 We show that ObjL(p= k
2
)≥ 1

2
ObjOPT for all k > 0 and any F (θ).

Let Obj
OPT

denote an upper bound for the optimal payoff, given by considering the payoff from

the optimal contract quantities specified in Lemma 1 with a reduced payment that covers only the

agent’s cost of conservation (i.e. the payment does not cover the agent’s information rent). Obj
OPT

will allow us to simplify our analysis of the payoff for the second-best contract. In order to show the

result is true regardless of F (θ), we show that pointwise at every θ, the integrand without the f(θ)

term in 2ObjL(p= k
2
) from Equation (7), which we denote by 2L(θ), is more than the integrand

without the f(θ) term in Obj
OPT

from Equation (5) , which we denote by OPT (θ). We can scale

down both integrands by f(θ) because it appears in every term.
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By explicitly substituting the optimal contract solution aOPT (θ) from Lemma 1 into Equation (5),

we have,

• when θ ∈ [θ, θ̂1], aOPT (θ) = θa0 and OPT (θ) = kθa0;

• when θ ∈ [θ̂1, θ̂2], there are two cases. When it is a separating solution without ironing (θ /∈
[θ1, θ2]), plug in aOPT (θ) = θa0 + k

h
− 1−F (θ)

f(θ)
a0 to get,

OPT (θ) = k(θa0 +
k

h
− 1−F (θ)

f(θ)
a0)− h

2
(
k

h
− 1−F (θ)

f(θ)
a0)2

= kθa0 +
k2

2h
− h

2
(
1−F (θ)

f(θ)
a0)2.

When F (θ) satisfies monotone hazard rate, this is the only case we need to consider. Otherwise,

on the pooling interval of the ironing solution (θ ∈ [θ1, θ2]), aOPT (θ) = â= aOPT (θ1) = aOPT (θ2)

and OPT (θ) =OPT (θ1) =OPT (θ2);

• when θ ∈ [θ̂2, θ̄],a
OPT (θ) = a0 and OPT (θ) = ka0− h

2
(1− θ)2a2

0.

With the price p= k
2
, the linear contract payoff is given by Equation (3), then doubling:

• when θ ∈ [θ, θ̃], 2L(θ) = 2(k− k
2
)(θa0 + k

2h
) = kθa0 + k2

2h
;

• when θ ∈ [θ̃, θ̄], 2L(θ) = 2(k− k
2
)a0 = ka0.

All of the following six cases need to be considered because each θ can be at one of the three

intervals in the optimal contract (i.e. [θ, θ̂1], [θ̂1, θ̂2], and [θ̂2, θ̄]) as well as one of the two intervals

in the best linear contract(i.e. [θ, θ̃], and [θ̃, θ̄]):

(i) If θ ∈ [θ, θ̂1] and θ ∈ [θ, θ̃], then 2L(θ)−OPT (θ) =
(
kθ0 + k2

2h

)
− kθa0 = k2

2h
> 0.

(ii) If θ ∈ [θ̂1, θ̂2] and θ ∈ [θ, θ̃], there are two cases: when θ is outside the pooling interval [θ1, θ2],

2L(θ)−OPT (θ) = h
2

(
1−F (θ)

f(θ)
a0

)2

> 0; otherwise, 2L(θ)−OPT (θ) = 2L(θ)−OPT (θ1) = kθa0 +

k2

2h
− kθ1a0− k2

2h
+ h

2

(
1−F (θ1)

f(θ1)
a0

)2

= k(θ− θ1)a0 + h
2

(
1−F (θ1)

f(θ1)
a0

)2

> 0 because θ≥ θ1.

(iii) If θ ∈ [θ̂2, θ̄] and θ ∈ [θ, θ̃], then 2L(θ) − OPT (θ) = kθa0 + k2

2h
− ka0 + h

2
(1 − θ)2a2

0 =

h
2

(
k
h
− (1− θ)a0

)2
> 0.

(iv) If θ ∈ [θ, θ̂1] and θ ∈ [θ̃, θ̄], then 2L(θ)−OPT (θ) = ka0− kθa0 > 0.

(v) If θ ∈ [θ̂1, θ̂2] and θ ∈ [θ̃, θ̄], again, there are two cases to consider. When θ is not in the pooling

interval [θ1, θ2],

2L(θ)−OPT (θ) = ka0− kθa0−
k2

2h
+
h

2

(
1−F (θ)

f(θ)
a0

)2

≥ k(1− θ)a0−
k2

2h
+
h

2

(
k

h
− (1− θ̂2)a0

)2

= k(1− θ)a0− k(1− θ̂2)a0 +
h

2
(1− θ̂2)2a2

0 > 0.

The first inequality uses the fact that F (θ) has the monotone hazard rate on this interval as

well as the definition of θ̂2 in Lemma 1; the last inequality is due to θ ≤ θ̂2. On the pooling
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interval [θ1, θ2], 2L(θ)−OPT (θ) = 2L(θ)−OPT (θ2) ≥ 0 because a(θ) is continuous and we

have shown that 2L(θ2)−OPT (θ2)≥ 0.

(vi) If θ ∈ [θ̂2, θ̄] and θ ∈ [θ̃, θ̄], then 2L−OPT (θ) = h
2
(1− θ)2a2

0 > 0.

Together, this shows that 2L(θ) ≥ OPT (θ) for all θ, and so twice the payoff from the linear

contract with price k
2

is at least the optimal payoff, equivalently, 2ObjL(pL = k
2
) ≥ Obj

OPT ≥
ObjOPT . �

E. Extensions

E.1. Analysis for Section 6.1

Given a conditional linear contract (w,p), where the principal pays p per unit area as long as the

conservation amount a is is larger than w, the agent’s best response is the following:

• When θ is very small, the agent does not conserve beyond the baseline: if pwa0−c((w−θ)a0)<

0, then a(θ) = θa0.

• As θ increases, the agent will conserve at the minimal requirement wa0: if pwa0−c((w−θ)a0)>

0, then a(θ) =wa0;

• As θ increases further, the agent will conserve an additional amount beyond the minimal

requirement by choosing a to maximize pa− c(a−θa0)2: if θa0 + p
h
≥wa0, then a(θ) = θa0 + p

h
;

• The top types of θ conserves fully: if θa0 + p
h
≥ a0, then a(θ) = a0.

The thresholds that divide the above four regions are:

• w−
√

2wp
ha0

is the type at which the agent indifferent between baseline conservation and con-

serving the minimal requirement wa0;

• w− p
ha0

is the largest θ type conserving the minimal requirement wa0;

• 1− p
ha0

is the smallest θ type conserving the full amount, which is the same with θ̃ defined for

a linear contract with price p.

Thus, the objective of the conditional linear contract (w,p) can be written as:

ObjCL(p) = k

∫ w−
√

2wp
ha0

θ

θa0f(θ)dθ+(k−p)

(∫ w− p
ha0

w−
√

2wp
ha0

wa0f(θ)dθ+

∫ 1− p
ha0

w− p
ha0

(θa0 +
p

h
)f(θ)dθ+

∫ θ̄

1− p
ha0

a0f(θ)dθ

)
.

In the example of F (θ) = δ(0): when k
ha0
≤ 1, the principal can set w = 2p

ha0
and then maximize

(k−p)wa0 = (k−p) 2p
h

, arriving to p= k
2
, w= k

ha0
and recovering the optimal payoff (k−p)wa0 = k2

2h
;

otherwise, the principal can set w= 1 and pay pa0 = h
2
a2

0.

Proof of Theorem 2. When k
ha0
≤ 1, simplify the objective of the conditional linear contract

with w= k
h
, p= k

2
to:

ObjCL(w=
k

ha0

, p=
k

2
) =

k

2

(∫ k
2ha0

θ

k

h
f(θ)dθ+

∫ 1− k
2ha0

k
2ha0

(θa0 +
k

2h
)f(θ)dθ+

∫ θ̄

1− k
2ha0

a0f(θ)dθ

)

=

∫ k
2ha0

θ

k2

2h
f(θ)dθ+

∫ 1− k
2ha0

k
2ha0

(
k

2
θa0 +

k2

4h
)f(θ)dθ+

∫ θ̄

1− k
2ha0

k

2
a0f(θ)dθ
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Next we show that ObjCL(w= k
ha0

, p= k
2
)>ObjL(p= k

2
) at every integrand of θ where,

ObjL(p=
k

2
) =

∫ 1− k
2ha0

θ

(
k

2
θa0 +

k2

4h

)
f(θ)dθ+

∫ θ̄

1− k
2ha0

k

2
a0f(θ)dθ.

Observe that when θ > k
2ha0

, the integrands of both ObjCL and ObjL are identical; this is because

both types of contracts use the same linear price inducing the same conservation actions from the

agents with θ > k
2ha0

. Thus, we only need to compare their integrands when θ ∈ [0, k
2ha0

]. We have

k2

2h
− kθa0

2
− k2

4h
=
k2

4h
− kθa0

2
≥ k2

4h
− k2

4h
= 0.

The inequality comes from θ ≤ k
2ha0

. When the agent’s baseline conservation level is small, the

conditional linear contract induces the agent to conserve more than the linear contract because of

the required stringency level. At the same time this conditional linear contract is not as stringent

as a conditional contract so that any agent still conserves more than their baseline level.

When k
ha0

> 1, it is easy to observe that the conditional linear contract with w = 1 and p= ha0
2

achieves a higher payoff than the linear contract with p= k
2
. This is because the former has payoff

ka0 − h
2
a2

0 and the latter has payoff k
2
E[θ]a0. We have ka0 − h

2
a2

0 >
k
2
a0 ≥ k

2
E[θ]a0 where the first

inequality comes from k
ha0

> 1 and the second one comes from E[θ]≤ 1. �

E.2. Proof for Section 6.2

Proof of Lemma 6. To get a sufficient condition such that the optimal solution will have θ̂2 = θ,

we can use the upper bound of the cost function and treat h in the base model as u; i.e., when

k
ua0
≥ (1− θ) + 1

f(θ)
, then the optimal contract solution is a(θ) = a0, p(θ) = u

2
(1− θ)2a2

0 for all θ.

Applying the same upper bound will get us a sufficient condition such that the best conditional

contract is to have all agents conserve fully; i.e. when k
ua0
≥ 1

2
(1− θ) + 1

f(θ)
, the best conditional

contract has θ̂= θ. Thus, the solutions to the optimal contract and the conditional contract overlap

when k
ua0
≥ (1− θ) + 1

f(θ)
. �

Proof of Lemma 7. This result is an extension of Lemma 4 and Lemma 5. It is sufficient to

lower bound the cost function by treating l as h in the base model. �

Proof of Theorem 3. Theorem 2 follows from the following two lemmas, which show that for

low values of k the linear contract with per-unit price k
2

approximates the optimal payoff, and for

high values of k the conditional contract with per-unit price ua0
2

approximates the optimal payoff.

Lemma 10. When k
a0
≤ 2u2

u+l
, ObjL(pL = k

2
)≥ l

2u
ObjOPT .

Lemma 11. When k
a0
≥ 2u2

u+l
, ObjC(pC = ua0

2
(1− θ)2)≥ l

2u
ObjOPT .
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Proof of Lemma 10. This proof follows the same structure as the proof of Theorem 1. We first

provide a lower bound on the objective of the linear contract with price pL = k
2

by treating u

equivalently to h in Equation (3):

ObjL(pL =
k

2
)≥
∫ θ̃

θ

(k− k
2

)(θa0 +
k

2u
)f(θ)dθ+

∫ θ̄

θ̃

(k− k
2

)a0f(θ)dθ.

We then upper bound the payoff of the optimal contract by removing the information rent terms

and treating l as the h in Lemma 1. We write the proof assuming that F (θ) has monotone hazard

rate, but as in the proof of Theorem 1, this assumption is not necessary. We have,

Obj
OPT ≤

∫ θ̂1

θ

kθa0dF +

∫ θ̂2

θ̂1

kθa0 +
k2

2l
− l

2

(
1−F (θ)

f(θ)
a0

)2

f(θ)dθ+

∫ θ̄

θ̂2

ka0−
l

2
(1− θ)2a2

0f(θ)dθ.

(14)

We again compare the payoff from the linear contract and the upper bound on the optimal payoff by

directly comparing the integrands pointwise for each θ without f(θ), denoted as L(θ) and OPT (θ)

respectively. We show that 2u
l
L(θ)−OPT (θ)≥ 0 in each of the following six cases:

(i) If θ ∈ [θ, θ̂1] and θ ∈ [θ, θ̃], then 2u
l
L(θ)−OPT (θ)≥ k2

2l
+ (u

l
− 1)θka0 > 0.

(ii) If θ ∈ [θ̂1, θ̂2] and θ ∈ [θ, θ̃], then 2u
l
L(θ)−OPT (θ)≥ (u

l
− 1)θka0 + l

2
( 1−F (θ)

f(θ)
a0)2 > 0.

(iii) If θ ∈ [θ̂2, θ̄] and θ ∈ [θ, θ̃], then 2u
l
L(θ) − OPT (θ) ≥ k2

2l
− (1 − u

l
θ)ka0 + l

2
(1 − θ)2a2

0 =

1
2l

[(k− l(1− θ)a0)2 + 2ka0θ(u− l)]> 0.

(iv) If θ ∈ [θ, θ̂1] and θ ∈ [θ̃, θ̄], then 2u
l
L(θ)−OPT (θ) = (u

l
− θ)ka0 > 0.

(v) If θ ∈ [θ̂1, θ̂2] and θ ∈ [θ̃, θ̄], then

2u

l
L(θ)−OPT (θ)≥ u

l
ka0− kθa0−

k2

2l
+
l

2

(
1−F (θ)

f(θ)
a0

)2

≥ (
u

l
− θ)ka0−

k2

2l
+
l

2

(
k

c′′((1− θ̂2)a0)
− c′((1− θ̂2)a0)

c′′((1− θ̂2)a0)

)2

≥ k(
u

l
− θ)a0−

k2

2l
+
lk2

2u2
− l

2

k(1− θ̂2)a0

u
+
l

2
(1− θ̂2)2a2

0

≥ [
u

l
− 1 + (1− l

2u
)(1− θ̂2)]ka0 +

k2

2l
(
l2

u2
− 1) +

l

1
(1− θ̂2)2a2

0

≥ (
u

l
− 1)ka0 +

k2

2l
(
l2

u2
− 1)≥ 0.

The second inequality uses monotone hazard rate assumption as well as the definition of θ̂2

in Lemma 1; the third inequality uses the bounds of c′′(x); the fourth inequality uses θ≤ θ̂2;

the fifth inequality uses θ̂2 ≤ θ̄; the last inequality comes from the assumption that k
a0
≤ 2u2

u+l
.

(vi) If θ ∈ [θ̂2, θ̄] and θ ∈ [θ̃, θ̄], then 2u
l
L(θ)−OPT (θ) = (u

l
− 1)ka0 + l

2
(1− θ)2a2

0 > 0. �

Proof of Lemma 11. When pC = ua0
2

(1− θ)2, the best response to this conditional contract is

a(θ) = a0 for all θ. ObjC(pC = ua0
2

(1−θ)2) = ka0− ua2
0

2
. We can lower bound the conditional contract

using the assumption that k
a0
≥ 2u2

u+l
as follows:

2u

l
ObjC(pC =

ua0

2
) =

ua0

l
(2k−ua0)≥ ua0

l

(
2k− u+ l

2u
k

)
= ka0

(
3u

2l
− 1

2

)
.
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Again we upper bound the optimal contract the same way as we did in Lemma 11 in Equa-

tion (14). Denote the integrands of the conditional and the optimal contract without the f(θ) term

to be C(θ) and OPT (θ) for every θ. We show 2u
l
C(θ)−OPT (θ)≥ 0 pointwise by considering the

following three cases.

(i) If θ ∈ [θ, θ̂1], 2u
l
C(θ)−OPT (θ)≥ ka0( 3u

2l
− 1

2
− θ)> 0.

(ii) If θ ∈ [θ̂1, θ̂2],

2u

l
C(θ)−OPT (θ)≥ ka0(

3u

2l
− 1

2
− θ)− k2

2l
+
l

2

(
1−F (θ)

f(θ)
a0

)2

≥ ka0(
3u

2l
− 1

2
− θ) +

k2

2l
(
l2

u2
− 1) +

l

2
(1− θ̂2)2a2

0−
l

2u
(1− θ̂2)ka0

≥ ka0

(
3

2
(
u

l
− 1) + (1− l

2u
)(1− θ̂2)

)
+
k2

2l
(
l2

u2
− 1) +

l

2
(1− θ̂2)2a2

0

≥ 3

2
ka0(

u

l
− 1) +

k2

2l
(
l2

u2
− 1)

≥ ka0

(
3

2
(
u

l
− 1) +

2u2

2l(u+ l)
(
l2

u2
− 1)

)
=

1

2
ka0(

u

l
− 1)> 0.

The second inequality comes from the definition of θ̂2; the third inequality comes from θ < θ̂2;

the fourth inequality comes from θ̂2 ≤ θ̄; the last inequality comes from the assumption that

k
a0
≥ 2u2

u+l
.

(iii) If θ ∈ [θ̂2, θ̄],
2u
l
C(θ)−OPT (θ)≥ ka0( 3u

2l
− 1

2
− 1) + l

2
(1− θ)2a2

0 > 0. �
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U.S. Land Use Data

To discuss the theoretical results, we use baseline conservation distributions and conservation

cost functions calibrated from land use data. The distributions rely on calibrations of U.S. land

use data from Mason and Plantinga (2013) at the state level. In EC.1, we explain their empirical

analysis and how we use their calibrations. In EC.2, we further illustrate the trade-offs between

linear and conditional contracts discussed in Section 5 of the main paper. In particular, we provide

an example of a state region that demonstrates that when k
ha0

is small, neither simple contract can

improve significantly above the baseline (Lemma 4 and Lemm 5); we also provide more examples

of regions where linear contracts can improve significantly upon the optimal conditional contract.

For the rest of this appendix, unless otherwise specified, we normalize a0 to 1 (the unit area).

Let x= a− θ denote the additional conservation amount above the baseline.

EC.1. Baseline Distribution and Cost Function

Mason and Plantinga (2013) derived the baseline conservation distributions and conservation cost

functions using an econometric model of land use. They consider 35 state regions,11 and for each

state region, define 4 land quality classes; differences in land quality imply differences in the oppor-

tunity costs of conservation. The land quality class of each parcel is observable to the principal.

In fact, the Conservation Reserve Program (CRP) uses the land quality class as a determinant of

eligibility to participate in the program (Lubowski et al. 2006). For example, agriculture tends to

be more profitable more forestry in high land quality region, implying that without any incentives,

a large share of land may be deforested. Thus, we say a high land quality class has low baseline

conservation level and high deforestation risk.

The baseline conservation distributions are assumed to be logistic distributions of the following

form, which has a monotone hazard rate (i.e. f(θ)

1−F (θ)
is non-decreasing):

F (θ) =K0 +
K1

1 + exp(−φ0−φ1θ)

where K1 and K0 are chosen so that F (θ) = 0 and F (θ̄) = 1. Mason and Plantinga (2013) provides

the set of {θ, θ̄} for each state region and land quality pair; {φ0, φ1} parameters are available upon

request. In our numerical exercise, we directly use these baseline conservation distributions.

Mason and Plantinga assume that the conservation cost function is the following convex function:

cMP (x) =− δ0

2δ1

x+
1

12δ2
1

(δ2
0 + 4δ1x)3/2− 1

12δ2
1

δ3
0.

11 Mason and Plantinga (2013) merge some smaller states into state regions for computational ease.
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They provide estimations for the set of {δ0, δ1} parameters for each state region and land quality

combination.

However, there are some caveats to this cost function. In their calibration, δ1 can take on both

negative and positive signs depending on the state region and land quality pair. When δ1 < 0, the

cost function is only well defined for a small interval of the additional conservation amount x,

thus ensuring that the inequality x= a− θ≤ 1− θ to always be strict and the boundary condition

to never be met. This choice of cost function conveniently ensures the existence of only interior

solutions in the optimal contract. When δ1 > 0, the optimal contract solution may not be well

defined for large k.

Instead, we choose to use the quadratic cost function, c(x) = h
2
x2, in the main paper, and calibrate

the parameter h using cMP (x). Quadratic cost functions overcome the short comings of cMP (x)

because there is no ill-defined conservation outcome and the boundary condition of x∈ [θ,1] in the

optimal contract may be met.

In the remainder of this section, we show how h is calibrated and then compare the contract

outcomes using cMP (x) and h
2
x2. Most importantly, the interpretation and insights stay the same

regardless which cost function we use.

For each state region and land quality class pair, h is determined by equating the boundary

points of two cost functions. At baseline conservation, x= 0, both cost functions are at 0. On the

other end, we set h
2
x2 = cMP (x) where x is the largest possible conservation amount given in cMP ,

which depends on the sign of δ1. Explicitly, h is given by:

h=


cMP (− δ20

4δ1
)

1
2 (−

δ20
4δ1

)2
= 4

3δ0
if δ1 ≤ 0,

cMP (1−θ)
1
2 (1−θ)2 if δ1 > 0.

In Figure EC.1, using Montana as one example, we plot both cost functions below and show

that the quadratic cost function approximates cMP well, for all four land quality classes.

For the sake of completeness, we plot the ratios between simple and optimal contracts using their

cost function for Montana in Figure EC.2, to compare with Figure 1 shown in the main paper. Our

general insight still holds, although the graphs look different from using quadratic cost functions

in Figure 1.

EC.2. More Examples to Compare the Performance of Conditional
and Linear Contracts

In Section 5 of the main paper, we discussed the performance of simple contracts in each three of

the regimes of the relative value of conservation, k
ha0

. In this section, we first provide an example



e-companion to Dai Li, Ashlagi, and Lo: Simple and Approximately Optimal Contracts for PES ec3

0.00 0.05 0.10 0.15 0.20 0.25

additional conservation: x

0

5

10

15

20

25

30
c
o
s
t

c
MP (x)

hx
2

0.0 0.2 0.4 0.6 0.8 1.0

additional conservation: x

0

50

100

150

200

250

c
o
s
t

c
MP (x)

hx
2

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

additional conservation: x

0

50

100

150

200

c
o
s
t

c
MP (x)

hx
2

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

additional conservation: x

0

50

100

150

200

c
o
s
t

c
MP (x)

hx
2

Figure EC.1 Conservation Cost Function Comparison for Montana

Upper Left: Land Quality 1 (High); Upper Right: Land Quality 2; Lower Left: Land Quality 3; Lower Right: Land

Quality 4 (Low).
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Figure EC.2 Ratios between the best simple contract and OPT at different values of k

Left: Montana, High Land Quality; Right: Montana, Low Land Quality.
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state region for when k
ha0

is very small. Then, we provide a few more states that exhibit similar

contract outcomes as Montana which is shown in Section 5.

Example for small relative value for conservation. Recall that when k
ha0

is very small,

neither simple contracts can improve upon baseline in the majority of U.S. regions. The region

consisting of Maine, New Hampshire and Vermont provides an example where, for a large range

of possible values for conservation k, this is the case. In Figure EC.3, we plot the approximation

ratio between contracts for high and low land quality classes in this state region.
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Figure EC.3 Ratios between the best simple contract and OPT at different values of k

Left: ME, NH & VT, High Land Quality; Right: ME, NH & VT, Low Land Quality.

More state regions similar to Montana. An example of Montana is used to visualize the

insights for regime of intermediate and large relative value for conservation. Here, we show the

same set of figures, which plots the approximation ratios of the best simple contracts over the

optimal contracts at different k, for many more states, including Wisconsin, Utah, Indiana, and

Wyoming, in Figure EC.4 to Figure EC.7. They all exhibit similar patterns as described in the

main paper.
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Figure EC.4 Ratios between the best simple contract and the optimal contract for Wisconsin

Left: High Land Quality; Right: Low Land Quality.
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Figure EC.5 Ratios between the best simple contract and the optimal contract for Utah

Left: High Land Quality; Right: Low Land Quality.
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Figure EC.6 Ratios between the best simple contract and the optimal contract for Indiana

Left: High Land Quality; Right: Low Land Quality.
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Figure EC.7 Ratios between the best simple contract and the optimal contract of k for Wyoming

Left: High Land Quality; Right: Low Land Quality.


