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Abstract
In the min-cost bipartite perfect matching with delays (MBPMD) problem, requests arrive online
at points of a finite metric space. Each request is either positive or negative and has to be
matched to a request of opposite polarity. As opposed to traditional online matching problems,
the algorithm does not have to serve requests as they arrive, and may choose to match them later
at a cost. Our objective is to minimize the sum of the distances between matched pairs of requests
(the connection cost) and the sum of the waiting times of the requests (the delay cost). This
objective exhibits a natural tradeoff between minimizing the distances and the cost of waiting for
better matches. This tradeoff appears in many real-life scenarios, notably, ride-sharing platforms.
MBPMD is related to its non-bipartite variant, min-cost perfect matching with delays (MPMD),
in which each request can be matched to any other request. MPMD was introduced by Emek et
al. (STOC’16), who showed an O(log2 n + log ∆)-competitive randomized algorithm on n-point
metric spaces with aspect ratio ∆.

Our contribution is threefold. First, we present a new lower bound construction for MPMD
and MBPMD. We get a lower bound of Ω

(√
log n

log log n

)
on the competitive ratio of any randomized

algorithm for MBPMD. For MPMD, we improve the lower bound from Ω(
√

logn) (shown by Azar
et al., SODA’17) to Ω

(
log n

log log n

)
, thus, almost matching their upper bound of O(logn). Second,

we adapt the algorithm of Emek et al. to the bipartite case, and provide a simplified analysis
that improves the competitive ratio to O(logn). The key ingredient of the algorithm is an O(h)-
competitive randomized algorithm for MBPMD on weighted trees of height h. Third, we provide
an O(h)-competitive deterministic algorithm for MBPMD on weighted trees of height h. This
algorithm is obtained by adapting the algorithm for MPMD by Azar et al. to the apparently
more complicated bipartite setting.
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1 Introduction

In many marketplaces agents arrive and are matched over time. Examples include matching
drivers with passengers in ride-sharing platforms, matching players in online games, forming
exchanges between patient-donor incompatible pairs in kidney exchange, and even labor
markets. While agents in such marketplaces are interested in high quality matches, waiting
is costly. This paper studies the problem of matching in a centralized marketplace, in which
agents’ preferences are induced by the “distance” to their potential matches.

Consider, for example, a ride-sharing platform that is faced with the problem of matching
passengers with drivers who arrive to different locations at different times, and assume that
a passenger can match with any available driver. A greedy approach would match each
arriving passenger upon arrival (if possible) to the closest available driver. This approach
can be, however, very inefficient; for instance, imagine a passenger at location x is matched
with a driver at location y and only seconds later a driver becomes available at location x.
In particular, there is a natural tradeoff between making the market thicker in order to form
better matches and the costs it imposes on waiting agents.

We explore this tradeoff in an online setting with no information about the arriving
agents (worst-case input). Allowing agents to wait is a key property that differentiates this
paper from traditional online matching, where agents are to be matched upon arrival. This
idea of delayed service in the context of matching has been introduced recently by Emek et
al. [12]. There is also a growing body of work on dynamic matching problems with delays
under stochastic assumptions [2, 3, 4, 6]. The concept of delayed service is also relevant for
other online problems with and without stochastic assumptions.

In the problem we study, requests arrive in an online manner at the n points of a finite
metric space. Each request is identified by its time of arrival, its location, and its polarity,
which can be either positive or negative (multiple requests may arrive at the same location).
Each request can only be matched with a request of the opposite polarity. In the motivating
example, requests correspond to the drivers and passengers, who arrive at different times
and different locations, and the polarities of requests imply that passengers can only match
with drivers and vice versa. The objective of the social planner is to minimize the sum of the
delay cost, which is the time since the arrival of each request until it is matched, and the
connection cost, which is the sum of distances between each two requests that are matched
to each other.

We call this problem min-cost bipartite perfect matching with delays (MBPMD), as the
requests can be represented by a bipartite graph with edge weights that correspond to the
distances in the metric space. We measure the performance of a matching algorithm using
the notion of competitive ratio: an algorithm is α-competitive if for every input, the cost
incurred by the algorithm is at most α times the cost of the optimal solution.

MBPMD is an extension of the problem studied by Emek et al. [12], min-cost perfect
matching with delays (MPMD), in which all requests are of the same type and each can
be matched with any other request. Emek et al. provided a randomized algorithm with
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competitive ratio O(log2 n+ log ∆) using probabilistic embedding into tree metrics, where ∆
is the ratio of the maximum distance to the minimum distance in the metric space. MPMD
was studied further by Azar et al. [5], who recently found an algorithm that improved the
competitive ratio to O(logn), and established a lower bound of Ω

(√
logn

)
.

The bipartite version of MPMD is more natural in many applications: matching in
ride-sharing platforms, job markets, and any situation where there are two types of entities
that need to be matched to each other. While MPMD and MBPMD seem quite similar,
there is no clear reduction from MBPMD to MPMD, and the study of MBPMD results in a
more technically involved analysis. For example, an issue that arises only in MBPMD is that
there can be many requests with the same polarity waiting at the same location without
being able to match. In contrast, any reasonable algorithm for MPMD will have at most one
request waiting at each location, as it would immediately match requests that are waiting at
the same location.

Our Contribution

Our contribution has three parts. First, we present a new lower bound construction for
MPMD and MBPMD. We show that in a metric space containing n equally spaced points
in the unit interval, the competitive ratio of any randomized algorithm for MBPMD is at
least Ω

(√
log n

log log n

)
. Our construction also provides a lower bound of Ω

(
log n

log log n

)
on the

competitive ratio of any randomized algorithm for MPMD, which improves the current lower
bound of Ω(

√
logn) shown by Azar et al. [5], and matches their upper bound up to the

log logn factor.
Second, we adapt the randomized algorithm of Emek et al. [12] to MBPMD and provide a

considerably simplified analysis that results in a competitive ratio of O(logn). Our analysis
can be applied to the non-bipartite case as well. At a high-level, at any time the algorithm
computes a tentative matching that pairs requests in a greedy manner. Two paired requests
are matched after waiting a time drawn from an exponential random variable with mean
that equals the distance between them.

The randomized algorithm consists of a preprocessing phase, in which the finite metric
space is embedded into a tree metric, and of a randomized greedy algorithm that solves
MBPMD on tree metrics. Informally, we say that an algorithm A is (β, γ)-competitive if
for every benchmark algorithm A∗, the (expected) cost incurred by A is at most β times
the connection cost of A∗ plus γ times the delay cost of A∗. Our analysis shows that the
randomized greedy algorithm is (3, 6h+ 1)-competitive, where h is the height of the tree.

Using probabilistic embedding into HSTs [8, 9, 14] and the height reduction step of Bansal
et al. [7], any finite metric space can be embedded into a tree metric with height O(logn)
and expected distortion O(logn). Using this embedding, we can turn any (O(1), O(h))-
competitive algorithm for tree metrics into a O(logn)-competitive algorithm for any finite
metric space.

The third part of our contribution is a deterministic (10, 10h)-competitive algorithm for
MBPMD on tree metrics. This algorithm is an adaptation of the MPMD algorithm by Azar
et al. [5] in the sense that both algorithms buy the edges required to connect the requests
by paying in installments, and connect two requests as soon as all the edges on the path
between them have been bought. The algorithm for MPMD pays, at a uniform rate, for
an edge if the number of requests waiting at the leaves under it is odd. In our case, we
pay for an edge if the numbers of positive and negative requests under it are unequal, and
the rates at which we pay for edges are non-uniform. The rate of payment for an edge is
proportional to the magnitude of imbalance between positive and negative requests under the
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edge. This introduces a substantial amount of complication in the analysis, and to mitigate
it, it becomes inevitable to use the technique of potential functions. We remark that this
deterministic algorithm gives rise to a barely random algorithm for MBPMD on general
metrics, that is, the number of random bits it uses is independent of the size of the online
input.

Related Work

Most related to this work are the papers by Emek et al. [12] and Azar et al. [5], who
studied min-cost matching with delays (MPMD) (i.e., the non-bipartite case). As mentioned
above, Emek et al. [12] introduced the notion of online problems with delayed service and
provided an O

(
log2 n+ log ∆

)
-competitive algorithm for MPMD. Azar et al. [5] provided

an O(h)-competitive deterministic algorithm for MPMD on tree metrics, and used it to show
an O(logn)-competitive algorithm for general metrics. Additionally, they provided a lower
bound of Ω

(√
logn

)
on the competitive ratio of randomized algorithms for MPMD.

Another strand of research in the economics and operations literatures studied matching
with delays in stochastic and more structural environments. Anderson et al. [3] and Ashlagi et
al. [4] study a model with an underlying stochastic graph and assume agents arrive according
to some process. They seek to minimize agents’ average waiting time and find that greedy
matching is asymptotically optimal. Akbarpour et al. [2] allow for agents departures and
find that when departure times are known, greedy matching leads to a suboptimal match
rate. These papers do not have the notion of distance; agents only care about when they
match and not whom they match to, which is key to the fact that greedy matching performs
well. Baccara et al. [6] look at a two-sided market where on each side agents can be of one of
two types and one type is of higher “quality” than the other. They assume a single agent on
each side arrives every time period and find that the optimal matching policy accumulates
agents up to a certain threshold.

Online bipartite matching, in general, is an extremely popular model. In the original
problem studied by Karp et al. [15], vertices on one side of a bipartite graph are known in
advance and vertices on the other side arrive online. Each vertex on the online side can
match to only some of the offline vertices, and can only match upon arrival. The goal is to
maximize the number of matched vertices. There are many extensions and variants of this
problem: maximum vertex-weighted matching [1, 11], the AdWords problem [17], and others.
The literature on online matching is extensive; see [16] for a survey.

2 Preliminaries

A metric space M is a set S equipped with a distance function d : S × S −→ R≥0 such that
d(x, y) = 0 if and only if x = y, d(x, y) = d(y, x) for all x, y ∈ S, and d(x, y)+d(y, z) ≥ d(x, z)
for all x, y, z ∈ S. The problem of min-cost bipartite perfect matching with delays (MBPMD)
is an online problem defined on an underlying finite metric spaceM = (S, d) as follows. An
online input instance I over S is a sequence of requests 〈(pi, bi, ti)〉mi=1, where pi is a point
in the metric space, bi ∈ {+1,−1}, and ti is the time at which the request arrives. We
assume that the number of positive requests (bi = +1) equals the number of negative requests
(bi = −1). The algorithm is required to output a perfect matching between the positive
requests and the negative requests. In min-cost perfect matching with delays (MPMD),
requests do not have polarity: each request can match to any other request and the algorithm
is required to output a perfect matching (we assume that the total number of requests is even).
For each pair (i, j) of requests output by the algorithm at time t (where t ≥ max(ti, tj)), the
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algorithm pays a connection cost of d(pi, pj) and a delay cost of (t− ti) + (t− tj). The offline
connection cost of creating the pair (i, j) is d(pi, pj), and the offline delay cost is |ti − tj |.

3 The Lower Bounds

The focus of this section is to prove the following lower bound results.

I Theorem 1. There is an n-point metric space on which any randomized algorithm for
MPMD has competitive ratio Ω(logn/ log logn) against an oblivious adversary.

I Theorem 2. There is an n-point metric space on which any randomized algorithm for
MBPMD has competitive ratio Ω(

√
logn/ log logn) against an oblivious adversary.

To prove a lower bound of α on the competitive ratio of randomized online algorithms, we
use Yao’s min-max principle [10, 18, 19], and give a distribution over input instances which
defeats every deterministic algorithm by the factor α. The required distributions for proving
the above two lower bounds are very similar; a random MBPMD instance is generated by
generating a random MPMD instance and giving polarities to the requests in a randomized
fashion. Due to the inherent similarity, we merge the descriptions of the two distributions.

The metric space is given by a parameter L, which is an even integer. Let n = 2L
⌊

L
log2 L

⌋
≤

2L+1, so that L = Θ(logn). The required metric space consists of n equally spaced points
on the real interval [0, 1]. All asymptotic notation in this section is with respect to n→∞,
or equivalently L→∞.

Every instance in the support of the distribution consists of requests given in r =
bL/ log2 Lc phases. In each phase, the requests are given at once at the beginning, and they
are equally spaced in [0, 1]. Furthermore, the set of points at which these requests are given
is a suitably chosen random subset of the set of points at which requests were given in the
previous phase. The number of requests in phase i is ni = 2Lr−i, and the duration of phase i
is ti = 1/Lr−i time units. The distribution D on M(B)PMD instances is generated as follows.

Let r := bL/ log2 Lc, n := 2Lr, S0 := {1/n, 2/n, . . . , 1}.
For i = 0, . . . , r,
1. Only for MBPMD: Choose bi uniformly at random from {+1,−1}.
2. Give requests at points in Si. Only for MBPMD: Starting with the polarity bi for

the leftmost request in Si, assign alternating polarities to the requests.
3. Index the points in Si from left to right, with index 1 for the leftmost point. Construct

sets Y i+1
0 , Y i+1

1 ⊆ Si as follows.
a. Y i+1

0 is the set of points whose index is an integer multiple of L.
b. Y i+1

1 is the set of points whose index is an integer multiple of L plus L/2, that is,
L/2, 3L/2, and so on. (Recall that L is even.)

4. Choose zi+1 uniformly at random from {0, 1}. Let Si+1 := Y i+1
zi+1

. (Thus, |Si+1| =
|Y i+1

0 | = |Y i+1
1 | = |Si|/L.)

5. Wait for time ti = 1/Lr−i (and then move on to the next phase, if i < r).

In order to bound the expected cost of an arbitrary deterministic M(B)PMD algorithm,
we need to set up some notation and prove a key lemma. For a set S of requests on an
underlying metric space, and a real number c, let MIN(S, c) denote the cost of the min-cost
(possibly partial) matching on S (ignoring signs, even in MBPMD), where the cost of a
matching is the sum of distances between the matched pairs of requests, plus a penalty of c
per unmatched request. The following lemma can be thought of as a triangle inequality on
sets of requests.

CVIT 2016
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I Lemma 3. Let X, Y0, and Y1 be arbitrary sets of requests on an underlying metric space.
Then MIN(X ∪ Y0, c) + MIN(X ∪ Y1, c) ≥ MIN(Y0 ∪ Y1, c).

Proof. For j ∈ {0, 1}, let Mj be the matching on the set X ∪ Yj which achieves the cost
MIN(X ∪ Yj , c). Consider the set of edges M0 ∪M1. This is a union of vertex-disjoint paths
in which every vertex in Y0 ∪ Y1 has degree at most one. Thus, each path has all its vertices,
except possibly the endpoints, in X.

Construct a matching M on Y0 ∪ Y1 as follows. For each maximal path p in M0 ∪M1, do
the following. If both endpoints of p are in X (which means that the whole path p is in X),
ignore p. Else if p has length 0, that is, p is a single vertex from Y0 ∪ Y1, leave it unmatched
in M . Else, denote the endpoints of p by u and v. If both u and v are in Y0 ∪ Y1, match
u and v in M , and charge this cost to the weight of p. If u ∈ X and v ∈ Y0 ∪ Y1, leave v
unmatched in M , and charge this cost to the cost of leaving u unmatched in one of the Mjs.
Thus, the contribution of every path to the cost MIN(X ∪ Y0, c) + MIN(X ∪ Y1, c) is at least
as much as its contribution to the cost of M . J

We use the above lemma to prove the following lower bound on the cost of an arbitrary
deterministic online M(B)PMD algorithm in every phase.

I Lemma 4. Every deterministic online M(B)PMD algorithm incurs a cost of at least 1/4
in expectation in every phase i, conditioned on z1, . . . , zi−1 (and b0, . . . , bi−1, additionally,
for MBPMD).

Proof. Let X be the set of pending requests from earlier stages at the beginning of an
arbitrary phase i. If we condition on the random events from the previous phases, X is fixed.
Recall that ti, the duration of the phase, is 1/Lr−i. Since no new requests arrive while the
phase is in progress, we may assume that each request which is matched during the phase
is matched at the beginning of the phase. Thus, each unmatched request waits from the
beginning till the end of the phase, resulting in a delay cost of ti. Hence, the expected cost
of the algorithm is at least Ezi

[MIN(X ∪ Si, ti)] = (MIN(X ∪ Y i
0 , ti) + MIN(X ∪ Y i

1 , ti))/2.
(This holds even in the case of MBPMD, because MIN(X ∪ Y i

j , ti) is the cost of the best
possible matching ignoring polarities, whereas the algorithm produces a matching which
respects polarities and can only have a larger cost.) Thus, by Lemma 3, the algorithm’s
expected cost is bounded from below by MIN(Y i

0 ∪ Y i
1 , ti)/2.

Observe that Y i
0 ∪ Y i

1 is a set of 4Lr−i equispaced requests with spacing 1/4Lr−i. Thus,
MIN(Y i

0 ∪ Y i
1 , ti) = MIN(Y i

0 ∪ Y i
1 , 1/Lr−i) = 1/2, since it is cheaper to match all requests in

Y i
0 ∪ Y i

1 and pay 1/8Lr−i per request, rather than paying 1/Lr−i per unmatched request.
Therefore, the cost of the algorithm is at least MIN(Y i

0 ∪Y i
1 , ti)/2 ≥ 1/4 in every phase i. J

I Corollary 5. Every deterministic online M(B)PMD algorithm incurs a cost of at least
r/4 = Ω(L/ logL) in expectation on a random input drawn from D.

Proof. Follows by unconditioning the bound from Lemma 4. J

Next, we construct offline solutions to the instances of M(B)PMD drawn from D, thereby
giving upper bounds on the cost of the optimum solution.

I Lemma 6. Every MPMD instance generated from D has a solution of cost at most
1 + 2/ log2 L = O(1).

Proof. Construct a solution as follows. For i decreasing from r to 1, connect each unmatched
request from phase i to the request from phase i−1 located at the same point. This is possible
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because Si ⊆ Si−1, and results in zero connection cost. The delay cost is at most the number
of requests in phase i times the duration of phase i − 1, which is 2Lr−i · 1/Lr−i+1 = 2/L.
Finally pair up the unmatched requests from phase 0 optimally, with connection cost at most
1. The overall connection cost is 1, and the overall delay cost is 2/L for each phase except
phase 0. Thus, the total cost of the solution is 1 + 2r/L ≤ 1 + 2/ log2 L. J

I Lemma 7. The expected cost of the optimal solution of an MBPMD instance generated
from the distribution D is O(

√
L/ logL).

For proving Lemma 7, we need some notation. Fix an instance of MBPMD in the support
of D. For x ∈ [0, 1], define the phase-i cumulative surplus at x to be the signed total of the
requests from phase i that are located in [0, x], and denote it by csuri(x). Then csuri(x) ∈
{0, 1} if bi = +1, and csuri(x) ∈ {−1, 0} if bi = −1. Define csur(x) =

∑r
i=0 csuri(x), the

cumulative surplus at x, which is the signed total of all requests from all phases that are
located in [0, x]. Observe that for any x, any feasible solution to the instance must connect at
least | csur(x)| requests located to the left of x to the same number of requests located to the
right of x. Hence, the connection cost of any feasible solution must be at least

∫ 1
0 | csur(x)|dx.

Moreover, there exists a solution, say SOL, whose connection cost is precisely
∫ 1

0 | csur(x)|dx
(connect the tth positive request and the tth negative request from the left, for all t). This will
be our adversarial solution to the instance. In order to bound the connection cost of SOL
from above, we need prove that Eb0,...,br,z1,...,zr

[
∫ 1

0 | csur(x)|dx] is small. We prove something
stronger: we prove that the expectation is small enough even if we condition over the values
of z1, . . . , zr, and only average over b0, . . . , br.

I Lemma 8. For every fixed (z1, . . . , zr) ∈ {0, 1}r, Eb0,...,br

[∫ 1
0 | csur(x)|dx

]
= O(

√
r).

Proof. Since Eb0,...,br

[∫ 1
0 | csur(x)|dx

]
=
∫ 1

0 Eb0,...,br
[| csur(x)|] dx, it is sufficient to prove

that Eb0,...,br
[|csur(x)|] = O (

√
r) for every x ∈ [0, 1].

Given z1, . . . , zr, the locations of the requests are fixed. Observe that csuri(x) is zero if
the number of requests of phase i in [0, x] is even. If that number is odd, then csuri(x) = bi

is +1 and −1 with probability 1/2 each. Thus, csur(x) =
∑r

i=0 csuri(x) is the sum of at
most r + 1 independent random variables, each of which takes values +1 and −1 with
equal probability, where the number of random variables is determined by x and z1, . . . , zr.
Therefore | csur(x)| is the deviation of a random walk of at most r + 1 steps on the integers
starting from 0, and moving in either direction with equal probability. Using a standard
result,1 we have E [| csur(x)|] = O(

√
r), as required. J

Taking the solution SOL which minimizes the connection cost as the adversarial solution,
we now prove an upper bound on the expected cost of the optimum solution of a random
MBPMD instance drawn from D.

Proof of Lemma 7. Consider the solution SOL. By Lemma 8, its expected connection cost
is O(

√
r) = O(

√
L/ logL), and we are left to bound its expected delay cost. Note that

the sum of the arrival times of all requests in an instance is an upper bound on the delay
cost of every solution to the instance (which keeps a request waiting only until its partner
arrives). In particular, this applies to SOL. For instances in the support of D, the sum of the
arrival times is the same, and is equal to

∑r
i=0 ni

∑i−1
j=0 tj , where ni = 2Lr−i is the number

1 For instance: http://mathworld.wolfram.com/RandomWalk1-Dimensional.html.
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of requests in phase i, and tj = 1/Lr−j is the duration of phase j. Thus, the delay cost is
bounded from above by

r∑
i=0

ni

i−1∑
j=0

tj =
r∑

i=0
2Lr−i

i−1∑
j=0

1
Lr−j

= 2
r∑

i=0

1
Li

i−1∑
j=0

Lj = 2
r∑

i=0

1
Li
· L

i − 1
L− 1 ≤

2r
L− 1

which is O(1/ logL), since r = bL/ logLc. Thus, the expected cost of a random MBPMD
instance drawn from D is O(

√
L/ logL) +O(1/ logL) = O(

√
L/ logL). J

Finally, we use the lower bound on the algorithm’s cost and the upper bounds on the
optimum cost to prove lower bounds on the competitive ratio of MPMD and MBPMD.

Proof of Theorem 1. Follows from Corollary 5 and Lemma 6. J

Proof of Theorem 2. Follows from Corollary 5 and Lemma 7. J

4 The O(log n) Upper Bound for MBPMD: Overview

Our focus in this section is to give an algorithm for MBPMD on arbitrary metrics, and thus,
to prove the following result.

I Theorem 9. There exists a randomized online algorithm with a competitive ratio of O(logn)
for MBPMD on n-point metric spaces.

As stated previously, we establish the above theorem by reducing MBPMD on arbitrary
metrics to MBPMD on tree metrics. A tree metric is given by a tree with positive edge
weights such that the points of the metric are the vertices of the tree and the distance between
two points is the length of the simple path connecting them. To achieve the reduction, we
use the following result (Lemma 3.1 of [5]), which is an easy consequence of probabilistic
embedding into tree metrics [14] and Lemma 5.1 of [7].

I Lemma 10. Any n-point metric spaceM can be embedded, with distortion O(logn), into
a distribution D supported on metrics induced by trees of height O(logn).

Informally, the distortion of an embedding is an upper bound on the expected blowup in
the distances between pairs of points.

Analogous to Azar et al. [5], we use the more general notion of (β, γ)-competitiveness in
addition to the usual notion of competitive ratio. Reusing their notation, given an instance I
of MBPMD and an arbitrary solution SOL of I, we let SOLd denote its connection cost with
respect to the metric d, SOLt denote its delay cost, and (with a slight abuse of notation)
SOL denote its total cost. We restate the definition of (β, γ)-competitiveness for the sake of
completeness.

I Definition 11. Given a randomized online algorithm A for MBPMD on a metric space
M = (S, d) and an instance I on S, A(I) denotes the expected cost of A on I. A is said to
be α-competitive if for every I and every solution SOL of I, A(I) ≤ α · SOL. A is said to be
(β, γ)-competitive if for every I and every solution SOL of I, A(I) ≤ β · SOLd +γ · SOLt.

Given an embedding of a metric space into another with distortion µ, and a (β, γ)-
competitive algorithm for the embedding metric, it is easy to see that it can be turned
into a (µβ, µγ)-competitive algorithm for the original metric. However, Emek et al. [12]
observed that this can strengthened slightly to the following lemma, whose proof is deferred
to Appendix A.
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I Lemma 12. Suppose that a metric spaceM = (S, d) can be embedded into a distribution
D supported on metric spaces over a set S′ ⊇ S with distortion µ. Additionally, suppose
that for every metric spaceM′ in the support of D, there is a (possibly randomized) online
(β, γ)-competitive algorithm AM′ for MBPMD onM′. Then there is a (µβ, γ)-competitive
(and thus, (max(µβ, γ))-competitive) algorithm A for MBPMD onM.

In the next two sections, we give two online algorithms for MBPMD, both of which are
(O(1), O(h))-competitive on edge-weighted trees of height h. Theorem 9 then follows easily.

Proof of Theorem 9. Given an n-point metric spaceM, using Lemma 10, embed it into a
distribution D over metrics given by edge-weighted trees of height O(logn) with distortion
O(logn). The algorithms for tree metrics from the next two sections are (O(1), O(logn))-
competitive for every tree metric in the support of D (Theorems 13 and 16). Therefore, by
Lemma 12, there is an O(logn)-competitive algorithm for MBPMD on every metricM. J

Notation

We state here notation that will be used in the description and analysis of the algorithms.
Suppose the tree metric is given by an edge-weighted tree T rooted at an arbitrary vertex
r. For a vertex u, let Tu denote the maximal subtree of T rooted at u, eu denote the edge
between u and its parent, and du denote the weight of eu (dr is defined to be infinity).
Similarly, for e = eu we also use Te to denote Tu (the subtree rooted at the lower endpoint
of e). Let h be the height of the tree, that is, the maximum of the number of vertices in the
path between r and any leaf. We assume, without loss of generality, that the requests are
given only at the leaves of T . (If not, we pretend as if each non-leaf vertex u has a child u′
at distance zero, which is a leaf, and the requests are given at u′ instead of u.) Let lca(u, v)
denote the lowest common ancestor of vertices u and v in the tree. Given an edge-weighted
tree T , rooted at vertex r, and a set of requests on the leaves of T , we define the surplus
of a vertex v to be the number of positive requests minus the number of negative requests
in Tv, and denote it by sur(v). (Note that sur(v) can be negative.) While comparing the
performance of the algorithm with a candidate solution SOL, we use sur∗(v) to denote the
surplus of v when running SOL. We also use sur(e) and sur∗(e) to denote the surplus of an
edge e. If e = eu, then sur(e) = sur(u) and sur∗(e) = sur∗(u).

5 A Randomized Algorithm for MBPMD on Trees

In this section, we adapt the randomized algorithm for MPMD on trees presented by Emek et
al. [12] to the bipartite case. We present a simplified analysis which shows that the algorithm
is (3, 6h + 1)-competitive. The original analysis was restricted to binary hierarchically
well-separated trees, and together with the embedding step resulted in a competitive ratio of
O
(
log2 n+ log ∆

)
for general metrics. By lifting the binary HST restriction and using the

embedding method of Lemma 10, our analysis improves the competitive ratio to O(logn).
The algorithm appears here as Algorithm 1.
I Remark. Algorithm 1 is described in terms of infinitesimally small discrete time steps.
However, it can be also described continuously as follows. For each two requests p1, p2 that
are tentatively matched, that match will be realized after waiting a time period of Z where
Z ∼ Exp

(
1

d(p1,p2)

)
.

I Theorem 13. Algorithm 1 for MBPMD on tree metrics is (3, 6h + 1)-competitive, and
hence, (6h+ 1)-competitive.
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Algorithm 1 A Randomized Algorithm for MBPMD on Tree Metrics
Greedy matching (computed upon each arrival): While there are two unmatched
requests of opposite polarities at the same point, match those requests immediately. For all
other requests, compute a tentative greedy matching as follows:

Consider the vertices from the leaves to the root. (Formally, choose any order such that
each vertex is considered only after all of its children have already been considered.)
When considering a vertex v, let P be the set of positive requests in Tv that are not
tentatively matched yet, and N be the set of negative requests in Tv that are not
tentatively matched yet.
While P and N are both non-empty, tentatively match a request from P to a request
from N and remove the requests from P and N . Break ties arbitrarily.

At each infinitesimally small time step [t, t+ dt): For each two requests p1, p2 that are
tentatively matched, match these two requests with probability dt

d(p1,p2) where d(p1, p2) is
the length of the simple path between p1 and p2 in the tree. In that case, we say that the
match is realized.

The proof of Theorem 13 has two parts. First, we bound the connection cost of Algorithm 1
in terms of the connection and delay costs of any benchmark algorithm SOL (Lemma 14).
Second, we show how to bound the delay cost of the algorithm using the connection cost of
the algorithm and the delay cost SOLt (Lemma 15).

We introduce some notation used in the proof. Let T = (V,E) be a tree with weight
function w : E → R>0 (defining a tree metric (V, d)). Denote the connection cost of
Algorithm 1 on (V, d) by ALGd, the delay cost by ALGt, the total cost by ALG, and let SOL
be any benchmark solution for MBPMD on the same tree metric. Let ALGd(t1, t2) denote
the connection cost of the algorithm only due to matches that occur in the time interval
[t1, t2), and ALGt(t1, t2) denote the delay cost incurred by ALG during that time interval.
SOLd(t1, t2) and SOLt(t1, t2) are defined similarly.

For each edge e ∈ E, let Pe(t), Ne(t) denote the number of unmatched positive and
negative requests (respectively) inside Te in ALG at time t, and define P ∗e (t), N∗e (t) similarly
for SOL. Using these definitions, at time t, sur(e) = Pe(t)−Ne(t) and sur∗(e) = P ∗e (t)−N∗e (t).

We remark on a few properties of the algorithm. First, each edge e can be used as part
of at most |sur(e)| matches at time t. It may be used for less than |sur(e)| matches, e.g., if
there are not enough requests that can be matched to those waiting in Te. Second, all the
requests from Te that are matched through e are of the same polarity (otherwise, they would
have been matched at a lower level). With these observations, we are ready to prove the key
lemma of the section.

I Lemma 14. E[ALGd] ≤ SOLd +2h · SOLt

Proof. For each edge e ∈ E, define the following potential at time t:

Φe(t) = w(e) |sur(e)− sur∗(e)| = w(e) |Pe(t)−Ne(t)− (P ∗e (t)−N∗e (t))|

The total potential at time t is defined as Φ(t) =
∑

e∈E Φe(t).
We divide the time into intervals. The first interval starts at time 0. An interval ends

and the next interval begins when a new request arrives or when SOL matches two requests.
Let [t1, t2) be an interval and denote ∆Φ = Φ(t2)− Φ(t1). We wish to prove that

E[ALGd(t1, t2) + ∆Φ] ≤ SOLd(t1, t2) + 2h · SOLt(t1, t2).
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There are three events that can happen: the arrival of a request, a match by SOL, or a
match by ALG. Arrivals and matches by SOL can only happen at time t1 during the interval.
Matches by ALG can happen at any time in (t1, t2) (the probability that a match occurs at
time t1 is 0).

Arrival. We claim that the arrival of a request does not change the potential. For each
edge e in the path from the request to the root, either Pe and P ∗e or Ne and N∗e increase by
1, and Φe remains the same. If ALG or SOL matches the new request to another request at
the same location, the surplus (and also the potential) does not change.

Match by SOL. The connection cost ALGd(t1, t2) is not affected by the actions of SOL.
Note that the connection cost incurred by SOL due to a single match is the sum of weights
of edges that are used as part of the match, and that the match only changes the potential
of these edges. For each edge e that is used as part of a match, ∆Φe ≤ w(e). By summing
over all these edges, we get ∆Φ ≤ SOLd.

Match by ALG. At any time t ∈ (t1, t2), there are no arrivals or matches in SOL. Hence,
the tentative matching maintained by the algorithm does not change, and the potential can
only change due to a match by ALG. If a match of a pair of requests is realized by ALG,
the potential of each edge e in the path connecting these two requests either increases or
decreases by w(e).

Let e be an edge that is used in the tentative matching, and denote by ALGe(t, t′) the
connection cost that ALG incurred during (t, t′) due to edge e. The following claim relates
the expected connection cost and change in potential at edge e to the surplus in SOL and to
the length of the interval [t1, t2), which we will relate to the delay cost of SOL. Note that
|sur∗(e)| does not change during (t1, t2) (as there are no arrivals or matches in SOL). The
proof is deferred to Appendix B.
I Claim 1. For every edge e that is used in the tentative matching, E[ALGe(t1, t2) + ∆Φe] ≤
2 |sur∗(e)| (t2 − t1).

The claim asserts that the expected connection cost due to the use of e and the change in
Φe is at most 2 |sur∗(e)| ·(t2−t1). Now we claim that there are least |sur∗(e)| requests waiting
in SOL in the subtree of e. This follows from the fact that max{P ∗e (t), N∗e (t)} ≥ |sur∗(e)|.
The delay cost SOLt(t1, t2) due to these requests is |sur∗(e)| (t2 − t1).

We have shown that for every edge e, we can “charge” the sum of the expected connection
cost incurred by ALG and the change in potential to the requests waiting in SOL in Te: this
sum is at most 2 |sur∗(e)| (t2 − t1), while there are at least |sur∗(e)| requests waiting in SOL
each leading to a delay cost of t2 − t1. A request waiting in SOL is charged at most once for
each edge on the path that connects the request to the root of the tree, that is, each request
is charged at most h times.

Summing over all the edges, we get that during the interval [t1, t2),

E[ALGd(t1, t2) + ∆Φ] ≤ SOLd(t1, t2) + 2h · SOLt(t1, t2).

The lemma follows by summing these inequalities for all intervals and by noticing that the
potential is 0 at time 0 and after both algorithms have matched all the requests. J

The following lemma is similar to Lemma 7 in [12] (Lemma 4.8 in the full version [13]).
The proof is deferred to Appendix B.

I Lemma 15. E[ALGt] ≤ 2E[ALGd] + SOLt

Proof of Theorem 13. From Lemma 15, we get

E[ALG] = E[ALGt] + E[ALGd] ≤ 3E[ALGd] + SOLt .
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By Lemma 14, E[ALGd] ≤ SOLd +2h · SOLt. We conclude that E[ALG] ≤ 3 SOLd +(6h+
1) SOLt. J

6 A Deterministic Algorithm for MBPMD on Trees

The algorithm, which appears here as Algorithm 2, maintains two forests, F+ and F−, both
initialized to be empty. For every vertex u, the algorithm also maintains two counters, z+

u

and z−u , initially set to zero. Intuitively, if eu ∈ F+ (resp. eu ∈ F−), then eu is available for
connecting a positive (resp. negative) request inside Tu to a negative (resp. positive) request
outside. We say that a vertex u is positively saturated (resp. negatively saturated) if the edge
eu is in F+ (resp. F−), else, we say it is positively unsaturated (resp. negatively unsaturated).
The root r is always positively as well as negatively unsaturated, by definition. Note F+

and F− are not necessarily disjoint, and therefore, a vertex can be both positively as well as
negatively saturated at the same time. The rest of the section is dedicated to proving the
following theorem.

Algorithm 2 A Deterministic Algorithm for MBPMD on Tree Metrics
Initialize: F+ := ∅, F− := ∅. For each vertex u, z+

u := 0 and z−u := 0.
At every moment:

While there are two unmatched requests of opposite polarities at the same point, match
those requests immediately.
For each vertex u, if u is positively unsaturated and sur(u) > 0 (resp. u is negatively
unsaturated and sur(u) < 0), then increase counter z+

u (resp. z−u ) at the rate sur(u) (resp.
− sur(u)). Else, keep the counter frozen.
For each vertex u 6= r, as soon as the value of z+

u (resp. z−u ) becomes equal to 2du, add the
edge eu to F+ (resp. F−). This makes u positively saturated (resp. negatively saturated),
and z+

u (resp. z−u ) is frozen.
For each positive request, located at u, and each negative request, located at v, as soon as
the entire path between u and lca(u, v) is contained in F+, and the entire path between
v and lca(u, v) is contained in F−,

Connect the request at u to the request at v.
Remove the edges on the path from u to v from both F+ as well as F−.
For every vertex w 6= lca(u, v) on the path from u to v, reset z+

w := 0 and z−w := 0.
(All these vertices are unsaturated due to the previous step.)

I Theorem 16. Algorithm 2 for MBPMD on tree metrics is (10, 10h)-competitive, and hence,
10h-competitive.

For any vertex u, we divide time into phases as follows. The first phase at u starts when
the algorithm starts. Whenever the edge eu is used to connect requests, the phase at u ends
and a new phase begins at u. Note that the last phase at any u is necessarily incomplete,
and that the phases at different vertices need not be aligned. Observe that at the beginning
of any phase at u, both z+

u and z−u are zero, whereas at the end, one of them is equal to 2du

and the other is at most 2du.
For the analysis, imagine a variable y+

u (resp. y−u ) for every u, which increases at the
same rate as z+

u (resp. z−u ) during the run of the algorithm, but which is never reset to zero.
We will separately relate the connection cost as well as the delay cost of the algorithm to



I. Ashlagi et al. 23:13

∑
u(y+

u + y−u ), and then relate
∑

u(y+
u + y−u ) to the cost of an arbitrary solution SOL, and

thus, prove (O(1), O(h))-competitiveness.

I Lemma 17. The connection cost of the algorithm is at most 1
2
∑

u(y+
u + y−u ).

Proof. For an arbitrary vertex u, recall that every usage of edge eu, which results in a
connection cost of du, marks the end of a phase at u. In every phase at u, one of z+

u and z−u
increases from 0 to 2du. Thus, in every phase at u, y+

u + y−u increases by at least 2du. This
implies the claim. J

I Lemma 18. The delay cost of the algorithm is at most 2
∑

u(y+
u + y−u ).

We defer the proof of the above lemma to Appendix C. Now we need to relate the value∑
u(y+

u + y−u ) at the end of the algorithm’s run to the cost of an arbitrary solution SOL to
the instance. For this, let xu be the total delay cost incurred by SOL due to requests inside
Tu, and x′u be the total connection cost incurred by SOL for using the edge eu.

I Lemma 19. At the end of the algorithm’s run, for all vertices u, y+
u + y−u ≤ 4(xu + x′u).

We defer the proof to Appendix C. Next, we relate
∑

u(xu +x′u) to the cost of the solution
SOL. Denoting the distance function of the tree metric by d, recall that SOLd and SOLt

denote the connection cost and the delay cost of SOL, respectively. Our final ingredient is
Lemma 3.6 from [5], stated as follows.

I Lemma 20.
∑

u(xu + x′u) ≤ SOLd +h · SOLt.

The competitiveness of the algorithm now follows easily.

Proof of Theorem 16. From Lemmas 17 and 18, the algorithm’s total cost is at most
5
2
∑

u(y+
u + y−u ). By Lemma 19, this is at most 10

∑
u(xu + x′u), which by Lemma 20, is at

most 10 SOLd +10h · SOLt. Therefore, the algorithm is (10, 10h)-competitive. J

7 Concluding Remarks and Open Problems

In this paper, we showed a randomized O(logn)-competitive algorithm and a lower bound
of Ω

(√
log n

log log n

)
on the competitive ratio of any randomized algorithm for MBPMD. One

natural open problem is closing the gap between these bounds. Another open question
is whether randomization is needed in solving MBPMD. While for trees we provided a
deterministic O(h)-competitive algorithm, the question of finding deterministic algorithms
or lower bounds for general metrics remains open.

We took here the centralized planner’s view that can dictate who can match to whom.
An interesting open question is what is the efficiency loss if the market is decentralized
and agents selfishly decide whether to match with a partner or to wait for a closer partner.
There are some modeling decisions to make here, but in general the competitive ratio should
increase, since agents will impose negative externalities on others (such analysis is done under
stochastic assumptions in [6]).

Our model only scratches the surface of the numerous variants of MBPMD that can be
practical for many applications. Keeping the ride-sharing motivating example in mind, one
can model carpooling as a many-to-one matching problem while taking into account the
different destinations of the passengers. One can also allow requests to move to other points
while waiting, simulating drivers that head toward busy areas while waiting for a match.
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Further study of MBPMD can involve different assumptions on the input. While we
analyzed the competitive ratio for worst-case input, a more refined analysis can be made in
the case where the input is drawn from some known distribution. Another possible analysis
beyond the worst case is to consider a more restricted family of metric spaces with a structure
that may result in better bounds even for worst-case input.

Finally, the delay of services and allocations shows up in many applications, which can
be studied using the notion of online problems with delayed service.
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A Proof Omitted from Section 4

Recall the following definition of a metric embedding and its distortion.

I Definition 21. Let M = (S, d) be a finite metric space, and let D be a probability
distribution over metrics on a finite set S′ ⊇ S. We say thatM embeds into D with distortion
µ if

For every x, y ∈ S and every metric space M′ = (S′, d′) in the support of D, we have
d(x, y) ≤ d′(x, y).
For every x, y ∈ S, we have EM′=(S′,d′)∼D[d′(x, y)] ≤ µ · d(x, y).

Proof of Lemma 12. Algorithm A simply samples a metric spaceM′ = (S′, d′) from the
distribution D, and simulates the behavior of AM′ . Clearly, the delay cost paid by A is the
same as the delay cost paid by AM′ . Furthermore, since d(p, q) ≤ d′(p, q) for all p, q ∈ S,
the connection cost paid by A is no more than the connection cost paid by AM′ . Fix an
input instance I of MBPMD onM, and an arbitrary solution SOL of I. Then the expected
cost A(I) of the algorithm A on I is bounded as follows.

A(I) ≤ EM′=(S′,d′)∼D[AM
′
(I)]

where AM′(I) is the expected cost of AM′ on I, the expectation being taken over the
randomness internal to AM′ . Since AM′ is (β, γ)-competitive, we have by definition,

AM
′
(I) ≤ β SOLd′ +γ SOLt

This implies

A(I) ≤ EM′=(S′,d′)∼D[β SOLd′ +γ SOLt]
= β · EM′=(S′,d′)∼D[SOLd′ ] + γ SOLt

≤ βµ · SOLd +γ · SOLt

where the equality follows from linearity of expectation and the fact that SOLt is independent
ofM′, while the second inequality follows from the definition of distortion. By the definition
of (β, γ)-competitiveness, the claim follows. J
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B Proofs Omitted from Section 5

Proof of Claim 1. Consider an edge e that is used for (tentatively) matching k positive
requests p1, . . . , pk to k negative requests n1, . . . , nk. Remember that all the requests in Te

that are matched through e are of the same type. Assume that the requests in Te are the
positive requests p1, . . . , pk, that is, for every match that is realized, Pe decreases by 1 (the
case where the requests under Te are negative is analogous). There are two cases.

Case 1: sur∗(e) ≤ 0. In that case, since sur(e) decreases by 1 for each match that is
realized, the potential Φe decreases by w(e) for each match that ALG makes. Thus, for each
match the connection cost incurred by ALG for using edge e and the change in the potential
sum to 0. Namely, E[ALGe(t1, t2) + ∆Φe] = 0 ≤ 2 |sur∗(e)| (t2 − t1).

Case 2: sur∗(e) > 0. In that case, as long as sur(e) > sur∗(e), each match will decrease
Φe by w(e), and when sur(e) ≤ sur∗(e), each match will increase Φe by w(e). Note that at
time t1, sur(e) ≥ k > 0. Let t′ ∈ [t1, t2) be the minimal time such that sur(e) ≤ sur∗(e). If
there is no such t′, we set t′ = t2.

For 1 ≤ i ≤ k, let Xi be an indicator random variable for the event that the request pi is
matched during the interval (t′, t2) (conditioned on pi not being matched before t′), and Zi

be an exponential random variable with parameter 1
d(pi,ni) . Then,

E[Xi] = Pr[Zi < t2|Zi > t] = Pr[Zi < t2 − t′] = 1− e−
t2−t′

d(pi,ni) ≤ 1− e−
t2−t1
w(e) ≤ t2 − t1

w(e) .

Now, note that

E[ALGe(t1, t2) + ∆Φe] = E[ALGe(t1, t′) + Φe(t′)− Φe(t1)]
+ E[ALGe(t′, t2) + Φe(t2)− Φe(t′)]

= E[ALGe(t1, t′) + Φe(t′)− Φe(t1)]
+ E[ALGe(t′, t2) + Φe(t2)− Φe(t′)|t′ < t2] Pr[t′ < t2]
≤ E[ALGe(t1, t′) + Φe(t′)− Φe(t1)]

+ E[ALGe(t′, t2) + Φe(t2)− Φe(t′)|t′ < t2]

where we use the facts that E[ALGe(t′, t2)+Φe(t2)−Φe(t′)|t′ = t2] = 0 and that ALGe(t′, t2)+
Φe(t2)− Φe(t′) is non-negative (the potential can only increase due to matches in (t′, t2)).

If ALG makes N1 matches during (t1, t′), then ALGe(t1, t′) = N1 · w(e), while Φe(t′)−
Φe(t1) = −N1 · w(e) (before t′, the potential only decreases due to the matches). Thus,
E[ALGe(t1, t′) + Φe(t′)− Φe(t1)] = 0.

Consider E[ALGe(t′, t2) + Φe(t2) − Φe(t′)|t′ < t2]. Note that at if t′ < t2, then N1 =
max{0, sur(e) − sur∗(e)}.2 Then, during the interval (t′, t2), there are k − N1 ≤ |sur∗(e)|
requests that may be matched using edge e. Denote the number of requests that are matched
using e during (t′, t2) by N2. Intuitively, E[N2] is at most (k − N1) · t2−t1

w(e) , since for each
such request i, E[Xi] ≤ t2−t1

w(e) .
Formally, if for S ⊆ {1, . . . , k} of size N1, AS denotes the event that the requests

2 This refers to sur(e) at time t1. Note that at most one match is realized at time t′ (the probability that
two matches will be realized at the same time is 0). Therefore, N1 must be max{0, sur(e)− sur∗(e)}
and not greater than that.
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{pi|i ∈ S} are matched before t′,

E[N2|t′ < t2] =
∑

S⊆{1,...,k}:
|S|=N1

E[N2|t′ < t2, AS ] Pr[AS |t′ < t2]

=
∑

S⊆{1,...,k}:
|S|=N1

(∑
i/∈S

E[Xi|t′ < t2, AS ]
)

Pr[AS |t′ < t2]

≤
∑

S⊆{1,...,k}:
|S|=N1

(∑
i/∈S

t2 − t1
w(e)

)
Pr[AS |t′ < t2]

= (k −N1) · t2 − t1
w(e)

∑
S⊆{1,...,k}:
|S|=N1

Pr[AS |t′ < t2]

= (k −N1) · t2 − t1
w(e)

≤ |sur∗(e)| · t2 − t1
w(e)

Finally, since for each request matched after t′, the potential increases by w(e), we get
that

E[ALGe(t′, t2) + Φe(t2)− Φe(t′)|t′ < t2] = 2w(e) · E[N2|t′ < t2]

≤ |sur∗(e)| · 2w(e) · t2 − t1
w(e)

= 2 |sur∗(e)| (t2 − t1)

and E[ALGe(t1, t2) + ∆Φe] ≤ 2 |sur∗(e)| (t2 − t1). J

Proof of Lemma 15. We divide the time into intervals as in the proof of Lemma 14. The
first interval starts at time 0. An interval ends and the next interval begins when a new
request arrives or when SOL matches two requests. Let [t1, t2) be an interval. We show that
E[ALGt(t1, t2)] ≤ 2E[ALGd(t1, t2)] + SOLt(t1, t2).

Note that the number of requests that are not tentatively matched at time t is |sur(r)|,
and that at any time t, sur(r) = sur∗(r) (both ALG and SOL run on the same input and
clear requests in pairs of different types). Intuitively, since SOL also had a surplus of the
same number of requests, the delay cost incurred by SOL is at least the delay cost incurred
due to the requests that are not tentatively matched by ALG. Formally, note that sur(r) has
the same value at all times t ∈ (t1, t2). Let K = |sur(r)| for some t ∈ (t1, t2). Then, the delay
cost of the requests that are not tentatively matched during [t1, t2) is K · (t2 − t1) (note that
the tentative matching cannot not be recomputed in the middle of an interval). In addition,
during (t1, t2), SOL has at least K requests waiting, hence SOLt(t1, t2) ≥ K · (t2 − t1).

So far we have shown that during [t1, t2), the delay cost of the requests that are not
tentatively matched is at most SOLt(t1, t2). We now consider all the requests that are
part of the tentative matching computed by ALG. For each pair of requests, we compare
the expected connection cost and expected delay cost. Let p1, p2 be two requests that are
tentatively matched by ALG. We denote the connection cost due to p1, p2 during [t1, t2) by
∆ ALGd(p1, p2) and the delay cost due to p1, p2 during [t1, t2) by ∆ ALGt(p1, p2).

The time until p1, p2 are matched is an exponential random variable Z with parameter
1

d(p1,p2) . The requests are matched during the interval if Z < t2 − t1. Then, the expected
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connection cost is E[∆ ALGd(p1, p2)] = d(p1, p2) · Pr[Z < t2 − t1] = d(p1, p2)(1− e−
t2−t1

d(p1,p2) ).
The expected delay cost for each one of p1, p2 during [t1, t2) is

E[min{Z, t2 − t1}] = E[Z − (Z − (t2 − t1))+] = d(p1, p2)(1− e−
t2−t1

d(p1,p2) ).

Since both p1 and p2 wait, we get that

E[∆ ALGt(p1, p2)] = 2d(p1, p2)(1− e−
t2−t1

d(p1,p2) ) = 2E[∆ ALGd(p1, p2)].

Summing over all the pairs of tentatively matched requests and adding the delay cost of the
unmatched requests, we get that

E[ALGt(t1, t2)] ≤ 2E[ALGd(t1, t2)] + SOLt(t1, t2).

We conclude the proof of the lemma by summing over all the intervals, and by linearity
of expectation, we get

E[ALGt] ≤ 2E[ALGd] + SOLt .

J

C Proofs Omitted from Section 6

In order to prove Lemma 18, we need the following observation.
I Observation 1. Given a set of requests on the vertices of T which contains an equal number
of positive and negative requests, let M be a minimum cost perfect matching between the
positive and the negative requests (where, as usual, the cost of matching two requests is the
distance between their locations under the tree metric). Then for any vertex v of the tree,
the number of requests inside Tv that are matched in M to requests outside Tv is precisely
| sur(v)|. Furthermore, all these requests have the same sign as sur(v).

Proof of Lemma 18. Let U+ (resp. U−) denote the set of positively (resp. negatively)
unsaturated vertices v with sur(v) > 0 (resp. sur(v) < 0). Note that U+ and U− are
disjoint. From the description of the algorithm, the rate of increase of

∑
u(y+

u + y−u ) is∑
v∈U+∪U− | sur(v)|. The rate of increase of the delay cost is equal to the number of pending

requests. Thus, it is sufficient to prove that the number of pending requests is at most
2
∑

v∈U+∪U− | sur(v)| at any time (except at instants when requests are connected).
Consider an arbitrary time instant. Recall that sur(r) is equal to the number of positive

pending requests minus the number of negative pending requests. If sur(r) 6= 0, augment
the set of pending requests with | sur(r)| artificial requests located at r, with sign opposite
to the sign of sur(r), resulting in a balanced set of requests. Let M be a minimum cost
perfect matching between the positive and the negative requests in this set. First, consider
the | sur(r)| pending requests that get matched to the | sur(r)| augmented requests at r.
Charge these pending requests to r, and note that r ∈ U+ ∪ U− (unless sur(r) = 0). Next,
let (R+, R−) be a match in M , where R+ (resp. R−) is a positive (resp. negative) pending
request located at u+ (resp. u−), and let v = lca(u+, u−). Since the algorithm has not
connected R+ and R−, at least one of the following must be true.
1. There is a vertex v′ 6= v on the path from u+ to v such that ev′ /∈ F+, i.e. v′ is positively

unsaturated.
2. There is a vertex v′ 6= v on the path from u− to v such that ev′ /∈ F−, i.e. v′ is negatively

unsaturated.
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Consider the first case. By Observation 1, since M matches the positive request R+ ∈ Tv′ to
R− /∈ Tv′ , we have sur(v′) > 0. Additionally, since v′ is positively unsaturated, v′ ∈ U+. By
similar argument, in the second case, v′ ∈ U−. In either case, charge the pair of requests
(R+, R−) to the vertex v′ ∈ U+∪U−.3 Observe that if this charging scheme charges a pair of
pending requests to a vertex v, then one of the requests is in Tv, the other is outside Tv, and
the pair is included inM . Again, by Observation 1, the number of pairs charged to any vertex
v is at most | sur(v)|. Thus, the number of pending requests is at most 2

∑
v∈U+∪U− | sur(v)|,

as required. J

Proof of Lemma 19. We use the potential function technique. We design a potential function
φ such that in each phase, the changes ∆(y+

u + y−u ), ∆φ, and ∆(xu + x′u) satisfy

∆(y+
u + y−u ) + ∆φ ≤ 4∆(xu + x′u) (1)

and φ = 0 at the beginning as well as at the end of the algorithm’s run. Summing (1) over
all phases, we get the result.

Recall that sur∗(u) denotes the surplus of vertex u resulting from SOL. Define φ =
4du · | sur∗(u)− sur(u)|. Clearly, at the beginning as well as at the end, we have sur(u) =
sur∗(u) = 0, and thus, φ = 0. Observe that sur∗(u)−sur(u) (and hence, φ) remains unchanged
when new requests are given. The only events resulting in a change in sur∗(u)− sur(u) are
either SOL or the algorithm connecting a request inside Tu to one outside Tu. Also, xu

increases at a rate of at least | sur∗(u)|.
In each phase of a vertex u, each of y+

u and y−u increases by at most 2du, and therefore,
∆(y+

u + y−u ) ≤ 4du. Except the last phase, in every phase, at least one of y+
u and y−u increases

by exactly 2du, and the phase ends with the algorithm connecting a request inside Tu to one
outside Tu. We call such a phase complete, and we call the last phase incomplete. We prove
that (1) holds first for complete phases, and then for the incomplete phase.

Let k ≥ 0 denote the (absolute) number of requests in Tu which SOL connected to
requests outside Tu during an arbitrary phase. Thus, ∆x′u ≥ kdu.

Consider any complete phase of vertex u and, without loss of generality, assume that the
phase ends due to a positive request inside Tu getting connected to a negative request outside
Tu. This means that z+

u increases from 0 to 2du in the phase. Since the only events resulting
in a change in sur∗(u)− sur(u) are either SOL or the algorithm connecting a request inside
Tu to one outside, we have

∆| sur∗(u)− sur(u)| ≤ |∆(sur∗(u)− sur(u))| ≤ k + 1 (2)

First, consider the case where ∆| sur∗(u)−sur(u)| = k+1, and therefore, ∆φ = 4(k+1)·du.
Now both inequalities in (2) are tight. Because the second inequality is tight, all the k requests
inside Tu which SOL connected outside must be negative, and ∆(sur∗(u)−sur(u)) = k+1 > 0.
Furthermore, sur∗(u)− sur(u) never decreases during the phase. Because the first inequality
in (2) is tight, the sign of sur∗(u)− sur(u) at the beginning of the phase must be the same as
that of ∆(sur∗(u)− sur(u)), implying sur∗(u)− sur(u) ≥ 0 initially. Since sur∗(u)− sur(u)
never decreases, we have sur∗(u) − sur(u) ≥ 0 throughout the phase. Therefore, at any
moment when z+

u was increasing, we have sur∗(u) ≥ sur(u) > 0. Thus, the rate of increase
of xu is always at least as much as the rate of increase of z+

u . Since z+
u increases by 2du, we

have ∆xu ≥ 2du. Therefore,

∆(y+
u + y−u ) + ∆φ ≤ 4du + 4(k + 1) · du = 4(2du + kdu) ≤ 4∆(xu + x′u)

3 If both cases hold, or if one of the cases holds for more than one v′, then pick an arbitrary one.
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Next, suppose that ∆| sur∗(u)−sur(u)| < k+1. Observe that the parity of sur∗(u)−sur(u)
changes k + 1 times during the phase: each time when the algorithm or SOL connects a
request in Tu to one outside. Thus, if ∆| sur∗(u)− sur(u)| is not k + 1, it must be at most
k − 1, which means ∆φ ≤ 4(k − 1) · du. Therefore,

∆(y+
u + y−u ) + ∆φ ≤ 4du + 4(k − 1) · du = 4kdu = 4∆x′u ≤ 4∆(xu + x′u)

Thus, in any case, (1) holds for any complete phase.
Finally, consider the last incomplete phase, which does not have a usage of eu by the

algorithm at the end. Note that at the end of the algorithm’s run, sur(u) = sur∗(u) = 0,
and hence, φ = 0. Since φ is non-negative by definition, we have ∆φ ≤ 0. If k > 0, then
∆(xu + x′u) ≥ ∆x′u = kdu ≥ du. Since ∆(y+

u + y−u ) ≤ 4du, (1) holds. On the other hand,
if k = 0, then sur∗(u) − sur(u) stays constant in the phase. Since it is zero finally, it is
zero throughout the phase. Thus, sur∗(u) = sur(u) in the entire phase. Since y+

u + y−u
increases at a rate at most | sur(u)| and xu increases at a rate at least | sur∗(u)|, we have
∆(y+

u + y−u ) ≤ ∆xu, again implying (1). J
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