
This article was downloaded by: [171.66.13.223] On: 24 September 2021, At: 13:12
Publisher: Institute for Operations Research and the Management Sciences (INFORMS)
INFORMS is located in Maryland, USA

Operations Research

Publication details, including instructions for authors and subscription information:
http://pubsonline.informs.org

Assignment Mechanisms Under Distributional Constraints
Itai Ashlagi, Amin Saberi, Ali Shameli

To cite this article:
Itai Ashlagi, Amin Saberi, Ali Shameli (2020) Assignment Mechanisms Under Distributional Constraints. Operations Research
68(2):467-479. https://doi.org/10.1287/opre.2019.1887

Full terms and conditions of use: https://pubsonline.informs.org/Publications/Librarians-Portal/PubsOnLine-Terms-and-
Conditions

This article may be used only for the purposes of research, teaching, and/or private study. Commercial use
or systematic downloading (by robots or other automatic processes) is prohibited without explicit Publisher
approval, unless otherwise noted. For more information, contact permissions@informs.org.

The Publisher does not warrant or guarantee the article’s accuracy, completeness, merchantability, fitness
for a particular purpose, or non-infringement. Descriptions of, or references to, products or publications, or
inclusion of an advertisement in this article, neither constitutes nor implies a guarantee, endorsement, or
support of claims made of that product, publication, or service.

Copyright © 2020, INFORMS

Please scroll down for article—it is on subsequent pages

With 12,500 members from nearly 90 countries, INFORMS is the largest international association of operations research (O.R.)
and analytics professionals and students. INFORMS provides unique networking and learning opportunities for individual
professionals, and organizations of all types and sizes, to better understand and use O.R. and analytics tools and methods to
transform strategic visions and achieve better outcomes.
For more information on INFORMS, its publications, membership, or meetings visit http://www.informs.org

http://pubsonline.informs.org
https://doi.org/10.1287/opre.2019.1887
https://pubsonline.informs.org/Publications/Librarians-Portal/PubsOnLine-Terms-and-Conditions
https://pubsonline.informs.org/Publications/Librarians-Portal/PubsOnLine-Terms-and-Conditions
http://www.informs.org


OPERATIONS RESEARCH
Vol. 68, No. 2, March–April 2020, pp. 467–479

http://pubsonline.informs.org/journal/opre ISSN 0030-364X (print), ISSN 1526-5463 (online)

Crosscutting Areas

Assignment Mechanisms Under Distributional Constraints
Itai Ashlagi,a Amin Saberi,a Ali Shamelia

aDepartment of Management Science and Engineering, Stanford University, Stanford, California 94305
Contact: iashlagi@stanford.edu (IA); saberi@stanford.edu (AmS); shameli@stanford.edu, https://orcid.org/0000-0003-4246-4279 (AlS)

Received: May 18, 2017
Revised: July 18, 2018; January 4, 2019;
March 15, 2019
Accepted: May 14, 2019
Published Online in Articles in Advance:
February 27, 2020

Subject Classifications: analysis of algorithms
Area of Review: Games, Information, and
Networks

https://doi.org/10.1287/opre.2019.1887

Copyright: © 2020 INFORMS

Abstract. We generalize the serial dictatorship (SD) and probabilistic serial (PS) mecha-
nism for assigning indivisible objects (seats in a school) to agents (students) to accom-
modate distributional constraints. Such constraints aremotivated by equity considerations.
Our generalization of SD maintains several of its desirable properties, including strat-
egyproofness, Pareto optimality, and computational tractability, while satisfying the distri-
butional constraints with a small error. Our generalization of the PS mechanism finds an
ordinally efficient and envy-free assignment while satisfying the distributional constraint
with a small error. We show, however, that no ordinally efficient and envy-free mechanism
is also weakly strategyproof. Both of our algorithms assign at least the same number of
students as the optimum fractional assignment.
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1. Introduction
We consider the problem of assigning indivisible
objects to agents with privately known preferences
who are interested in consuming at most one object.
One classic solution for this problem is the serial
dictatorship (SD)mechanism,which considers agents
in a certain order and assigns to each agent her most
preferred object from the remaining objects. Some
applications of SD (with some variations) include
school choice (Abdulkadiroğlu et al. 2009, Pathak and
Sönmez 2013), college admissions (Chen and Kesten
2017, Baswana et al. 2019), on-campus housing, and
office allocation (Chen and Snmez 2002). The SD mech-
anism has several desirable properties. It is strategy-
proof, Pareto efficient, and computationally efficient.
Random serial dictatorship (RSD), which picks the
order of agents uniformly at random, also treats agents
with identical preferences equally in the sense that it
assigns them each object with the same probability.

Despite RSD’s attractive features it entails an un-
ambiguous efficiency loss ex ante. Specifically, it fails
to be ordinally efficient, because agents may be better
off trading probability shares before the outcome is
realized (for a formal definition see Section 4). The
probabilistic serial (PS) mechanism, introduced by
Bogomolnaia and Moulin (2001), eliminates the in-
efficiency present in RSD. The PS mechanism can be
described as follows. Imagining that each object is
divisible, all agents simultaneously “eat” at rate one

from theirmost preferred object among the remaining
objects. This process continues for one unit of time,
after which objects are assigned randomly to agents
with probabilities that correspond to the divisible
shares each agent has consumed. Note that these
mechanisms can be simulated using a computer after
agents report their ordinal preferences over objects.
One drawback of PS is that it is not strategyproof but
satisfies a weaker notion, which is known as weak
strategyproofness (Bogomolnaia and Moulin 2001).
The goal of this paper is to extend the SD and PS

mechanisms to settings with distributional constraints.
Constraints of this sort arise in various contexts. Some
school districts impose quotas for students based on
geographic location in order to increase socioeconomic
integration. Regional quotas are imposed in resident
matching in Japan so that programs in rural areas donot
remain underassigned (Kamada and Kojima 2014).
Quotas are imposed when assigning cadets to army
branches (Sönmez and Switzer 2013). Similar policies
are adopted in college admissions in various countries
(Biró et al. 2010, Braun et al. 2014). When assigning
refugeeswhooften have family needs, various constraints
arise owing to local service capacities (Delacrétaz et al.
2016). In each of these applications, it is desirable to
leave as few unassigned agents as possible.
One challenge with generalizing these mechanisms

to accommodate distributional constraints is com-
putational; even checkingwhether there is an assignment
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that satisfies thedistributional constraints isNP-complete
(Ashlagi et al. 2019). Given this, we treat the distri-
butional constraints as soft and look for assignments
that do not violate the given constraints by much, as
following Nguyen and Vohra (2017). In some of the
above applications it is arguably reasonable to allow for
small violations of these constraints.

Next we describe our contributions. For exposition
purposes, we formulate the problem in terms of
assigning students to schools. Each student in the
model has a publicly known type (a type can encode,
for example, the neighborhood of the student, socio-
economic status, or race) and a privately known ordinal
ranking over schools. Each school has lower- and upper-
bound quotas for the number of students of certain types
that it can admit.We are interested in assigning asmany
students to schools as possible. We refer to this property
as “allocative efficiency.”

Our main contribution is a generalization of the
serial dictatorship mechanism, which maintains
strategyproofness, Pareto efficiency, and computa-
tional efficiency. It also produces assignments that
violate the distributional constraints by no more than
the number of available types.

In addition to the above properties, the number of
students ourmechanism assigns is at least the number
of students that can be fractionally assigned, subject
to distributional constraints (see, e.g., Ehlers et al.
2014 and Kamada and Kojima 2014). We refer to this
benchmark as OPT. Observe that some constraints
may need to be violated to achieve this benchmark.
One assumption we make is that all schools are ac-
ceptable to all students; this is important to achieve
allocative efficiency together with strategyproofness
(thus preventing students from truncating their prefer-
ence lists). This is a reasonable assumption when out-
side options are very limited, as arguably the casewhen
assigning refugees, assigning cadets tomilitary schools,
or assigning students with few local private schools.

The key idea behind the mechanism is to carefully
design a menu of schools that are available for each
student who is about to be assigned. This is done by it-
eratively solving a set of linear programs before each
assignment, one for each school, which checks whether
the student canpossibly be assigned to the school in away
that eventually at least OPT students will be assigned.

We further introduce a generalization of the prob-
abilistic serial algorithm, which produces an ordinally
efficient assignment. The main idea is that during the
“eating” process, a student who is about to violate a
constraint that is associated with the school she is
eating from switches to eat from her next most pre-
ferred school. The eating process terminates with a
fractional assignment, which is then implemented as
a lottery over integral assignments such that no distri-
butional constraint is violated by more than the number

of existing types. We further show that the generalized
PS is envy-free (within-type) andordinally efficient.How-
ever, in contrast to the setting without distributional
constraints, we show that no mechanism is envy-free,
ordinally efficient, and weakly strategyproof.
Finally, we note that violating constraints is nec-

essary for a couple of reasons. First, we wish to assign
at least OPT students. Second, the set of constraints is
more general than the bihierarchical structure that is
necessary and sufficient for implementing a random
assignment using a lottery over feasible assignments
(Budish et al. 2013). In a related work Akbarpour and
Nikzad (2019) consider a class of more general con-
straints and show how a given feasible fractional
assignment can be implemented using lotteries over
integral assignments with small errors (and do not
consider the mechanism design question).

1.1. Related Work
There is a growing literature on assignment and
matching mechanisms subject to distributional con-
straints. Several papers study which constraints allow
implementation of affirmative action (Huang 2010,
Fleiner and Kamiyama 2012, Kojima 2012, Hafalir
et al. 2013, Kominers and Sönmez 2013, Westkamp
2013, Braun et al. 2014, Ehlers et al. 2014, Yokoi 2016).
These papers consider either lower- or upper-bound
constraints. Because satisfying lower-bound constraints
is generally impossible (Biró et al. 2010), some of these
studies also consider soft constraints, but without pro-
viding guarantees on constraint violations. Nor do
these studies consider allocative efficiency.
More general constraints, like “regional-caps,” have

been considered (Kamada and Kojima 2014, 2017),
and several studies have considered lower- and upper-
bound constraints simultaneously (Ehlers et al. 2014,
Goto et al. 2015, Fragiadakis et al. 2016, Hamada et al.
2016, Fragiadakis and Troyan 2017). These studies
focus on constrained efficiency or weak stability and
seek nonwasteful outcomes. Our paper allows for con-
straints on subsets of types while also seeking allo-
cative efficiency.We focus, however, only on assignment
problems with no priorities.
This paper is inspired by Nguyen and Vohra (2019)

and Nguyen and Vohra (2017), which, respectively,
study two-sided markets under complementarities
and proportionality constraints and findmechanisms
that implement stable matchings without violating
each constraint by much. To bound the constraint
violations, they adopt a novel approach using Scarf’s
Lemma. We build on more straightforward tech-
niques, though based as well on linear programming.
Moreover, we have a different objective, namely leaving
few students unassigned. Noda (2018) has the same
objective as in our paper. However, he assumes con-
straints cannot be violated and develops, under large
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market assumptions, strategyproof mechanisms that
are only approximately optimal.

Finally, our paper assumes schools’ preferences are
given via ranking lists and quotas are given exogenously.
We refer to Echenique and Yenmez (2015), who char-
acterize schools’ choice rules that account for diversity
preferences andfind that natural axiomsyield suchquotas.

2. Model
A school choice problem consists of a set of students
N � {1, . . . , n} and a set of schoolsM� {1, . . . ,m} ∪ {φ},
where φ is an outside option. Every other school is
referred to as a regular school.

Each student i ∈ N has a strict preference ordering �i

over M. We assume that all students prefer every
regular school to the outside option, and later we
discuss the robustness of the results based on this
assumption. Each student i ∈ N is associated with a
commonly known type ti, which belongs to a finite set
of types denoted by T. Denote by Ct the number of
students of type t ∈ T.

An assignment of students to schools is given by a
matrix [(xi,s)i∈N,s∈M], where xi,s is the probability that i
is assigned to s, and for all i ∈ N,

∑
s∈M xi,s � 1. An as-

signment is integral if every student i ∈ N is assigned
to a single school s ∈ Mwith probability 1. We refer to
an integral assignment also as an allocation.

It will be useful to consider the assignment of
students on the basis of their types. A vector x �
[(xt,s)t∈T,s∈M] is called a type-assignment if for every type
t ∈ T,

∑
s∈M xt,s � Ct. Note that every assignment cor-

responds to a unique type-assignment. Throughout
the paper, we will refer to a type-assignment simply
as an assignment.

Next we introduce the distributional constraints.
For every s ∈ M, let Z(s) ⊆ 2T be a collection of subsets
R ⊆ T. For every s ∈ M and every R ∈ Z(s), we are
given lower- and upper-bound quotas q

R,s
and q̄R,s,

respectively. (q̄T,s can be thought of as the capacity of
school s.)We assume there are no constraints imposed
on φ, that is, Z(φ) � ∅. Let q � [(q

R,s
)s∈M,R∈Z(s)] and

q̄ � [(q̄R,s)s∈M,R∈Z(s)]. We refer to q � [q, q̄] as the dis-
tributional constraints.

We say that an assignment x is feasible with respect
to q if

q
R,s

≤ ∑
t∈R

xt,s ≤ q̄R,s ∀s ∈ M,R ∈ Z(s).

An allocation x Pareto dominates another allocation y if
no student is worse off in x than in y and at least one
student is better off. An allocation x is said to be Pareto
efficientwith respect toq if there is no other allocation that
is feasible with respect to q that Pareto dominates x.

Pareto-efficient allocations can differ with respect
to the number of students assigned to regular schools

(see Example 1 below). We are interested in maxi-
mizing the number of students that are assigned to
regular schools. Consider the linear program (LP1),
which attains this objective over all feasible fractional
assignments and denote its objective by OPT. That is,
OPT is the maximum (fractional) number of students
that can be assigned to regular schools without vio-
lating the distributional constraints.
We say that x is allocative efficient if it assigns at least

OPTmany students to regular schools.We are interested
in finding allocations that are allocative efficient,
while violating each lower- and upper-bound quota
by at most |T|.
OPT � max

x∈RT×M

∑
t∈T

∑
s∈M\{φ}

xt,s

s.t.
∑
t∈R

xt,s ≤ q̄R,s, s ∈ M,R ∈ Z(s)∑
t∈R

xt,s ≥ q
R,s
, s ∈ M,R ∈ Z(s)∑

s∈M
xt,s � Ct, t ∈ T

xt,s ≥ 0, t ∈ T, s ∈ M.

(LP1)

Throughout the paper we assume that (LP1) has a
feasible solution.

Example 1 (Few Students Assigned To Regular Schools).
This example illustrates that Pareto efficiency does
not imply allocative efficiency and a Pareto-efficient
assignment can result in many unassigned students.
To see this, suppose there are three types of students,
t1, t2, t3, and one regular school swith 20 seats. We are
given two constraints: (i) at most 10 students of types
t1 or t2 can be assigned to s, and (ii) at most 10 students
of types t1 or t3 can be assigned to s. Observe that
assigning 10 students of type t1 to s, or assigning 10
students of type t2 and 10 students of type t3 to s leads
to Pareto efficiency.

Finally, a mechanism maps preference profiles to
allocations.Amechanism is strategyproof if it is a weakly
dominant strategy for every student to reveal her true
preferences in the game induced by the mechanism.

3. Serial Dictatorship with Dynamic Menus
We present a generalization of SD for assignments
with distributional constraints. The algorithm out-
puts an assignment that satisfies allocative efficiency
and violates every lower- and upper-bound quota by
at most |T|. As in SD, students in our algorithm are
sequentially assigned to their most preferred school
from a given menu. A key difference is that the menu
given to every student is computed dynamically with
the aid of a linear program.
Throughout the algorithmwemaintain a vector y �

[(yt,s)t∈T,s∈M] that keeps track of the (possibly fractional)
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quantity of students of type t assigned to school s.
We refer to y as an incomplete assignment. We also
maintain a vector Δ � [(Δt,s)t∈T,s∈M] to keep track of
how much the lower- and upper-bound quotas cor-
responding to each type t ∈ T and school s ∈ M have
changed so far. For the sake of convenience, define,
for any school s ∈ M and subset of types R ∈ Z(s),
yR,s � ∑

t∈R yt,s and ΔR,s � ∑
t∈R Δt,s.

To design each student’s menu, we will need to
solve the following auxiliary linear program (LP2).
The linear program takes an incomplete assignment y
and distributional constraints [q + Δ, q̄ + Δ] as input
and looks for a feasible solution x that assigns the
remaining students of each type in a way that is both
allocative efficient and feasible with respect to the
distributional constraints. The objective of (LP2) is to
find such a solution that maximizes the quantity of
students of a given type t̂ that are assigned to a given
school ŝ, which we denote by f (t̂, ŝ).
f t̂, ŝ
( ) � max

x∈RT×M
xt̂,ŝ

s.t.
∑
t∈T

∑
s∈M\{φ}

xt,s +
∑

s∈M\{φ}
yT,s ≥ OPT∑

t∈R
xt,s + yR,s ≤ q̄R,s + ΔR,s,

s ∈ M,R ∈ Z(s)∑
t∈R

xt,s + yR,s ≥ q
R,s

+ ΔR,s,

s ∈ M,R ∈ Z(s)∑
s∈M

xt,s +
∑
s∈M

yt,s � Ct, t ∈ T

xt,s ≥ 0, t ∈ T, s ∈ M.

(LP2)

Given the above definitions, we can describe the
main ideas of the algorithm. The algorithm con-
siders the students sequentially in a given (or ran-
dom) order. Each iteration consists of two steps:
(a) assigning the next student to a school (the “As-
signment Step”) and (b) resolving fractional assign-
ments and updating the distributional constraints
(the “Resolution Step”).

Assignment Step. Suppose the algorithm has assigned
students 1, . . . , i − 1. Let i be the next student to be
assigned and suppose si is her favorite school. We need
to determine whether i can be assigned to si. For this,
we solve (LP2) with t̂ � ti and ŝ � si. If f (ti, si) ≥ 1, i is
assigned to si (with probability 1). If f (ti, si) � 0, i cannot
be assigned to si. In this case the algorithm proceeds to
determine whether i can be assigned to her next fa-
vorite school.

An interesting case arises when 0 < f (ti, si) < 1. In
this case we must relax some of the distributional
constraints to be able to assign student i to si. Fur-
thermore, before observing the preferences of students

who are not yet assigned, it is unclear exactly which
constraints should be relaxed. Therefore at this point
we assign only a fraction f (ti, si) of student i to si in
the linear program and say that student i is partially
assigned. Student i remains partially assigned until
her remaining fraction is completely assigned to si
(while the algorithm assigns other students). The
assignment is considered resolved once she is com-
pletely assigned.

Resolution Step. After assigning a student (either par-
tially or completely), we proceed to the next step,
where the algorithm attempts to resolve any exist-
ing partial assignments and update the distributional
constraints.
To explain how partial assignments are resolved, we

use the following definition. A school s is critical for
type t if 0 < f (t, s) < 1. Consider an arbitrary student j
that is partially assigned to sj and let rj be the remaining
fraction of j that is still unassigned. We ask whether
there is another school s �� sj that is critical for type tj.
Namely, we check whether there exists a school s ∈ M
such that 0 < f (tj, s) < 1. If such a critical school s is
found, we update the variables in a set of operations we
label ( j, s)-updates:

j, s
( )

-updates:

ρ ← min f tj, s
( )

, rj
( )

Δtj ,s ← Δtj ,s − ρ
Δtj ,sj ← Δtj,sj + ρ
ytj ,sj ← ytj,sj + ρ
rj ← rj − ρ.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
The second-to-last operation increases the fraction of
student j assigned to school sj. Note that this ensures
that j will eventually be assigned to sj with proba-
bility 1. The second and third operations adjust the
distributional constraints corresponding to schools
s and sj so they are not violated and (LP2) remains
feasible. More importantly, they ensure that at every
point during the algorithm, there is never more than
one partially assigned student of each type.
Observe that for some critical school s ∈ M and some

subset of types R ∈ Z(s), the lower bound quotas in
(LP2) (i.e., q

R,s
+ ΔR,s) may become negative after a set

of (j, s)-updates operations. This, however, does not
create a problem, because the feasible solution is
required to be nonnegative. Although the upper
bound quotas, q̄R,s + ΔR,s, can also decrease after a set of
(j, s)-updates operations, they never become negative
by the definition of ρ. Also observe that if for some type
t, there is a less than one unit of students of type t
remaining to be assigned, the outside option becomes
critical for t. Therefore, while resolving a partially
assigned student, we will treat the outside option as
any other school.
Next we provide a formal description of the algo-

rithm, called serial dictatorship with dynamic menus.
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In addition to y and Δ, we also maintain a set P of
partially assigned students throughout the algorithm.

Algorithm 1 (Serial Dictatorship with Dynamic Menus)
1. Δ ← �0, y ← �0, P ← {}.
2. For i � 1 to n,
3. S ← M.
4. While i is not assigned, [Assignment Step]
5. si ← i’s most preferred school in S.
6. S ← S \ si.
7. If f (ti, si) ≥ 1 then
8. assign i to si.
9. yti,si ← yti ,si + 1.

10. Else if 0 < f (ti, si) ≤ 1 then
11. partially assign i to si.
12. P ← P ∪ {i}, ri ← 1 − f (ti, si).
13. yti,si ← yti ,si + f (ti, si).
14. End
15. While ∃ (j ∈ P and s ∈ M \ {sj}) such that

0 < f (tj, s) < 1, [Resolution Step]
16. (j, s)-updates:
17. ρ ← min( f (tj, s), rj).
18: Δtj,s ← Δtj,s − ρ.
19. Δtj ,sj ← Δtj ,sj + ρ.
20. ytj ,sj ← ytj ,sj + ρ.
21. rj ← rj − ρ.
22. If rj � 0 then

8 Assignment of j to sj is resolved
23. P ← P \ {j}.
24. End
25. End

Our main result is given and analyzed in Section 3.2.
In the next section we illustrate Algorithm 1 on a sim-
ple example.

3.1. A Simple Example
To illustrate Algorithm 1, consider the following simple
example (see the appendix for a more involved exam-
ple). There are two schools s1 and s2. There are three
students i, j, and k, whose types are t1, t2, and t3, re-
spectively. Students i and j prefer s1 over s2, and
student k prefers s2 over s1.We are given the following
distributional constraints. For each school s ∈ {s1, s2}
and every two types t �� t′, 1 ≤ xt,s + xt′,s ≤ 2.

Observe that the unique feasible fractional solution
is the one in which each student is assigned to each
school with probability 0.5 (i.e., xt,s � 0.5 for every t ∈
{t1, t2, t3} and s ∈ {s1, s2}). Assume the order of stu-
dents to be i, j and k. In the first assignment step, i is
partially assigned to s1 (with 0.5) and is added to the
set of partially assigned students. In the first resolu-
tion step, s2 is critical for type t1 and f (t1, s2) � 0.5.
Therefore, s2 is used to resolve the assignment of i to s1
by applying the (i, s2)-updates. After this procedure,

the constraints of schools s1 and s2 are updated as
follows:

1.5 ≤ xt1,s1 + xt2,s1 ≤ 2.5, 0.5 ≤ xt1,s2 + xt2,s2 ≤ 1.5,
1 ≤ xt2,s1 + xt3,s1 ≤ 2, 1 ≤ xt2,s2 + xt3,s2 ≤ 2,
1.5 ≤ xt3,s1 + xt1,s1 ≤ 2.5, 0.5 ≤ xt3,s2 + xt1,s2 ≤ 1.5.

In the next assignment step, because f (t2, s1) � 0.5, j
will we partially assigned to s1. Similarly, in the next
resolution step, s2 is used to resolve her assignment.
The constraints are updated to:

2 ≤ xt1,s1 + xt2,s1 ≤ 3, 0 ≤ xt1,s2 + xt2,s2 ≤ 1,
1.5 ≤ xt2,s1 + xt3,s1 ≤ 2.5, 0.5 ≤ xt2,s2 + xt3,s2 ≤ 1.5,
1.5 ≤ xt3,s1 + xt1,s1 ≤ 2.5, 0.5 ≤ xt3,s2 + xt1,s2 ≤ 1.5.

In the final assignment step, k will be partially as-
signed to s2 because f (t3, s2) � 0.5. Because f (t3, s1) �
0.5, her assignment will be resolved in the following
resolution step using the (k, s1)-updates. The final
constraints are:

2 ≤ xt1,s1 + xt2,s1 ≤ 3, 0 ≤ xt1,s2 + xt2,s2 ≤ 1,
1 ≤ xt2,s1 + xt3,s1 ≤ 2, 1 ≤ xt2,s2 + xt3,s2 ≤ 2,
1 ≤ xt3,s1 + xt1,s1 ≤ 2, 1 ≤ xt3,s2 + xt1,s2 ≤ 2,

and the algorithm terminates with i and j assigned to
s1 and k assigned to s2.

3.2. Analysis of Algorithm 1
Before we prove our main result, we establish a few
useful properties of Algorithm 1.

Claim 1. Fix a (j, s)-updates sequence of operations for
student j and school s.
i. Let x be a feasible solution to (LP2) before the

(j, s)-updates that satisfies xtj,s ≥ ρ. Then setting xtj ,s ←
xtj ,s − ρ generates a feasible solution to (LP2) after the
(j, s)-updates.
ii. Let x be a feasible solution to (LP2) after the

( j, s)-updates. Then setting xtj ,s ← xtj,s + ρ generates a
feasible solution to (LP2) before the ( j, s)-updates.
Proof. We show the first part (the other part fol-
lows similar arguments). Observe that after the (j, s)-
updates,

∑
s∈M\{φ} yT,s increase by ρ and

∑
t∈T

∑
s∈M\{φ} xt,s

decreases by ρ, implying that the first constraint of
(LP2) holds.
The second and third constraints in (LP2) hold for all

schools other than s and sj because the values of x and y
and Δ remain the same for these schools. These con-
straints also hold for school s because Δtj ,s and xtj,s have
decreased by the same amount, whereas the value of
ytj,s remains unchanged. Similarly they hold for school
sj because ytj ,sj and Δtj,sj have increased by the same
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amount, whereas xtj ,sj remains unchanged. The fourth
constraint holds because after the (j, s)-updates, xtj ,s
decreases by ρ, ytj,sj increases by ρ, and all other
coordinates of x and y remain the same. Therefore,∑

s∈M xt,s +∑
s∈M yt,s remains constant for each t ∈ T. □

Lemma 1. (LP2) is feasible after each assignment step and
after each resolution step in Algorithm 1.

Proof. At the beginning of the algorithm, before any
assignments are made, (LP2) is feasible on the basis of
the assumption that there is a feasible solution for
(LP1). We next show that (LP2) is feasible after each
assignment step and after each ( j, s)-update in the
resolution step.

Consider an assignment step and let i be the student
that is being assigned to school si (possibly partially).
Observe that the only change in y when i is being
assigned is yti,si ← yti ,si +min( f (ti, si), 1). Let x be a
solution for f (ti, si) just before assigning i to si. Then
setting xti ,si ← xti,si −min(xti ,si , 1) while keeping all other
coordinates of x the same generates a feasible solution
to (LP2) immediately after i is assigned.

Now consider a resolution step and assume that x is a
feasible solution of f (tj, s) just before the ( j, s)-updates
step, and let r be the remaining unassigned fraction
of student j. Then, by Claim 1, setting xtj ,s ← xtj,s −
min(xtj ,s, r) while keeping all other coordinates of x the
same generates a feasible solution to (LP2) after the
(j, s)-updates. □

Lemma 2. After Algorithm 1 terminates, no student re-
mains partially assigned.

Proof. We first show that at any point during the
running of algorithm, at most one student per type is
partially assigned. For the sake of contradiction, sup-
pose students i and j (i > j) are the first two students of
the same type that are both partially assigned at some
point in the algorithm.

Consider the resolution step just before the algorithm
proceeds to assign student i. By design, while the as-
signment of student j is not resolved and there exists a
critical school s′ for type tj, the algorithm uses that
school to resolve the assignment of j. Because by the
end of the resolution step, the assignment of student j is
not resolved, there must be no remaining critical schools
for type tj. Therefore student i cannot be partially
assigned.

We can now show that no student is partially assigned
after the algorithm terminates. Suppose, for the sake
of contradiction, that this is not the case and there is a
student j of type t that remains partially assigned,
and let rj be the fraction of j that remains. By the
above argument, j is the only student of type t that is
partially assigned. We claim that in the resolution
step of the last iteration, assignment of j to sj will

be resolved. Suppose this is not the case; then by
Lemma 1, (LP2) is still feasible after termination and
has some solution x. Because j is the only student of
type t that is partially assigned, it must be that∑

s∈M xt,s � rj. Therefore, because rj < 1, this implies
that there exists some school that is critical with
respect to t, contradicting the assumption that the
algorithm has terminated.

Lemma 3. After Algorithm 1 terminates, the only feasible
solution for (LP2) is �0.

Proof. Assume the algorithm has terminated. By
Lemma 1, (LP2) is feasible, and by Lemma 2, all stu-
dents are assigned to some school (including, possibly,
to the outside option) with probability 1. This implies
that for every t ∈ T,

∑
s∈M yt,s � Ct. Thus �0 is the unique

feasible solution for (LP2). □

Lemma 4. For every s′ ∈ M and every t′ ∈ T, f (t′, s′) does
not increase after each assignment step and each resolution
step in Algorithm 1.

Proof. Let s′ ∈ M be an arbitrary school and t′ ∈ T an
arbitrary type. After an assignment step, f (t′, s′) cannot
increase because y only increases after an assignment.
We next show that during the resolution step, f (t′, s′)
cannot increase after updating Δ and y (i.e., after any
( j, s)-updates). Consider a ( j, s)-updates step for some
student j and a critical school s for tj. Let P1 be the set of
all feasible solutions for (LP2) right before the ( j, s)-
updates and P2 be the set of all feasible solutions for
(LP2) after the ( j, s)-updates. Fix a feasible solution
x ∈ P2. By Claim 1, updating x so that xtj,s ← xtj ,s + ρ,
where ρ is defined as in the ( j, s)-updates, generates a
feasible solution in P1. Because the value of f (t′, s′)
before and after the ( j, s)-updates is defined as the
maximum of xt′,s′ over all feasible solutions x in P1 and
P2 respectively, it cannot be increasing. □

Lemma 5. After Algorithm 1 terminates, |ΔR,s| ≤ |T| for
every s ∈ M and every R ∈ Z(s).
Proof. Because for any R ∈ Z(s), ΔR,s � ∑

t∈R Δt,s, it
suffices to show that for any school s and for any type t,
−1 ≤ Δt,s ≤ 1. We show in fact that these inequalities
hold at any time during the algorithm.
Let j be a student that is partially assigned to sj. We

first argue that if Δtj ,sj increases (line 19), it must be true
that f (tj, sj) � 0. To see this, note that after j is partially
assigned to sj and ytj ,sj is increased (line 13), f (tj, sj) � 0,
and therefore, by Lemma 4, f (tj, sj) remains zero there-
after. Moreover, when s is critical for tj, Δtj ,s can only
decrease. This means that for all s′ ∈ M and t′ ∈ T, as
long as f (t′, s′) > 0, Δt′,s′ can only decrease; and once
f (t′, s′) becomes zero (which happens by Lemma 3),Δt′,s′

only increases.
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Suppose Δtj ,s decreases by some amount ρ (at line 18)
and suppose f (tj, s) � a immediately before this de-
crease. By Claim 1, f (tj, s) � a − ρ after the (j, s)-updates.
Therefore, because school s is critical with respect to tj,
Δtj ,s can decrease by at most 1. On the other hand, Δtj ,sj
increases when we attempt to resolve the partial as-
signment of student j to school sj. Let rj be the remaining
fraction of j to be assigned. Whenever Δtj,sj increases
by ρ (line 19), rj decreases by ρ (line 21). Therefore, by
definition, Δtj ,sj cannot increase by more than 1. □

Theorem 1. Consider a school choice problem with distri-
butional constraints q. Algorithm 1 outputs an allocation y
and a vector Δ such that:

i. y is feasible with respect to [q + Δ, q̄ + Δ],
ii. y is allocative efficient,
iii. |ΔR,s| ≤ |T| for every s ∈ M and every R ∈ Z(s), and
iv. y is Pareto efficient with respect to [q + Δ, q̄ + Δ].
Moreover, the mechanism induced by Algorithm 1 is

strategyproof.

Proof. The first three properties follow directly from
Lemmas 1, 3, and 5.

Next we show that the mechanism induced by
Algorithm 1 is strategyproof. Fix some arbitrary stu-
dent i. We claim that i’s preferences cannot affect the
assignments of all students that are assigned before
i ∈ N. Note that once a student is partially assigned to a
school, she will eventually be assigned to that school
with probability 1 by Lemma 2 and because the re-
mainder of a partially assigned student j is always
assigned to sj. So the only way in which i can affect the
assignment of a student j < i is through her type, which
cannot be altered. Finally, when it is i’s turn to be
assigned, she has no reason to misreport her prefer-
ences because, again, even if she is partially assigned
to si, she will be eventually assigned to that school with
probability 1.

We proceed to prove part (iv). For this we need the
following two claims.

Claim 2. Throughout the algorithm, for any t ∈ T and
s ∈ M, yt,s − Δt,s does not decrease.

Proof. Observe that during the assignment step the
claim holds because y can only increase and Δ does not
change. Consider a (j, s)-updates step. Either the value
ofΔtj ,s decreases (line 18) while the corresponding value
ytj ,s remains unchanged, or the values of Δtj ,sj and ytj ,sj
increase together by the same amount (lines 19–20). □

Claim 3. Consider the values y and Δ after a resolution step.
i. Suppose x is a feasible solution for (LP2). Then x +

y − Δ is an optimal feasible solution for (LP1).
ii. Let x be an optimal feasible solution for (LP1) such

that x − y + Δ ≥ �0. Then x − y + Δ is a feasible solution
for (LP2).

Proof. We prove the first part (the second part follows
from similar arguments). Note, by Lemma 1, that the
set of feasible solutions for (LP2) is not empty.
Observe (from the updates in the resolution step)

that
∑

s∈M Δt,s � 0 for all t ∈ T. This implies that if x is
feasible for (LP2), then x + y − Δ assigns at least OPT
students to regular schools because∑

t∈T

∑
s∈M\{φ}

(x + y − Δ)t,s �
∑
t∈T

∑
s∈M\{φ}

xt,s +
∑

s∈M\{φ}
yT,s

≥ OPT.
Because x is a feasible solution for (LP2), for every
s ∈ M and every R ∈ Z(s),∑

t∈R
(x + y)t,s ≤ q̄R,s + ΔR,s,

and therefore the first constraint in (LP1) also holds,
namely for every s ∈ M and every R ∈ Z(s),∑

t∈R
(x + y − Δ)t,s ≤ q̄R,s.

Other constraints can be similarly verified. More-
over, by Claim 2 and because y ≡ �0 and Δ ≡ �0 at
the beginning of the algorithm, it must be true that
(x + y − Δ)t,s ≥ 0 for all t ∈ T and s ∈ M. □

We can now complete the proof. Let y and Δ be the
outcomes of the algorithm (as in the statement of
Theorem 1). For the sake of contradiction, suppose
there exists an allocation y′ that is feasible with re-
spect to [q + Δ, q̄ + Δ] and Pareto dominates y. Let
student i be the first student (with respect to the order
of the algorithm) who is assigned to different schools
under y and y′, and let these schools be s and s′,
respectively. Note that i prefers s′ to s.
Let γ be the time during which the algorithm reaches

the assignment step at iteration i. Let yγ and Δγ be the
values of y and Δ at time γ.
Because the algorithm did not assign i to s′, it must be

true that f (ti, s′) � 0. Therefore, by Claim 3, at time γ
there is no optimal feasible solution x for (LP1) such
that x − yγ + Δγ ≥ �0 and (x − yγ + Δγ)ti,s′ > 0. We will
obtain a contradiction by showing that such an x exists.
We show that, upon termination, there exists

0 < c ≤ 1, such that (i) y − Δ + c(y′ − y) is an optimal
feasible solution for (LP1), (ii) y − Δ + c(y′ − y) − yγ +
Δγ ≥ �0, and (iii) [y − Δ + c(y′ − y) − yγ + Δγ]ti,s′ > 0.
This will complete the proof.
First we show that (i) holds for any 0 < c ≤ 1. It is

equivalent to show that there exists a c such that 0 <
c ≤ 1 and that (1 − c)(y − Δ) + c(y′ − Δ) is an optimal
feasible solution for (LP1). By Lemma 3, after termi-
nation, �0 is feasible for (LP2). Therefore, by Claim 3,
y − Δ is an optimal feasible solution for (LP1). Consider
(LP2) upon termination. Because y′ is feasible with
respect to [q + Δ, q̄ + Δ] and assigns at leastOPT students
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(because it Pareto dominates y), �0 is feasible for (LP2)
when y is replaced with y′. Hence, by a similar ar-
gument as in Claim 3, y′ − Δ is an optimal feasible
solution for (LP1). This implies (i) because for any
0 < c ≤ 1, (1 − c)(y − Δ) + c(y′ − Δ) is a convex com-
bination of optimal feasible solutions.

Next we show that (ii) holds. By Claim 2, y − Δ ≥ yγ−
Δγ. If y′ ≥ y, then (ii) holds. Suppose this is not the case
and let s ∈ M and t ∈ T be such that (y′ − y)t,s < 0. It is
sufficient to show that for such s and t, (y − Δ)t,s >
(yγ − Δγ)t,s. Because y′ ≥ yγ and yt,s > y′t,s, we have that
yt,s > (yγ)t,s. Moreover, observe that when a student
of type t is assigned to school s (possibly partially),
(y − Δ)t,s strictly increases by min( f (t, s), 1). Therefore,
(y − Δ)t,s > (yγ − Δγ)t,s, which completes the proof.

Finally, we show that (iii) holds. By Claim 2, y−
Δ ≥ yγ − Δγ. Recall that at time γ, f (ti, s′) � 0. There-
fore, by Lemma 4, after time γ the algorithm does not
assign any other student of type ti to s′, implying that
yti ,s′ � (yγ)ti,s′ . Because every student j < i is assigned
the same school under y and y′ and i is assigned to s′
under y′, it must be true that y′ti ,s′ > yti ,s′ . This implies
that (iii) holds for any 0 < c ≤ 1. □

Remarks.
1. Algorithm 1 runs in polynomial time. To see this,

note that in each assignment step, we solve (LP2) at
most |M| times. Additionally, by Claim 1, in each
( j, s)-update either the assignment of student j gets
resolved or f (tj, s) becomes zero, in which case, by
Lemma 4, it remains zero forever. Therefore in each
resolution step, for each school s ∈ M and each stu-
dent j ∈ N, the ( j, s)-updates are done at most once.

2. When Algorithm 1 selects the order in which
students are assigned uniformly at random, the out-
come is symmetric. That is, any two students with the
same type and identical preferences have the same
probabilistic assignment.

3. We have assumed that all students prefer every
regular school to the outside option φ (and in par-
ticular all regular schools are acceptable). The results
and analysis carry through, however, if the set of
acceptable schools for each student is publicly known
(which may be a reasonable assumption in the mili-
tary or refugee assignment problems). This assump-
tion is necessary to satisfy the lower bounds and
allocative efficiency as well as to maintain strat-
egyproofness. Indeed, if students can submit a partial
preference list (e.g., by truncating their preferences),
strategyproofness may fail to hold.

4. When the set of constraints are laminar and
all lower- and upper-bound quotas are integers,
Algorithm 1 finds an allocation that is feasible with
respect to all the constraints without the need to vi-
olate any of the lower- and upper-bound quotas. We
formalize this beginning with defining laminar con-

straints. For every s ∈ M, we say that Z(s) is laminar if
for eachR,R′ ∈ Z(s), such thatR ∩ R′ �� ∅, eitherR ⊆ R′
or R′ ⊆ R. We call an assignment problem laminar if
Z(s) is laminar for all s ∈ M.

Proposition 1. Given a laminar assignment problem,
Algorithm 1 finds an integral assignment that is feasible
with respect to q.

Before we prove the proposition, we explain how a
laminar assignment problem can be reduced to a max
flow problem with integer lower and upper bound
capacities on edges. Thiswill imply the existence of an
integral and optimal solution of (LP1) that is feasible
with respect to q, which can also be found in poly-
nomial time.
A few preparations are useful to illustrate this re-

duction. For every s ∈ M \ {φ} and every R ∈ Z(s), let
X(R, s) � R′ ∈ Z(s)| R′ ⊂ R and{

∄R′′ ∈ Z(s) : R′ ⊂ R′′ ⊂ R)( }.
We now explain how to construct the graph that
corresponds to the max flow problem. For every s ∈
M \ {φ} and everyR ∈ Z(s), add a node uR,s. For every s
and every R ∈ Z(s) and every R′ ∈ X(R, s), add a di-
rected edge from uR′,s to uR,s, with lower and upper
flow constraints q

R′,s
and q̄R′,s, respectively.

We add a sourceA and a sink B. From each node uR,s
(not including the source or the sink), with no out-
going edges, add an edge to B with lower and upper
bound flow constraints q

R,s
and q̄R,s, respectively. We

add |T| auxiliary nodes s1, s2, . . . , s|T|, each of which
represents a type and add an edge from A to each st
with capacity Ct.
Finally, for each type t and every school s ∈ M \ {φ},

add an edge from st to uR,s with infinite capacity for
every R ∈ Z(s) such that t ∈ R and uR,s has no incom-
ing edges.
Now, observe that every feasible solution to the

laminar assignment problem (i.e., (LP1)) corresponds
to a feasible flow in the constructed graph with same
objective value and vice versa.

Proof of Proposition 1. Because the laminar assign-
ment problem can be reduced to a max flow problem
with integral flow constraints on the edges, the poly-
tope corresponding to the set of optimal solutions for
(LP1) has integral extreme points. We show that this
also holds for (LP2) at any point during the algorithm.
First we argue that this holds if no student is ever

partially assigned. To see this, note that after each stu-
dent is assigned, all the lower- and upper-bound quotas
change by an integral amount. Therefore, similar to the
above, one can reduce our problem into a max flow
problem with integral flow constraints on the edges,
which implies that the polytope corresponding to the
set of feasible solutions for (LP2) has integral ex-
treme points.
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It remains to show that Algorithm 1 never partially
assigns any student. Suppose this is not the case and
let i be the first student that is partially assigned to
some school si. Just before assigning i, let3 be the set of
feasible solutions for (LP2). Observe that by the above
argument, all extreme points of3 are integral. Because i
was partially assigned to si, this implies that

0 < max
x∈3

xti ,s < 1.

This is a contradiction, because every point in3 can be
written as a convex combination of extreme points.

This means that there must exist an integral point
x′ ∈ 3 with x′ti ,s � 1. □

4. Generalized Probabilistic
Serial Mechanism

In this section we generalize the probabilistic serial
mechanism (PS) to allow for distributional constraints.
The PS mechanism was introduced by Bogomolnaia
and Moulin (2001), who showed that it satisfies se-
veral desirable properties such as ordinal efficiency,
envy-freeness, and weak strategyproofness.

Let us begin with a brief description of PS, also
known as the eating algorithm. Treating each school
(including the outside option) as a divisible object, the
algorithm asks the students to eat from schools si-
multaneously and at the same rate until each con-
sumes one unit. Every student begins eating from her
favorite school. Whenever a school s is fully con-
sumed, students whowere eating from s then proceed
to eat from their next preferred available school. The
process concludes when each student consumes one
unit. The resulting fractional outcome is implemented
using a lottery over allocations defined by the Birkhoff-
Von-Neumann Theorem (Schrijver 2003).

To define the properties of PS, we use the (student)
assignment variables xi,s, which is interpreted as the
probability that student i is assigned to school s. For
assignment x, we denote by xi � (xi,s)s∈S the assign-
ment for student i, which is the distributional out-
come for student i.

Let x and y be assignments. We say that xi sto-
chastically dominates yi with respect to preference
order �i, if for every s ∈ M:∑

s′:s′�is
xi,s′ ≥

∑
s′:s′�is

yi,s′ ,

in which case we write xisd(�i)yi.
Given a preference profile (�i)i∈N , we say that y is

stochastically dominated by x if xisd(�i)yi for all i ∈ N
and x �� y. The assignment x is said to be ordinally
efficient, if it is a feasible solution (for (LP3)) and it
is not stochastically dominated by any other feasi-
ble assignment.

The assignment x is within-type envy-free if for any
two students i, j of the same type t and every school
s ∈ M: ∑

s′:s′�is
xi,s′ ≥

∑
s′:s′�is

xj,s′ .

Finally, a mechanism is weakly strategyproof if for
every student i and any preference profile of all other
students, reporting �i results in an assignment xi for i,
that is not stochastically dominated with respect to �i

by any other assignment x′i for i that can be obtained
by i misreporting her preferences, unless xi � x′i .
Our algorithm, which we call the generalized proba-

bilistic serial (GPS), generalizes the PS algorithm to the
setting with distributional constraints. The outcome
of the GPS is a fractional assignment that does not
violate any lower- or upper-bound quotas. We show
that such a fractional assignment can be implemented
as a lottery over integral solutions that violate each
quota by at most |T|.
We begin with establishing the implementation of

such a fractional solution as a distribution over al-
locations and explain the details of the GPS algorithm
in Section 4.2.

4.1. Implementing a Fractional Solution as a Lottery
over Allocations

Recall the linear program (LP1) for optimizing allo-
cative efficiency given the distributional constraints.
This program can be rewritten using the (student)
assignment variables xi,s, which can be interpreted as
the probability that student i is assigned to school s:

OPT � max
x∈RN×M

∑
i∈N

∑
s∈M\{φ}

xi,s

s.t.
∑

i∈N:ti∈R
xi,s ≤ q̄R,s, ∀s ∈ M,R ∈ Z(s)∑

i∈N:ti∈R
xi,s ≥ q

R,s
, ∀s ∈ M,R ∈ Z(s)∑

s∈M
xi,s � 1, ∀i ∈ N

xi,s ≥ 0, ∀i ∈ N, s ∈ M.

(LP3)

We will show that every optimal solution for (LP3)
can be written as a convex combination of approxi-
mately feasible allocations.

Definition 1. An allocation x is approximately feasible if it
assigns students in a way that

1. Each lower- and upper-bound quota is violated
by at most |T|. That is,

q
R,s

− |T| ≤ ∑
t∈R

xt,s ≤ q̄R,s + |T| ∀s ∈ M,R ∈ Z(s).

2. At least �OPT� students are assigned to regu-
lar schools.
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Lemma 6. Every optimal solution for (LP3) can be writ-
ten as a convex combination of approximately feasible in-
tegral solutions.

Proof. Let x be an optimal solution for (LP3). Consider
the following polyhedron with variables y:⌊ ∑
i∈N:ti�t

xi,s

⌋
≤ ∑

i∈N:ti�t
yi,s ≤

⌈ ∑
i∈N:ti�t

xi,s

⌉
,

∀t ∈ T, s ∈ M \ {φ}⌊∑
i∈N

xi,φ

⌋
≤ ∑

i∈N
yi,φ ≤

⌈∑
i∈N

xi,φ

⌉
∑
s∈M

yi,s � 1, ∀i ∈ N

yi,s ≥ 0, ∀i ∈ N, s ∈ M.

Note that x is a feasible solution for the above linear
program, so the set of feasible solutions is nonempty.
Second, the above linear program corresponds to a
generalized assignment problem with integer lower-
and upper-bound capacities, and therefore the corner
points of its corresponding polytope are integral.

Finally, every corner point y of the above polytope is
approximately feasible. The reason is that for each upper-
bound quota q̄R,s over s ∈ M \ {φ} and R ∈ Z(s), we have

∑
i∈N:ti∈R

yi,s ≤
∑
t∈R

⌈ ∑
i∈N:ti�t

xi,s

⌉
≤ ∑

t∈R

( ∑
i∈N:ti�t

xi,s + 1

)
≤ ∑

i∈N:ti∈R
xi,s + |T| ≤ q̄R,s + |T|.

A similar argument can be used for lower-bound
quotas. Furthermore, the number of students who
are assigned to the outside option by y is:

∑
i∈N

yi,φ ≤
⌈∑
i∈N

xi,φ

⌉
.

Therefore at least �OPT� students are assigned to
regular schools. □

We note that Lemma 6 could also be derived from
(Akbarpour and Nikzad 2019). Additionally, as re-
marked in the previous section, if the set of con-
straints are bihierarchical, one can implement the
assignment without violating any lower- or upper-
bound quota.

4.2. A Generalization of the Probabilistic
Serial Mechanism

The eating algorithm, PS, is very similar to Bogomolnaia
and Moulin (2001) in that every student eats from her
favorite school as long the “partial” assignment is
“extendable” to an optimal solution for (LP3) and
switches to her next favorite school when a constraint
becomes tight.

Definition 2. A vector y is extendable if there exists x, a
feasible solution for (LP3) that also satisfies the fol-
lowing conditions:
i. x dominates y (i.e., xi,s ≥ yi,s for all i ∈ N and

s ∈ M \ {φ}), and
ii. x is allocative efficient (i.e.,

∑
i∈N

∑
s∈M\{φ} xi,s �

OPT).

Given any vector y, it is possible to check whether it
is extendable by adding the linear constraints corre-
sponding to conditions (i) and (ii) to (LP3) and testing
whether the set of feasible solutions remains non-
empty. Let % denote the set of extendable vectors.
Similar to PS, theGPS starts from an empty assignment

and asks every student to eat from the schools at a con-
stant rate in their order of preference. Themain difference,
however, is thatwe keep the assignment vector in% at all
times.Wheneverwe reach a boundary atwhichwe are
about to leave the set %, we prevent the corresponding
students from consuming their current school and ask
them to move to their next most preferred available
school. We then continue the process and have all
agents consume their current preferred and available
school. We do this until the algorithm terminates
(i.e., every student has consumed one unit).
The above process can be implemented as follows.

Consider any point during the running of the algo-
rithm and let xi,s denote how much of school s is
consumed by student i at that time. Also consider θ,
which denotes the eating pattern of the students at
this time (i.e., θi,s � 1 if i is currently eating from s
and 0 otherwise). Using a linear program, we can find
themaximum c such that x + cθ is extendable. Thiswill
determine how long we can continue the current eating
pattern. Whenever we reach that point, a new constraint
will be tight.At thatpoint,weaskall the students involved
in that constraint to stop eating their current school and
move to their next option. We repeat this procedure until
all students have consumed one unit in which point x is
a (fractional) optimal solution for (LP3).
The running time of this process is polynomial,

because every student switches at most |M| times.
Once a student reaches the outside option, she can
continue consuming that option until her total con-
sumption reaches one unit.

Theorem 2. The (fractional) assignment produced by the
generalized probabilistic serial (GPS) algorithm is
i. within-type envy-free,
ii. ordinally efficient, and
iii. implementable using a lottery over approximately

feasible assignments.

Proof. The following claim will be needed:

Claim 4. Once a student of type t is prevented from eating
from some school s, then no students of type t will ever be able
to eat from that school again.
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Proof. Consider the first time the algorithm starts
blocking students of type t from eating school s. Let y
denote the set of probability shares consumed by
students up to that point such that yi,s represents how
much of school s is consumed by student i. Because
the algorithm treats all students of the same type the
same way, at that point all the students of type t are
blocked from consuming s. By Definition 2, this means
that there exists no vector y′ such that y′ ≥ y and y′i,s > yi,s
for some student iwith type t. Now, because after this
point the vector y can only increase, we can never
have a vector y′ that satisfies this property, and so
students of type t will always remain blocked. □

To show within-type envy-freeness, we use proof
by contradiction. Assume there exists a student i that
envies another student j of the same type. This implies
that there exists some school s such that:∑

s′:s′�is
xj,s′ >

∑
s′:s′�is

xi,s′ .

Let A � {s′ ∈ M|s′ �i s}. We know that while it is
possible for student i to eat schools in A, she does not
consume any schools inM \ A. Additionally, by Claim 4,
we know that once she is blocked from eating some
school in A, no other student of type t can ever con-
sume from that school. Because all the students
consume schools at the same rate, this implies that∑

s′:s′�is xj,s′ ≤ ∑
s′:s′�is xi,s′ for all j ∈ Nwith type ti, which

is a contradiction.
To show ordinal efficiency, we use proof by con-

tradiction. Let x be the fractional assignment obtained
by the eating algorithm. Consider another feasible
assignment y that stochastically dominates x. Note that
the values of all the entries of x have evolved over time
and were initialized all to zero. Let x0 denote the value
of x the last time x was such that x ≤ y. At that time,
there must exist a student iwho is eating a school s and
(x0)i,s � yi,s. At that point, student i had the choice to
eat any school s′ such that (x0)i,s′ < yi,s′ , but she preferred
to keep eating school s. Because xi,s > yi,s, yi cannot
stochastically dominate xi with respect to �i, which is
a contradiction.

Property (iii) is a direct implication of Lemma 6. □

We note that Katta and Sethuraman (2006) gener-
alize PS to weak preferences without distributional
constraints. Their mechanism resembles ours in the sense
that it updates “menus” by resolving flow problems.

To illustrate GPS, consider the example in Sec-
tion 3.1. Each student first eats from her favorite
school (at rate 1). After half a unit of time, each student
has consumed half of her favorite school, and the
vector of consumed probability shares is no longer
extendable. All students then switch to eat from

their next favorite school. Again, after half a unit
of time, each student has consumed half of their
second favorite school, and now each student has
consumed one unit. Finally, the fractional assign-
ment is implemented as a lottery over approximately
feasible allocations.

4.3. An Impossibility Result
Bogomolnaia and Moulin (2001) find that no mech-
anism is ordinally efficient, envy-free, and strategy-
proof in the context of allocating indivisible objects
to homogeneous agents. However, they show that
the PS mechanism is weakly strategyproof. We prove
that with distributional constraints, weak strategy-
proofness cannot hold when both within-type envy-
freeness and ordinal efficiency are required. [A similar
impossibility for the allocation problem without dis-
tributional constraints was established for the case in
which preferences are not necessarily strict (Katta and
Sethuraman 2006).]

Theorem3. In the school choice problem with distributional
constraints, no mechanism is ordinally efficient, within-type
envy-free, and weakly strategyproof.

Proof. Consider three schools s1, s2, s3 and two stu-
dents i, j of type t. There are three additional types
t1, t2, t3 other than t and one student of each of those
types. We have the following constraints for s ∈ {s1, s2}:

1 ≤ xt1,s + xt2,s ≤ 1,
1 ≤ xt2,s + xt3,s ≤ 1,
1 ≤ xt3,s + xt1,s ≤ 1,
0 ≤ xt,s + xt1,s ≤ 1,

where xt,s represents the number of students of type
t assigned to school s. Note that in the above in-
equalities, the values of xt1,s, xt2,s, and xt3,s are all uni-
quely determined to be 0.5. Therefore, in each
school s1 and s2, there is an upper bound of 0.5 for
type t. School s3 imposes no constraints.
Now suppose that i and j have the following

preferences:

�i: s1 �i s2 �i s3,

�j: s2 �j s3 �j s1.

Assume j reports her true preferences and imisreports
�′
i : s2 �′

i s1 �′
i s3. By ordinal efficiency, both s1 and s2

should be filled up to 0.5 with students i and j. In
addition, s1 should be filled with student i. Because
of within-type envy-freeness, i and j must each be
assigned 0.25 of s2. Therefore i’s assignment in schools
s1, s2, s3 must be (0.5, 0.25, 0.25) and j’s assignment
must be (0, 0.25, 0.75). So when i and j both report
truthfully, i must be assigned 0.5 of s1 and at least
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0.25 of s2. This implies that j is assigned at most 0.25
of s2. Denote the assignment of j in this case by xj.

Using this observation, we claim that j will benefit
from misreporting her preferences. Assume i reports
her true preferences and jmisreports �′

j : s2 �′
j s1 �′

j s3.
Denote the assignment under these reports by x′.
By ordinal efficiency, s1 and s2 should be filled up
to 0.5. Moreover, i and j cannot both have positive
assignment probabilities to s1 and s2 because they
will benefit from exchanging probability shares.
In combination with within-type envy-freeness, this
implies that j’s assignment must be (0, 0.5, 0.5). This
means that x′j �� xj and x′j (sd)�j

xj, contradicting weak
strategyproofness. □

5. Conclusion
We studied the assignment problem under distribu-
tional constraints and privately known preferences.
Theremay be numerous Pareto-efficient assignments,
which can vary significantly in the number of assigned
students. The mechanisms we introduced result in as-
signments thatmayviolate each lower- andupper-bound
quota by at most the number of students’ types but can
assign as many students as can be assigned via a
fractional solution. Although our generalization of
the serial dictatorship is strategyproof, we demon-
strate that distributional constraints introduce a
new barrier to achieving weak strategyproofness
in combination with within-type envy-freeness and
ordinal efficiency.

Appendix. Illustration of the Serial Dictatorship
Algorithm with Dynamic Menus

In Section 3 we illustrated the performance of Algorithm 1
on a simple example. Here, we expand on that by analyzing
a more detailed example. Suppose there are two schools s1
and s2 and seven students i1, i2, . . . , i7 whose types are t1, t2,
t3, t4, t5, t1, and t2, respectively. Students i2 and i4 prefer s2
over s1, and the rest of the students prefer s1 over s2. We are
given the following distributional constraints:

1 ≤ xt1 ,s1 + xt2 ,s1 ≤ 1, 1 ≤ xt3 ,s2 + xt4 ,s2 ≤ 1,
1 ≤ xt2 ,s1 + xt3 ,s1 ≤ 1, 1 ≤ xt4 ,s2 + xt5 ,s2 ≤ 1,
1 ≤ xt3 ,s1 + xt1 ,s1 ≤ 1, 1 ≤ xt5 ,s2 + xt3 ,s2 ≤ 1,
0 ≤ xt1 ,s1 + xt2 ,s1 + xt3 ,s1 ≤ 2, 0 ≤ xt1 ,s2 + xt2 ,s2 + xt3 ,s2 ≤ 2.

Observe that given these quotas, in any feasible solution,
each of types t1, t2, and t3 will be assigned to school s1 with
probability 0.5, and each of types t3, t4, and t5 will be
assigned to school s2 with probability 0.5 as well. Assume
the order of students to be i1, i2, . . . , i7. In the first assignment
step, i1 is partially assigned to s1 (with 0.5) and is added to
the set of partially assigned students. In the first resolution
step, no school is critical for type t1.

In the second round, i2 is completely assigned to s2. This
time, in the resolution step, s2 is critical for type t1 and
f (t1, s2) � 0.5. Therefore, s2 is used to resolve the assignment

of i1 to s1 by applying the (i1, s2)-updates. After this pro-
cedure, the constraints of schools s1 and s2 are updated
as follows:

1.5 ≤ xt1 ,s1 + xt2 ,s1 ≤ 1.5, 1 ≤ xt3 ,s2 + xt4 ,s2 ≤ 1,
1 ≤ xt2 ,s1 + xt3 ,s1 ≤ 1, 1 ≤ xt4 ,s2 + xt5 ,s2 ≤ 1,
1.5 ≤ xt3 ,s1 + xt1 ,s1 ≤ 1.5, 1 ≤ xt5 ,s2 + xt3 ,s2 ≤ 1,
0.5 ≤ xt1 ,s1 + xt2 ,s1 + xt3 ,s1 ≤ 2.5,

−0.5 ≤ xt1 ,s2 + xt2 ,s2 + xt3 ,s2 ≤ 1.5.

In the next assignment step, because f (t3, s1) � 0.5, i3 is
partially assigned to s1. In the following resolution step, s2 is
used to resolve her assignment and after the (i3, s2)-updates
the constraints are updated to:

1.5 ≤ xt1 ,s1 + xt2 ,s1 ≤ 1.5, 0.5 ≤ xt3 ,s2 + xt4 ,s2 ≤ 0.5,
1.5 ≤ xt2 ,s1 + xt3 ,s1 ≤ 1.5, 1 ≤ xt4 ,s2 + xt5 ,s2 ≤ 1,
2 ≤ xt3 ,s1 + xt1 ,s1 ≤ 2, 0.5 ≤ xt5 ,s2 + xt3 ,s2 ≤ 0.5,
1 ≤ xt1 ,s1 + xt2 ,s1 + xt3 ,s1 ≤ 3,

−1 ≤ xt1 ,s2 + xt2 ,s2 + xt3 ,s2 ≤ 1.

Next, we have f (t4, s2) � 0.5, and therefore i4 is partially
assigned to s2. In the resolution step s1 is used to resolve
this partial assignment. After the (i4, s1)-updates the con-
straints are:

1.5 ≤ xt1 ,s1 + xt2 ,s1 ≤ 1.5, 1 ≤ xt3 ,s2 + xt4 ,s2 ≤ 1,
1.5 ≤ xt2 ,s1 + xt3 ,s1 ≤ 1.5, 1.5 ≤ xt4 ,s2 + xt5 ,s2 ≤ 1.5,
2 ≤ xt3 ,s1 + xt1 ,s1 ≤ 2, 0.5 ≤ xt5 ,s2 + xt3 ,s2 ≤ 0.5,
1 ≤ xt1 ,s1 + xt2 ,s1 + xt3 ,s1 ≤ 3,

−1 ≤ xt1 ,s2 + xt2 ,s2 + xt3 ,s2 ≤ 1.

In the next assignment step,we have f (t5, s1) � 0.5 and i5 is
partially assigned to s1. In the resolution step, s2 is used to
resolve this assignment. After the (i5, s2) updates, the con-
straints are:

1.5 ≤ xt1 ,s1 + xt2 ,s1 ≤ 1.5, 1 ≤ xt3 ,s2 + xt4 ,s2 ≤ 1,
1.5 ≤ xt2 ,s1 + xt3 ,s1 ≤ 1.5, 1 ≤ xt4 ,s2 + xt5 ,s2 ≤ 1,
2 ≤ xt3 ,s1 + xt1 ,s1 ≤ 2, 0 ≤ xt5 ,s2 + xt3 ,s2 ≤ 0,
1 ≤ xt1 ,s1 + xt2 ,s1 + xt3 ,s1 ≤ 3,

−1 ≤ xt1 ,s2 + xt2 ,s2 + xt3 ,s2 ≤ 1.

Next, we have f (t1, s1) � 0 and f (t1, s2) � 0 and therefore i6
is assigned to the outside option. Finally, when i7 is about to
get assigned, we have f (t2, s1) � 0.5 and therefore i7 is
partially assigned to s1. In the following resolution step, we
use the outside option, that is φ to resolve this partial as-
signment. After the (i7,φ)-updates, the constraints are:

2 ≤ xt1 ,s1 + xt2 ,s1 ≤ 2, 1 ≤ xt3 ,s2 + xt4 ,s2 ≤ 1,
2 ≤ xt2 ,s1 + xt3 ,s1 ≤ 2, 1 ≤ xt4 ,s2 + xt5 ,s2 ≤ 1,
2 ≤ xt3 ,s1 + xt1 ,s1 ≤ 2, 0 ≤ xt5 ,s2 + xt3 ,s2 ≤ 0,
1.5 ≤ xt1 ,s1 + xt2 ,s1 + xt3 ,s1 ≤ 3.5,

−1 ≤ xt1 ,s2 + xt2 ,s2 + xt3 ,s2 ≤ 1.
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