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3.1 Introduction

A marketplace enables economic transactions between the market participants
according to a given set of rules. When a social planner has all the information,
traditional operations and optimization can be applied directly to achieve
optimal outcomes. But it is often the case that participants hold private
information not directly accessible to the planner; engineering the rules (or
the strategy sets) carefully is often crucial to allow the market to operate
smoothly and reach desired outcomes. Another important piece of market
design is paying attention to institutional details, which impose constraints on
the planner and hence market outcomes, as in traditional operations.

Researchers have not only developed elegant theories in the area of market
design, but also contributed to improving the operations of real marketplaces
in collaboration with practitioners. This chapter provides a brief overview of
two healthcare marketplaces, the National Residency Matching Program and
Kidney Exchange, while emphasizing some of their design issues and ongoing
challenges. These marketplaces might seem to be nonstandard due to the lack
of monetary transfers or prices, but we shall see that they share some similar
economic principles with classic markets.

3.2 Matching Doctors to Residency Programs

3.2.1 Early Days

Every year, thousands of doctors who graduate from medical school start a res-
idency, specialty training, in the United States. In 2017 alone, more than 27,000
doctors began their first year of residency. Between the years 1900 and 1945,
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hospitals competed to hire doctors and the market in decentralized manner,
and the market suffered from unraveling: offers to doctors were made earlier
each year, until that doctors were often being hired more than a year before the
completion of their training, which in turn led to inefficiency due to mismatch-
ing (Roth, 2008, 2002).1

In 1945, American medical schools agreed that all offers would be made
on a specified day. Although this consensus solved the unraveling problem, it
led to other frictions. Hospitals quickly noticed that when their first offer was
rejected, other candidates had already accepted offers from other hospitals.
This congestion further led hospitals to make exploding offers to which doctors
had to reply immediately.2 Finally, in the early ’50s the American medical
associations decided to use a centralized clearinghouse to match doctors to
residency programs. The idea was that, within this new framework, after doc-
tors interviewed with residency programs, both doctors and hospitals would
submit ranking lists representing their match preferences, and an algorithm
would determine matches based on these and on programs’ capacities. The
organization that runs the match is called the National Residency Matching
Program (NRMP).

3.2.2 A Centralized Market and New Challenges

Before we describe the algorithm adopted by the NRMP, one natural question
would be what objectives should such matching algorithm achieve? A com-
mon answer is to maximize some weighted function based on the rankings
(an extreme version would be to maximize the number of doctors who are
matched to their top choice). Such algorithms, however, may provide doctors
misreporting their ranking of programs; that is a doctor who is interested in
a highly demanded residency may be concerned that if she doesn’t get that
assignment, her second choice will be taken by another doctor who listed it
as her first choice. Thus a doctor who does not get her first choice may well get
a bad choice.

The NRMP adopted instead an algorithm that is similar to the deferred accep-
tance (DA) algorithm which outputs a stable matching. A matching of doctors
to programs is stable if no doctor and hospital who are not matched to each
other, prefer each other over their match (Roth, 1984; Gale and Shapley, 1962).
The theory of stable matching was initiated by Gale and Shapely in their sem-
inal paper “College admissions and the stability of marriage” where they also
introduced the DA algorithm.

The DA algorithm takes the input rankings and simulates a natural process
where agents on one side propose and agents on the other side evaluate offers.

1 There is much literature on unraveling in labor markets (see, e.g., Roth and Xing, (1994); Ünver
(2001); Niederle and Roth, (2003)).
2 For congestion in labor markets, see, e.g., Avery et al., (2001); Roth and Xing (1997).



Trim Size: 152mm x 229mm Single Column Dai c03.tex V3 - 06/06/2018 2:33pm Page 33�

� �

�

3.2 Matching Doctors to Residency Programs 33

The doctor-proposing DA algorithm works as follows (the hospital-proposing
version works similarly): at each stage of the algorithm, unmatched doctors
propose to their favorite program, which they have not previously proposed to.
Programs tentatively keep their favorite offers so far and reject all other offers.
The algorithm stops if all doctors are matched, or, every unmatched doctor has
applied to all the programs on her list. In addition to finding a stable match-
ing, the doctor-proposing DA algorithm is strategyproof for doctors; in other
words, it is always safe for doctors to report their true preferences. The original
algorithm used by the NRMP was in fact similar to the hospital-proposing DA
algorithm (Roth, 1984). It is interesting to note that the set of stable matchings
has a lattice structure, and the DA algorithm generates the stable matching that
is most (least) preferred by each agent on the proposing (courted) side.

But over the years, more women attended medical school, and the number of
married doctors (couples) on the residency job market has grown. The NRMP
began to face a real challenge because the DA algorithm allowed doctors to
submit preferences only individually, and couples often had to find residencies
outside the match (to avoid working in different cities).

Stability is arguably one of the keys to the success of the NRMP (Roth, 2002;
Kagel and Roth, 2000). But in the case of couples who introduce complementary
preferences, stability may not even exist (Klaus and Klijn, 2005; Roth, 1984).
Despite this challenge, Roth and Peranson (1999) engineered a new algorithm,
which has been in use by the NRMP since 1998. The key idea was to allow
couples to apply together, by ranking pairs of hospitals. Roth and Peranson
(1999) also switched from the hospital-proposing DA to a version based on
the doctor-proposing DA.

The theory of stable matching hasn’t provided guidelines for how to design
the market with complementarities (a common issue in mechanism design), yet
insights from the existing theory together with careful engineering have made
this marketplace successful once again. Dozens of labor markets now use the
stable matching mechanisms in different entry-level labor markets.3

3.2.3 Puzzles and Theory

Stability is arguably an important part of the success of the NRMP and other
two-sided markets that adopt matching mechanisms (Roth, 2008). However,
until recently various puzzles still remained.

One challenge is that when couples are part of the market, a stable match-
ing may not exist. Roth and Peranson (1999) report that in every year they
examined, there was a stable matching with respect to the reported preferences.
Kojima et al. (2013) and Ashlagi et al. (2014) studied a large market model with

3 The deferred acceptance algorithm is also used in various cities around the world to assign a
students to schools (Abdulkadiroğlu and Sönmez, 2003; Abdulkadiroğlu et al., 2005a,b).
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random preferences and showed that as long as the number of couples grows
more slowly than the number of single doctors, a stable matching will be found
with high probability.4

Another longstanding challenge has to do with the multiplicity of stable
matchings in a two-sided matching market (without couples). Multiplicity of
stable matching raises several issues. First, which stable matching should be
implemented? The one that is best for the doctors, the one that is best for the
hospitals, or something in between? Another related issue concerns incentives.
Roth (1982) and Dubins and Freedman (1981) find that no stable matching
mechanism is strategy-proof for all agents (so there are some instances in
which an agent will benefit from misreporting her preferences). Demange et al.
(1987) further find that opportunities to misreport preferences successfully
will arise only if an agent has multiple stable partners.

Even though artificial markets with a large set of stable matchings can be
easily constructed, empirical evidence from the NRMP suggests that this set is
small (Roth and Peranson, 1999), with very few agents having more than one
stable partner.5

When preferences are highly correlated, we would expect the core (the set of
stable matchings) to be small (for example there is a unique stable matching if all
doctors have the same preferences over programs). So the question is whether
a large core can arise with uncorrelated preferences. Pittel (1992) and Knuth
et al. (1990) study a two-sided matching market with n men and n women and
find that almost every man has multiple stable partners as the market grows
large, when preferences for each man and each woman over all the agents on
the other side are drawn independently, at random from a uniform distribution.

Following simulations by (Roth and Peranson, 1999), Immorlica and Mah-
dian, (2005) find that if one side ranks (uniformly at random) only a constant
fraction of agents on the other side, or alternatively when the ratio between sup-
ply and demand (competition) is large, then as the market grows large, almost
all agents have a single stable partner.

More recently, Ashlagi et al. (2017) find that even with the slightest competi-
tion, the core is small: in a market with n men and n + k women (for any k ≥ 1)
and preferences drawn independently and uniformly at random over all agents
from the other side, almost all agents have a single stable partner as n grows
large. This result provides a generic reason for why two-sided markets typically
have a small core. Therefore, which side proposes in a the DA algorithm is not
a real concern, and it is safe to recommend all participants to report their true
preferences.

4 Recent studies established the existence of stability in more general large markets (Che et al.,
2015; Azevedo and Hatfield, 2012).
5 A small core was found also in online dating markets with respect to estimated preferences
(Hitsch et al., 2010).
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3.3 Kidney Exchange

3.3.1 Background

Kidney transplantation is the preferred treatment for end-stage renal disease,
increasing life expectancy by ten years on average (Wolfe et al., 1999). Trans-
plantation also saves several hundred thousands of dollars over remaining on
dialysis.6 Currently, the vast majority of Medicare spending on kidney failure is
directed to dialysis costs.

Unfortunately, there is a large shortage of organs, and there are currently
more than 97,000 patients on the waiting list for cadaver kidneys in the
US. Another source of transplants is live donation. In fact, transplantation
from a live-donor kidney is also preferable to a cadaver kidney. However, not
everyone who is healthy enough to donate a kidney can donate to her intended
recipient because a successful transplant requires the donor and recipient to
be blood-type and immunologically compatible. Incompatibility between a
donor and her intended recipient creates the demand for kidney exchange: an
incompatible patient-donor pair can donate a kidney to a compatible recipient
and receive a kidney from a compatible donor.

Note that it is illegal to buy or sell organs for transplantation in almost all
countries (see Roth (2007) and Leider and Roth (2010)).7 Kidney exchange thus
represents an attempt to organize a barter economy.

The first kidney exchange took place in Korea in 1991.8 Until 2003, few
exchanges have taken place in the US, but in 2016 the number of transplants
from kidney exchanges had reached more than 640 (the number is higher
because some transplants are recorded as anonymous donations rather than
as kidney exchanges), and are more than 11% of all living donor transplants in
the US.

Forms of exchanges: cycles and chains. One form in which exchanges are
organized is a cycle, which involves only incompatible patient–donor pairs,
with each patient receiving a kidney from a compatible donor of another
pair. Another form is a chain, which is initiated by an altruistic donor (with
no intended recipient) and donates to a pair, whose donor donates to the
next pair, and so forth.9 Exchanges are organized such that no patient–donor

6 In 2014, Medicare paid $87,638 per year per dialysis patient, but only $32,586 per year per
transplant patient. Given a median waiting time of 3.5 years for a deceased donor kidney, the
difference adds up to a cost savings of about $192,682 (United States Renal Data System, 2016).
7 In the US, the National Organ Transplant Act (NOTA 1984) makes it illegal to obtain organs
for valuable consideration. For discussion in favor of compensation for donors see, e.g., Becker
and Elias (2007).
8 See Rapaport (1986) who first raised the idea of kidney exchange and Ross et al. (1997) and
Ross and Woodle (2000) for discussions regarding ethical considerations.
9 Chains typically end with a patient on the waiting list who has no intended donor.
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pair donates a kidney prior to receiving a kidney. This means that cycles are
conducted simultaneously, since the cost of a broken link would be high to a
pair that first donated a kidney and later failed to receive one. Due to logistical
barriers, cycles are typically short including or three pairs. But chains can
be organized nonsimultaneously without breaking this requirement, and
therefore can be longer (Saidman et al., 2006). The majority of kidney exchange
transplants in the US are now conducted through chains.

Compatibility between a donor and recipient. For a transplant to take place,
a patient must be both blood-type (ABO) and tissue-type compatible with a
donor. Thus, an O donor is valuable because O is ABO compatible with any
other patient. Tissue-type compatibility means that the patient has no antibod-
ies to the donor’s antigens. The common measure for patient sensitivity is the
Panel Reactive Antibody (PRA), which captures the likelihood that, based on
her antibodies, the patient is tissue-type incompatible with a random donor in
the population.

We survey some important steps in the progress of kidney exchange in the
US, while emphasizing the economic and operational perspectives. Due to the
shortage of space, we elaborate on only about handful of (more recent) issues.

3.3.2 Creating a Thick Marketplace for Kidney Exchange

The first proposal for organizing kidney exchange on a large scale involved
integrating cycles of patient–donor pairs while considering patients’ prefer-
ences (Roth et al., 2004). However, in the early days, only pairwise exchanges
were conducted.10 Subsequent work suggested that allowing only slightly
larger, three- and four-way exchanges, would increase efficiency (Saidman
et al., 2006; Roth et al., 2007). Common to these studies is taking a central-
ized approach (clearinghouse) to kidney exchange and in particular using
optimization.11

Efficiency in Large Markets
Roth et al. (2007) characterize efficient allocations using cycles in a large market
and find no need for cycles longer than four. Their large market assumption
assumes that compatibility between patient and donors depends only on blood
types.12

The characterization follows from the blood-type structure. To get some intu-
ition consider, for example, the set of A-O and O-A patient–donor pairs. A

10 Roth et al. (2005) proposed a mechanism for conducting pairwise exchanges.
11 See also Segev et al. (2005).
12 This prediction is true even when patients’ PRAs are included, by building on the Erdős-Renyi
random graph theory (Ashlagi and Roth, 2014) because in a sufficiently large market, the PRA
will not be a barrier, and the blood-type structure will determined the efficient allocation (In fact,
there is no need for cycles longer than 3.)
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kidney exchange pool is likely to have fewer A-O pairs than O-A pairs because
many A-O pairs are compatible and select to go through a direct live-donor
transplant.13 If there were only A-O pairs and O-A pairs, in a sufficiently large
market, it would be efficient (and possible) to match every A-O pair with a
different O-A pair in a two-way cycle.14 In particular, some pairs are overde-
manded and some are underdemanded; the former will all match whereas some
fraction of the latter will remain unmatched in an efficient outcome.

It is not hard to extend the characterization to show that under large market
assumptions also chains need not be long.15 However, the experience of kidney
exchange platforms suggested that chains in fact play a crucial role.

Optimization
Kidney exchange platforms often use optimization to find matches through
cycles and chains. The optimization problem of maximizing the number of
matches is NP-complete (Abraham et al., 2007) and various algorithms have
been developed to help programs with this task, following Roth et al. (2007)
and Abraham et al. (2007).16

The Need for Chains
After the first nonsimultaneous chain (Rees et al., 2009), which involved more
than ten transplants, chains became common. Today the average chain length
is between four and five. The two longest chains so far contained 30 and 35
transplants in 2012 and 2014, respectively. The pairs in a chain, especially longer
ones, are not all identified at once. The last donor in a chain segment either ends
the chain by donating to a patient on the waiting list or becomes a bridge donor
and initiates a chain segment in a future period.

One reason that chains have become ubiquitous is the large fraction of
(very) highly sensitized patients in kidney exchange networks (Ashlagi et al.,
2012). Another reason, which we elaborate in our discussion on incentives
(Section 3.3.4), is that hospitals often match internally easy-to-mach pairs
and enroll the pairs they cannot match. As a result, the compatibility graphs
induced from the patient–donor pairs in real kidney exchange pools are
sparse.17 Data-driven simulations by Ashlagi et al. (2011a,b) and Dickerson

13 An A-O pair is incompatible if the A patient is tissue-type incompatible with the O donor.
14 A-O pairs can potentially match with each other, but this is a waste, as each such pair could
potentially help a different O patient.
15 Altruistic donors can initiate chains that can be at most of length three, including at most two
underdemanded pairs and one patient on the cadaver waiting list.
16 Abraham et al. (2007) develop an algorithm that can identify an optimal solution in a large
pool using cycles up to length three. Researchers have expanded this line of work to include
chains as well as various objectives (e.g., Biro et al. (2009), Glorie et al. (2012), Anderson et al.
(2015), Constantino et al. (2013), Klimentova et al. (2014), Dickerson et al. (2012c)).
17 See Ashlagi et al. (2012, 2013) for a theoretical models based on Erdős Renyi graphs (in static
and dynamic settings), in which the the key ingredient is the sensitivity of the patient (and blood
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et al. (2012a) reveal that nonsimultaneous chains increase efficiency in a
dynamic environment.18

3.3.3 Dynamic Matching

Early theoretical papers took a static approach and focused on the importance
of the matching technology. But kidney exchange pools are dynamic, with pairs
arriving and being matched over time; thus, it is natural to ask how the platform
should match in this dynamic environment.

The policy employed by the clearinghouse, which determines which
exchanges to implement and when, also affects the efficiency of the market-
place. One natural policy is a greedy policy, where the clearinghouse forms
exchanges as soon as an opportunity arises. Another possibility is to adopt
a batching policy, which identifies a (weighted) optimal allocation within the
pool every number of periods. More sophisticated policies may take into
account both the compatibility graph and the future.

Kidney exchange platforms in the US have gradually moved to small batches
and thus frequently identify exchanges. The Alliance for Paired Donation
(APD) and the National Kidney Registry (NKR) identify exchanges on a
daily basis, and the UNOS program identifies matches twice a week. These
are national programs, in which multiple hospitals participate in. A major
concern is that this behavior is driven by platform competition. However,
Methodist at San Antonio (MSA), which is a single center program and faces
no competition, also matches on a daily basis. In contrast, national exchange
programs in several countries such as Canada, United Kingdom, Netherlands,
and Australia, search for exchanges every three or four months (Ferrari et al.,
2014; Malik and Cole, 2014; Johnson et al., 2008). We briefly discuss recent
research on this front.

In a simulation study, Ashlagi et al. (2018) looked at the effect of batching poli-
cies on efficiency (measured by the fraction of matched pairs and waiting
times), using empirical data from the APD and MSA programs, which have dif-
ferent pool compositions, partially because participating hospitals in national
pools often match easy-to-match pairs internally. Pairs in the simulation arrive
according to a Poisson process and depart according to an exponential random
variable, unless they are matched earlier. (Ashlagi et al. also model various
frictions such as delays due to blood shipping and match cancellations.) They
find that there is essentially almost no harm in matching frequently. Figure 3.1
plots the fraction of matched pairs and the average waiting time under different

types are ignored); the models explain the relationships between the fraction of highly sensitized
patients and the need for long chains.
18 Ashlagi et al. (2011a,b) have been also part of an ongoing debate regarding the importance of
chains (see also Gentry and Segev (2011) and Gentry et al. (2009)).
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Figure 3.1 Statistics using APD data (taken from Ashlagi et al.). The x-axis represents the
time interval between two match-runs. Each plot, S1-S3, stands for different
prioritizations/weights assigned to pairs based on the patients’ PRA.

matching frequencies and different sets of weights. Assigning high priority
to highly sensitized patients increases their match rate but at the expense of
other pairs.

Intuitively, matching frequently does not harm the fraction of transplanted
patients because both underdemanded pairs and highly-sensitized patients
accumulate in the pool. For instance, when an A-O patient-donor arrives, if
the A patient is not too sensitized, there is likely an immediate match with an
O-A pair. But if the A-O cannot match with an O-A pair, a match with any
pair arriving in the near future is also unlikely; thus delaying other pairs from
matching is also unlikely to help this pair. In other words, when the departure
rate is low, many hard-to-match pairs accumulate in the pool, and waiting
with a newly arriving, easy-to-match pair is unnecessary, because it is likely
to match a hard-to-match pair. When the departure rate is high, matching
infrequently will result in many departures of easy-to-match pairs.

Artificially thickening the market does not increase the fraction of matched
pairs, but Ashlagi et al. (2018) also find that increasing the arrival rate
increases the fraction of matched pairs up to a certain point (which is the frac-
tion matched in a large market). Figure 3.2 plots the fraction of matched pairs
under different arrival rates. Note that there is a diminishing return to scale.
Note also, however, that the waiting time will keep decreasing as the arrival rate
increases, even when the fraction of matched pairs does not increase anymore.

Consequently, increasing participation rate is much more important than
artificially thickening the market. Rough intuition is that, at a low arrival rate,
some O donors may match A patients, whereas at a large arrival rate, such A
patients can be matched by other A donors.

Theoretical frontiers
Ünver (2010) first studied the problem of dynamic matching under large
market assumptions. He found that a greedy algorithm that uses two-way and
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Figure 3.2 Varying arrival rates using APD data (taken from Ashlagi et al.). (Left) The x-axis
represents the time interval between two match-runs, and each plots represents a different
arrival rate. (Right) The x-axis represents the number of arrivals per year and y-axis the
fraction of matched pairs.

three-way cycles is almost optimal and minor gains would be achieved by
holding up some pairs.

Motivated by the sparsity of kidney exchange pools, various authors have
studied dynamic matching in random graph-based models while abstracting
away from blood types (Ashlagi et al., 2013; Anderson et al., 2017; Akbarpour
et al., 2014).

Anderson et al. (2017) looked at homogenous agents and considered three
settings distinguished by the types of feasible exchanges: two-way cycles, two-
and three-way cycles, and a single chain. They found that a greedy algorithm
is approximately optimal. Furthermore, allowing three-way cycles results in
significantly lower waiting times than only two-way cycles, and a single unre-
stricted chain reduces the waiting times even more. This result sheds light on
the importance of chains in sparse pools. Akbarpour et al. (2014) looked at a
similar model with departures and found that if departure times are known to
the planner, matching patients just before they depart reduces the loss rate sig-
nificantly in comparison to a greedy algorithm, but without this information,
greedy matching is approximately optimal.

Ashlagi et al. (2013) allow for two types of agents, hard- and easy-to-match,
and ask how the market thickness, as determined by arrival rates, affects
efficiency under a class of myopic policies. They found a tight connection
between the market thickness and the desired matching technology. When
easy-to-match agents arrive more frequently to the market, two-way cycles are
approximately optimal; otherwise, using chains is important.

More sophisticated policies, which consider the future, have been developed
in the computer science literature. Dickerson et al. (2012b) learn the potential
of different nodes in the compatibility graph to determine whether to match
them or not (see also Dickerson and Sandholm (2014)).

In practice, myopic algorithms (which optimize periodically) are ubiquitous,
and there is no evidence that such sophisticated algorithms lead to significant
benefits. Moreover, when the market is sufficiently thick, simple matching
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rules are essentially optimal (Ünver, 2010). Otherwise, as figure 3.2 suggests,
increasing arrival rates is arguably more important than designing the perfect
algorithm.

3.3.4 The Marketplace for Kidney Exchange in the United States

In the last decade several national platforms emerged in the US, which seek to
organize kidney exchange at a large scale. Participation, however, is not manda-
tory, and hospitals may decide to engage only partially in these platforms by
enrolling some of their pairs and internally matching others. It is therefore nat-
ural to ask: How common is this behavior? Is efficiency harmed, and if so by
how much? How can the platform align incentives to increase efficiency? Can
full efficiency even be achieved?

The current national platforms vary according to size, operations, and algo-
rithms. The major national platforms, the Alliance for Paired Donation (APD),
United Network for Organ Sharing kidney exchange program (UNOS), and the
National Kidney Registry (NKR) all involve the participation of many hospi-
tals. Other platforms involve fewer hospitals and even single hospitals, such
as Methodist at San Antonio (MSA). Typically, large scale programs use opti-
mization algorithms to identify exchanges and may vary in how they prioritize
patients or how frequently they search for exchanges.

Why Should Hospitals’ Incentives Matter?
By and large, patients rely on hospitals (surgeons), and hospitals benefit from
conducting more transplants (Sönmez and Ünver, 2013; Ashlagi and Roth,
2014). Let us see how hospitals may benefit from participating only partially
in kidney exchange platforms. Consider a hospital A with two pairs, a1 and
a2, which it can match internally through a two-way cycle. Suppose A enrolls
both pairs to the platform, and the platform can either match a1 with a2 or
match a1 with some other pair b1 that does not belong to A. If b1 has the
highest priority, than a1 will remain unmatched. Thus hospital A is better off
matching internally a1 and a2. Suppose there is another pair b2 that can only
match with a2. If A would match a1 and a2 internally, only two transplants
will happen instead of four.

Roth and Sonmez and Unver find that there is there is no efficient strat-
egyproof mechanism ((Sönmez and Ünver, 2013; Roth, 2008)). Ashlagi and
Roth (2014) studied extensively the free riding problem and found that under
large market assumptions the cost from requiring allocations to be individually
rational is low (see also Toulis and Parkes (2015)). They further suggest to
adopt a “frequent flyer program” that will encourage hospitals to enroll their
easy-to-match pairs. Therefore, optimizing without considering hospitals’
incentives may potentially result in a large loss due to hospitals’ behavior. But
how big of an issue is this in practice?
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Market Failure in Kidney Exchange
In a recent paper, Agarawal et al. (2017) accumulated data from various sources
to study the kidney exchange marketplace in the US, quantified the efficiency
loss, and offer solutions for how to fix it. They proposed a stylized model based
on producer theory that predicts the sources of inefficiency and pursues these
objectives empirically.

The first dataset they used is from the NKR, the largest platform in the US
and includes all submissions (medical data of all incompatible pairs and altruis-
tic donors) and transplants conducted between the years 2012–2014. Another
dataset, obtained from UNOS, is the list of all live-donor transplants ever con-
ducted in the US, and whether they are due to an exchange or not.

Agarawal et al. (2017) find that the US kidney exchange market is highly
fragmented, with more than 60 percent of transplants conducted through
internal matches (that are not facilitated by the NKR). Furthermore, larger
hospitals are more likely to participate at the NKR, though hospitals vary in
their level of participation. Importantly, they find that the NKR is selected
to have harder-to-match pairs: the smaller the fraction of pairs a hospital
enrolls, the more sensitized the patients within these enrolled pairs. They
further provide smoking-gun evidence for large efficiencies: while 2.5 percent
of the transplanted O kidneys go to non-O recipients at the NKR, more than 11
percent of such transplants occur within internal matches.19 Recall that in a
large market it is efficient to transplant O kidneys in O recipients.

Agarawal et al. (2017) propose to model the kidney exchange as a platform
that receives submissions and produces transplants. They take a steady-state
approach (where submissions and transplants are per time period, say per
year), but do not adhere to the previous large market assumptions. The
platform is associated with a production function f , which receives vectors
of submissions and generate transplants. The platform rewards hospitals
with transplants, either immediately or in the future. Agarawal et al. (2017)
considered the problem of maximizing welfare subject to two constraints.
First, hospitals submit pairs optimally to maximize their own utility, and
second, the platform is constrained from promising more transplants than it
can generate.

One insight from the model is that to maximize welfare, optimal rewards
should equal marginal products minus some adjustment term (the adjustment
terms is zero when the platform operates at a constant returns to scale regime).
In particular, hospitals should be rewarded based on their marginal contri-
bution to the platform. This provides a simple explanation why current algo-
rithms, which essentially attempt to maximize the number of transplants don’t
provide hospitals with the right incentives.

19 Large gaps remain even when restricting the non-O recipient to be low sensitized.
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The finding by Agarawal et al. (2017) suggests that platform incentives
can be solved by simply using point systems. Hospitals will maintain a point
balance of transplants, and the platform will break ties in favor of hospitals
that have a larger amount. For platforms that operate at constant returns to
scale regime, the exact rewards can be computed by estimating the derivatives
of the production function. The idea is that hospitals will earn points based
on their marginal contribution to the platform, whereas the platform will
favor favor hospitals with higher balances during the matching process (for
example through tie-breaking). For implementation details and challenges, see
Agarawal et al. (2017).

Agarawal et al. (2017) further quantify the inefficiency in the data. Estimat-
ing the production function reveals that the NKR is operating at the constant
returns to scale regime, but many hospitals that match internally operate at
an inefficient scale. They find that misaligned incentives account for around
200–400 transplants per year.

Finally, Agarawal et al. (2017) find that platform incentives do not account for
all inefficiency. The remaining inefficiency is due to agency problems. This pre-
diction, also generated by their model, is also supported by significant efforts
in recent years to organize financial agreements between insurance companies
and hospitals (Rees et al., 2012; Held et al., 2016; Irwin et al., 2012; DHHS,
2016). One challenge was to engage private insurance companies in a standard
acquisition charge to reimburse for expenses prior to transplants.

As Agarawal et al. (2017) point out, kidney exchange, which is a seemingly
unusual market, faces classic market failures, which can be addressed using
market and nonmarket tools. It will be interesting to see how this market
evolves in the next few years, now that some of these agency problems have
been alleviated and platforms such the NKR have adopted point systems.

3.3.5 Final Comments on Kidney Exchange

Kidney exchange is now responsible for more than 11 percent of live-donor
transplants in the United States. Despite this success, many challenges still
remain in order to allow platforms to operate more smoothly, as well as to
grow this marketplace. Although optimization plays a role in kidney exchange,
increasing participation is a first-order consideration in order to increase
the number of of transplants. In the US creating one national pool is more
challenging than in other countries, arguably due to institutional structure.
However, small countries that seek to work together in order to increase
matching opportunities may face similar concerns. For a thorough survey of
kidney exchange practices in European countries, see Biro et al. (2017).

There are ongoing efforts towards new innovations, such as the Global Kid-
ney Exchange that aims to overcome medical and financial incompatibilities by
matching pairs in developed countries that lack transplantation facilities with
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pairs in developed countries (Rees et al., 2016). But similar to other innova-
tions in the field of transplantation, ethical considerations are an integral part of
the process toward implementation. Indeed, Global Kidney Exchange sparked
a loud debate in the transplantation community (Delmonico and Ascher, 2017;
Roth et al., 2017; Rees et al., 2017). It remains to be seen how this potential new
market will develop.

Marketplaces such as platforms for kidney exchanges are usually part of a
larger market. Little is still known about the design of marketplaces that face
outside competition.
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