
Electronic Companion to: What matters in school choice

tie-breaking?

How competition guides design

This electronic companion provides the proofs for the theoretical results (Sections 1-5) and

stylized simulations for robustness checks (Section 6).

1 Roadmap for proofs

We break Theorem 3.2 into several smaller (sub-)theorems and prove each one separately. This is

done in sections 1.1, 1.2, and 1.3, which state and discuss the theorems about stochastic dominance,

Pareto improving pairs, and variance, respectively. The theorems stated in these sections are then

proved separately in the later sections. Section 2 contains the proofs for stochastic dominance.

Section 3 contains some preliminary results that will be used in Sections 4 and 5, which contain

the proofs about Pareto improving pairs and variance, respectively.

1.1 Stochastic dominance

We focus on the over-demanded case in the next theorem, and on the under-demanded market in

the theorem that comes after that.

Theorem 1.1. Consider a sequence of random school choice problems with n students and m

schools where n = m+ 1. Then, with high probability, R STB almost stochastically dominates R MTB.1

Theorem 1.2. Consider a sequence of random school choice problems with n students and m

schools with n = m−1. Then, with very high probability (wvhp), R STB does not almost stochastically

1For a sequence of events {En}n≥0, we say this sequence occurs with high probability (whp) if limn→∞ P [En] = 1.
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dominate R MTB.2 Furthermore, wvhp R STB does not stochastically dominate R MTB[k] for any k =

o(n/ln2n), where R MTB[k] is the rank distribution resulting from the removal of the bottom k students

from R MTB.3

The proofs for both theorems are given in Section 2. The same proofs imply that the theorem

holds when the imbalance is larger than one. (i.e. the theorems hold for n > m and m < n

respectively in the over-demanded and under-demanded cases)

1.2 Pareto improving pairs

In the next theorem, we show that deferred acceptance paired with MTB generates many Pareto

improving pairs when there is a shortage of seats, and very few Pareto improving pairs when there

is a surplus of seats. The proof is given in Section 4.

Theorem 1.3. Consider a sequence of random school choice problems with n students and m

schools, let µ = µMTB, and let s be an arbitrary student.

1. If n > m,

lim
n→∞

P [µ̈(s) ≥ 1]→ 1, lim
n→∞

E [µ̈(s)]→∞.

2. If n < m,

lim
n→∞

P [µ̈(s) ≥ 1]→ 0, lim
n→∞

E [µ̈(s)]→ 0.

1.3 Variance

The next lemma says that, under either tie-breaking rule, if students’ preference are i.i.d, then the

expected social inequity is equal to the expected variance of the rank of an arbitrarily fixed student.

The proof appears in Appendix 5.1.

2For a sequence of events {En}n≥0, we say that the sequence occurs with very high probability (wvhp) if

limn→∞
1−P[En]

exp(−(logn)0.4)
= 0.

3For any two functions f, g : Z+ → R+ we adopt the notation g = o(f) when limn→∞
g(n)
f(n)

= 0, g = O(f) when

f 6= o(g), g = Θ(f) when f = O(g) and g = O(f), and finally, g = Ω(f) when f = O(g).

2



Lemma 1.4. For any student s ∈ S

E{π(s′):s′∈S,s′ 6=s} [Var [rs]] = Eπ [Si(µπ)] ,

where expectation on the left-hand side is taken over all students’ preferences except s, and ex-

pectation on the right-hand side is taken over all students’ and schools’ preferences with schools’

preferences generated by either the STB or the MTB rule.

The lemma further shows that the expected variance of rank of a student s is equal to the

expected variance of rank of a student s′, for any s, s′ ∈ S. Therefore, we sometimes refer to this

notion as the variance of student rank, without specifying s.

The next theorem shows that the imbalance in the market determines whether MTB or STB

results in a larger variance.

Theorem 1.5. Consider a sequence of random school choice problems with n students and m

schools.

1. If n = m or n = m− 1, then limn→∞
Var[µSTB]
Var[µMTB] =∞.

2. If n = m+ 1, then limn→∞
Var[µSTB]
Var[µMTB] = 0.4

Theorem 1.5 follows directly from the next result, which quantifies the social inequities in our

model.

Lemma 1.6. Consider a sequence of random school choice problems with n students and m schools.

1. If n = m+ 1, the expected social inequity under MTB is Ω( n2

log2 n
) and under STB is Θ(n).

2. If n = m, the expected social inequity under MTB is O(log4 n), and under STB is Θ(n).

3. If n = m− 1, the expected social inequity under MTB is O(log2 n) and under STB is Θ(n).

The proof for Lemma 1.6 is given in Appendix 5.

We briefly discuss how our results on variance are affected by varying the size of the imbalance,

length of preference lists, and correlation in preferences. Before this, we note that our empirical

findings using NYC data support the theoretical findings (see Section 4).

4Expectations are taken over students’ preferences and the tie-breaking lotteries.
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In an over-demanded market with m schools, for any n > m + 1, the variance under STB

remains the same as when n = m+1; however, the variance under MTB remains at least as high as

in the case n = m+ 1 due to the harsher competition (this is implied by the proof of the first part

of Lemma 1.6). Thus, part 2 of Theorem 1.5 always holds as long as n > m. In an under-demanded

market with n students, one should expect the variance under STB to decrease as the surplus of

seats grows larger, since an increasing number of students will be assigned to their top choices.

Nevertheless, we show in the next theorem that the variance under STB remains strictly larger

than the variance under MTB, even when the surplus of seats is of the same order as the number

of students. (The proof is given in Appendix 5.3.)

Theorem 1.7. Suppose m = n + λn for any positive λ ≤ 0.01. Then, limn→∞
E[Si(µSTB)]
E[Si(µMTB)] > 1,

where the expectations are taken over preferences and the tie-breaking rules.

We conjecture that this theorem holds for any positive fixed λ. To avoid unnecessary techni-

calities, we only prove it for λ ≤ 0.01. We quantify the ratio between social inequities for different

values of λ in our computational experiments in the Online Appendix. (For instance, we see that

this ratio is around 3 for λ = 0.1.)

In another set of experiments (see the Online Appendix) we show that the gap between the

variances persists even when the preference lists are short. To test how correlation in preferences

affects our results, we conduct experiments (see the Online Appendix), in which students’ prefer-

ences are drawn independently from a discrete choice model (one may think of these preferences as

drawn proportionally with respect to publicly known schools’ qualities). We see that in an under-

demanded market, the variance under STB is larger than the variance under MTB, unless students’

preferences are extremely correlated, in which case the rank distributions will become similar.

2 Proofs for Section 1.1

We will use the following definitions in the proofs. Denote by A = S ∪ C the set of schools and

students. We often refer to a school or a student by an agent. Consider a matching γ. Let γ(x)

be the agent to which x is matched to and for any subset of agents A ∈ A, let γ(A) be the set of

agents matched to agents in A. Therefore, γ(C) is the set of students who are assigned under γ.

For any student s, γ#(s) denotes the rank of school γ(s) for s, and similar notions are used
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for schools. Denote the average rank of students who are assigned under γ by Ar (γ) = 1
γ(C) ·∑

s∈γ(C) γ
#(s). When it is clear from the context we will simply write rs for γ#(s), and r for

Ar (γ).

Denote by µπ and ηπ the student-optimal and the school-optimal stable matching for a pref-

erence profile π, respectively. Finally, given students’ preferences, let µSTB and µMTB the random

variables that denote the student-optimal stable matchings under STB and MTB, respectively.

For any rank distribution R , let R + denote the corresponding cumulative rank distribution, i.e.

R +(k) =
∑k

i=1 R (i) is the number of students who are assigned to one of their top k choices under

R .

2.1 Proof of Theorem 1.1

We need the following lemmas before proving this theorem.

2.1.1 Computing R MTB

Lemma 2.1. When n = m + 1, wvhp there at most 3n logn
t students who receive more than t

proposals in the school-proposing DA.

Proof. The proof is a direct consequence of the following result by Pittel (1989): When n = m+ 1,

the school-proposing DA takes no more than 3n log n proposals, wvhp.

Definition 2.2. Let t = 3θ logm, where θ > 1 is a large constant that we set later.

Proposition 2.3. At most n/θ students receive more than t offers in school-proposing DA wvhp.

This is a direct consequence of 2.1.

Lemma 2.4. Suppose a student s receive t proposals in the school-proposing DA such that 1 ≤ t ≤ t.

Then, for any constant α > 2

P
[
η#(s) >

m

αt

]
≥ exp

(
− 2m

α(m− t)

)

Proof. By the principle of deferred decisions, we can assume that students rank proposals upon

receiving them. Upon receiving each proposal, the student assigns a (yet unassigned) rank to the

school who offers the proposal. The probability that the first school is ranked worse than m
αt is
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1− m/αt
m . In general, the probability that i-th school who proposes to s gets ranked worse than m

αt

is 1− m/αt
m−i . Thus, we have

P
[
η#(s) >

m

αt

]
=

t∏
i=1

1− 1

αt(1− i/m)

≥ exp

(
−

t∑
i=1

2

αt(1− i/m)

)
≥ exp

(
− 2m

α(m− t)

)

where in the first inequality we have used the fact that 1− x ≥ e−2x for any x < 1/2.

Lemma 2.5. For any constant α > 4, R +
MTB

(
bm
αt
c
)
≤ 0.4n+ o(n), wvhp.

Proof. To compute R MTB, first we run the school-proposing DA and prove the lemma statement for

the school-optimal matching. Then, using the fact that almost every student has the same match

in the student-optimal matching Ashlagi et al. (2017), we establish the lemma statement (which

holds for the student-optimal matching).

For any student s, let xs be a binary random variable that is 1 iff η#(s) > m
αt

. Also, let S′

denote the subset of students who received at least one but no more than t offers. For any s ∈ S′,

Lemma 2.4 implies

P
[
η#(s) >

m

αt

]
≥ e−1/2,

since α > 4. This means E
[∑

s∈S′ xs
]
≥ e−1/2 · |S′| ≥ 0.606m. Now, applying a standard Chernoff

concentration bound implies that wvhp
∑

s∈S′ xs ≥ 0.6n. This fact, together with the fact that

|S\S′| = o(n) (which holds by 2.3, there are at most 0.4n+ o(n) students s for whom η#(s) ≤ m
αt

.

It is straight-forward to imply a similar result for the student-optimal matching, µ. Note

that the number of students who have different matches in µ and η is at most n/
√

log n, wvhp

Ashlagi et al. (2017). Consequently, there are at most 0.4n+ o(n) +n/
√

log n students s for whom

µ#(s) ≤ m
αt

.

2.1.2 Computing R STB

Lemma 2.6. Suppose student s ∈ S has priority number n− x. Then, the probability that s is not

assigned to one of her top i choices is at most (1− x
n)i

Proof. The probability that s is not assigned to his top choice is 1 − x
n . The probability that s is
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not assigned to his second top choice is (1− t
n)(1− x

n−1), which is at most (1− x
n)2. Similarly, it is

straightforward to see that the probability that s is not assigned to her i-th top choice is at most

(1− x
n)i.

Lemma 2.7. A student s who has priority number n−x is assigned to one her top 2n log(n)
x choices

with probability at least 1− 1/n2.

Proof. Set i = 2n
x log(n) and apply Lemma 2.6. Noting that (1− x

n)i ≤ e−
xi
n proves the claim.

Lemma 2.8. For any positive constant α > 1, R +
STB

(
bm
αt
c
)
≥ n−O(log n · log log n)

Proof. Define x = αt2n logn
m . Let S′ be the subset of students who have priority numbers better

than n − x. First, we apply Lemma 2.7 on each student in S′. Lemma 2.7 implies that a student

with priority number n−x or better, gets assigned to one of her top m
αt

choices with probability at

least 1− n−2. Taking a union bound over all students with priority number no worse than n− x,

implies that at least n − x students are assigned to one of their top m
αt

choices, with probability

at least 1 − 1/n. This means R +
STB

(
m
αt

)
≥ n − x = n − O(log2 n) holds with probability at least

1−1/n. To prove the sharper bound in the lemma statement, we need to take the students in S\S′

into account.

Let S′′ ⊂ S\S′ denote the subset of students who have priority number between n−βt · log log n

and n− x, where β = 2α2t/ log n. Lemma 2.6 implies that for any s ∈ S′′,

P
[
µ#(s) >

m

αt

]
≤ exp

(
−β
α
· log log n

)
.

Having β = 2α2t/ log n implies

P
[
µ#(s) >

m

αt

]
≤ (log n)

− 2αt
logn .

Now, we use the above bound to write a union bound over all s ∈ S′′:

P
[
max
s∈S′′

µ#(s) >
m

αt

]
≤ |S′′| · (log n)

− 2αt
logn ≤ O(1/ log4 n),

where in the last inequality we have used the fact that x = αt2n logn
m = O(log2 n).5

5The convergence rate O(1/ log4 n) can be easily improved to O(1/n) in the expense of changing logn · log log n
to (logn)1+ε in the lemma statement. Note that we already proved this fact for ε = 1 in the current proof.
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Taking a union bound over the students in S′, S′′ implies that

P
[

max
s∈S′∪S′′

µ#(s) >
m

αt

]
≤ 1/n+O(1/ log4 n).

Consequently, R +
STB

(
bm
αt
c
)
≥ n − |S\(S′ ∪ S′′)| holds whp. To finish the proof, just note that

|S\(S′ ∪ S′′)| = βt · log log n = O(log n · log log n).

Lemma 2.9. Let ε > 0 be an arbitrary constant. Then, wvhp, at least (1 − ε)n/2 students are

assigned to their top choice in STB.

Proof. Consider the following implementation of STB. Student with the highest priority number

chooses her favorite school, then the student with the next highest priority number chooses, and so

on. We call the student with the i-th highest priority number student i. Let Xi be a binary random

variable which is 1 iff student i is assigned to her first choice, and let X =
∑n

i=1Xi. Observe that

P [Xi = 1] = (i − 1)/n. Therefore, E [X] =
∑n

i=1
i−1
n = n−1

2 . A standard application of Chernoff

bound then implies that for any ε > 0, we have

P [X < (1− ε) · E [X]] ≤ exp

(
−ε

2E [X]

2

)
.

This proves the claim.

Now, we are ready to prove Theorem 1.1.

Proof of Theorem 1.1. Lemma 2.5 says that R +
MTB

(
bm
αt
c
)
≤ 0.4n + o(n) wvhp. This and Lemma

2.9 together imply that R +
MTB

(
bm
αt
c
)
< R STB(1) wvhp. On the other hand, Lemma 2.8 says that

R +
STB

(
bm
αt
c
)
≥ n− (log n)1+ε with high probability. The two latter facts, by definition, imply that

R STB almost stochastically dominates R MTB.

2.2 Proof of Theorem 1.2

Lemma 2.10. When n = m − 1, at least n(1−ε)
16 log2 n

students are not assigned to one of their top

3 log2 n choices in STB, wvhp, for any ε > 0.

Proof. Let x = 3 log2 n and t = n
4 log2 n

. Also, let Xs be a binary random variable which is 1 iff

student s is not assigned to one of her top x choices. By the principle of deferred decisions, we can
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assume that {Xs}s∈S are independent random variables.

Applying Lemma 2.11 implies that any student with priority number below n− t is assigned to

one of her top x choices with probability at most 3/4; in other words, it implies P [Xs = 1] ≥ 1/4.

Now, let St denote the set of students with lowest t priority numbers in STB. A standard application

of Chernoff bound implies that
∑

s∈St Xs ≥ |St|(1− ε)/4, wvhp, for any ε > 0.

Lemma 2.11. A student with priority number n− t in STB is assigned to one of her top x choices

with probability at most tx
n−t+1 .

Proof. The probability that s is not assigned to her top choice is 1 − t
n . The probability that s

is not assigned to her top two choices is (1 − t
n)(1 − t

n−1). Similarly, the probability that s is not

assigned to her top i choices is Πi
j=1(1 − t

n−j+1). To complete the proof, it is enough to see that

Πx
j=1(1− t

n−i+1) ≥ 1− tx
n−x+1 .

3 Preliminary findings: concentration lemmas

Lemma 3.1. Suppose n = m+ 1, and fix a student s. Then, under MTB, in the school-proposing

DA, the number of offers received by s is whp at most (1 + ε) log n for any constant ε > 0.

Proof. The proof idea is defining another stochastic process that we denote by B. Process B is

defined by a sequence of binary random variables X1, . . . , Xk, where k = (1 − δ)n log n for some

arbitrary small constant δ > 0. Each random variable in this sequence takes the value 1 with

probability 1
n−3 log2 n

, and 0 otherwise. For convenience, we also refer to these random variables by

coins, and the process that determines the value of a random variable by coin-flip.

Define X =
∑k

i=1Xk. The goal is to show that X is a good upper bound on the number of

proposals that are received by s. The high-level idea is based on two facts: First, the number of

total proposals is stochastically dominated by the coupon-collector problem, and so is wvhp at most

k. Second, by Pittel (1989), we know that wvhp, each school makes at most 3 log2 n proposals, and

so, each proposal is made to s with probability at most 1
n−3 log2 n

. Consequently, the number of

proposals made to s cannot be more than k(1+δ′)

n−3 log2 n
whp, for any constant δ > 0. (The latter fact is

a direct consequence of the Chernoff bound which is applicable since the coin flips are independent).

The problem with this argument is that the proposal-making processes of schools are not in-

dependent of each other, and we have to account for the dependencies. We have to define a new

9



random process, B, which is a simple coin-flipping process: it flips a number of coins independently,

all with success probabilities 1
n−3 log2 n

. Then, we define a new random process (DA,B), which is a

coupling of the random processes DA,B. The coupled process would have two components, one for

each of the original random processes. Each component behaves (statistically) identical to its cor-

responding original process, but there is no restriction on the joint behavior of the components. It

is straight-forward to define a simple coupling in which in almost all sample paths (i.e. wvhp), the

number of successful coin flips is an upper bound on the number of proposals made to s. Whenever

a school wants to make a proposal during the DA, process B flips the next coin. Then:

1. If c has made a proposal to s before, ignore the coin flip, and let c pick a school uniformly at

random from the set of students whom it has not proposed to yet.

2. If c has made a proposal to s before, then let c make a proposal to the rest of the students

that she has not proposed to yet, uniformly at random.

(a) Suppose c has made d ≤ log2 n proposals so far. (Otherwise, ignore this sample path)

(b) With probability n−3 log2 n
n−d , let c make a proposal to s, otherwise, let c make a proposal

to the rest of the students that she has not proposed to yet, uniformly at random.

It is straight-forward to verify that this defines a valid coupling of DA,B. Now, note that the total

number of successful coin flips in B is an upper bound on the total number of proposals made to

s in the coupled DA process, in almost all sample paths (i.e. wvhp). Therefore, we can apply the

argument that we mentioned in the beginning of the proof to conclude the lemma.

Lemma 3.2. Suppose m = n + λn. Then, for any positive constant ε, the number of proposals

received by a fixed student in the school-proposing DA is wvhp at least (1−ε)κ, where κ = n
2(1+K) +λn

2

and K = (1 + λ) log(1 + 1/λ).

Proof. The proof idea is defining another stochastic process that we denote by B. Process B

is defined by a sequence of binary random variables X1, . . . , Xk. Each random variable in this

sequence is 1 with probability 1/n, and is 0 otherwise. For convenience, we also refer to these

random variables by coins. We describe the process B in a high level and then define it formally.

First,we set the number of coins (k) and then we start flipping them. Based on the outcome of each

10



coin-flip, we might decrease the number of remaining coin-flips (by dismissing some of the coins).

The process is finished when there are no coins left. We define the process formally below.

1. Fix a small constant δ > 0.

2. Let k = 2κn(1− δ).

3. Let i = 1.

4. While i ≤ k do

(a) Flip coin i.

(b) If the outcome is 0 then i← i+ 1, otherwise k ← k − n.

Next, we would like to use the number of successful coin-flips, defined by X =
∑k

i=1Xi, as a

lower bound for the number of proposals made to s, which we denote by ds. To this end, we couple

the process B with the school-proposing DA, and denote the coupled process by (DA,B). Our

coupling has the property that in almost all of its sample paths (except for a negligible fraction),

X ≤ ds. In other words, if we pick a sample path of (DA,B) uniformly at random (from the space

of all sample paths), then X ≤ ds holds in that sample path wvhp.

Claim 3.3. In (DA,B), wvhp we have ds ≥ X.

Claim 3.4. For any constant δ′ > 0, X ≥ (1− δ′)(1− δ)κ holds wvhp.

The proofs of these claims are stated after the proof of the lemma. First, we verify that if we

are given a valid coupling and the above claims, then proof of the lemma is almost complete: In

Claim 3.4, we show that for any constant δ′ > 0,the inequality

X ≥ (1− δ′)(1− δ)κ

holds wvhp. Therefore by Claim 3.3, ds ≥ (1− ε)κ holds wvhp for any constant ε > 0.

To complete the proof, it remains to define our coupling. As mentioned before, this involves

defining a new process, (DA,B), which is in fact a coupling of the processes DA,B. First, we define

the coupling formally, and after that we prove Claim 3.3.
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Definition of the Coupling

Recall that we fixed a student s, with the purpose of providing a lower bound on the number of

proposals made to s during the DA algorithm. We define the process (DA,B) by running both

of DA and B simultaneously. The results of coin-flips in B would be used to decide whether each

proposal in DA is made to s or not.

Suppose we are running the school-proposing DA. Let Sc denote the set of students that c has

proposed to them so far. In the coupled process, each school could have 3 possible states: active,

inactive, and idle. In the beginning, all schools are active. We will see that as the process evolves,

schools might change their state from active to inactive or idle and from inactive to idle.

In the coupled process, a coin-flip corresponds to a new proposal. If there are no coins left to

flip (in B), or no proposals left to make (in DA), then (DA,B) stops. Suppose it is the turn of a

school c to make a new proposal. This will be done by considering the following cases:

1. If c is active, then use a coin-flip to decide whether c proposes to s in her next move. This is

done as it follows: Flip one of the unflipped coins. If it is a successful flip (with probability

1/n), then c will propose to s; make c idle, and dismiss n of the unflipped coins. Otherwise,

if the coin-flip is not successful then: with probability 1 − 1−1/|S\Sc|
1−1/n propose to s and make

c inactive, and with probability 1−1/|S\Sc|
1−1/n propose to one of the students in S\(Sc ∪ {s})

uniformly at random (without changing the state of c).

2. If c is inactive, then flip one of the unflipped coins. If it is a successful flip, make c idle, and

dismiss n of the unflipped coins; otherwise, do not change the state of c. Propose to one of

the students in S\Sc uniformly at random.

3. If c is idle, then do not flip any coins. Propose to one of the students in S\Sc uniformly at

random.

This completes the description of (DA,B).

Proof of Claim 3.3. For any school c who has made a proposal to s, there is at most one successful

coin-flip corresponding to c. This holds since

(i) A successful coin-flip that corresponds to school c happens when c is either active or inactive.

In both of these cases, c must have made a proposal to s.
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(ii) After a successful coin-flip that corresponds to school c, n coins are removed (which account

for the next proposals from c). So, there will be no two successful coin-flips both of which

correspond to a proposal from c to s.

Consequently, the number of successful coin-flips is no larger than the number of proposals

made to s.

Proof of Claim 3.4. First, we show that wvhp (DA,B) terminates with no coins left. To see this,

note that in (DA,B), the number of proposals that are made is at most equal to the number of

flipped or dismissed coins. On the other hand, by the results of Ashlagi et al. (2017), the number

of proposals made by the school-proposing DA is at least k = ( n2

1+K + λn2)(1 − δ), wvhp (To see

why, note that the number of proposals made by empty schools and the number of proposals made

by non-empty schools respectively are at least λn2(1− δ) and ( n2

1+K )(1− δ), wvhp). Since B starts

with k coins, then, wvhp, (DA,B) ends when there are no coins left.

We are now ready to prove the lemma. Partition the set of k coins into two subsets with equal

size, namely subsets A,B. Correspond the operation k ← k−n (in the process B) to the operation

of removal of n coins from the subset B (as long as B is non-empty). One way of running B

would be flipping the coins in A one by one and removing n coins from B whenever a coin-flip is

successful. This will be continued until B is empty. Suppose X ′ denotes the number of successful

coin-flips in this process. Since X ≥ X ′ in each sample path of the process, it is enough to prove

the lemma statement for X ′ (instead of X). A standard application of Chernoff bound implies that

X ′ ≥ |A|n · (1− δ
′) wvhp. This proves the lemma since |A| ≥ nκ(1− δ), by definition of k.

Lemma 3.5. Suppose n = m + 1. Then, for any positive constant ε, the number of proposals

received by a fixed school in the student-proposing DA is wvhp at least (1− ε)κ, where κ = n
2 logn .

Proof. The proof is similar to the proof of Lemma 3.2. The only adjustments are swapping the

roles of schools and students and using the new definition of κ stated in this lemma.

Lemma 3.6. Suppose n = m + 1. Fix an arbitrary small constant ε > 0. Then, in the school-

proposing DA, the number of proposals received by a fixed student in the school-proposing algorithm

is whp at least (1− ε) · κ, where κ = logn
2 .

Proof. The proof is similar to our proof for Lemma 3.2, with the exception that we should use the

new definition of κ that we state in this lemma.
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For notational convenience in this section, we adopt the following definition.

Definition 3.7. Let r, r respectively denote n/(log n)1+ε, n/(log n)1−ε.

Lemma 3.8. Suppose n = m+ 1 and fix a student s ∈ S. Then, for any constant ε > 0 we have

P
[
µ#(s) 6∈ [r, r]

]
= o(1).

Proof. Instead of proving the claim directly, we will show that

P
[
η#(s) 6∈ [r, r]

]
= o(1). (1)

Ashlagi et al. (2017) show that P [µ(s) 6= η(s)] ≤
√

logn
n . Therefore it is sufficient to show that (1)

holds.

We use Lemma 3.6 to prove (1). Let d denote the number of proposals received by s. Lemma

3.6 implies that

P [d < α log n] = o(1), (2)

where α is a positive constant. So, we can safely assume that d ≥ α log n. Let X1, . . . , Xd be

random variables that denote the utility of s from the j-th proposal she receives. Note that

η#(s) = min{X1, . . . , Xd}.

Since students preferences are drawn uniformly at random, we can write

P
[
η#(s) ≥ r

]
=

d∏
i=1

1− r

m− i+ 1

≤
(

1− r

m

)d
≤ e−

dr
m ≤ exp(−α(log n)ε) = o(1). (3)
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In the other hand, we have

P
[
η#(s) ≤ r

]
= 1− P

[
η#(s) > r

]
≤ 1−

d∏
i=1

1− r

m− i+ 1

≤ 1−
(

1− r

m− d

)d
≤ 1−

(
1− dr

m− d

)
≤ O

(
α

(log n)ε

)
= o(1). (4)

Taking a union bound over the bounds (2), (3), and (4) completes the proof.

4 Proofs for Section 1.2

Consider a matching γ. Let γ(x) be the agent to which x is matched, and for any subset of agents

A ⊆ S ∪ C, let γ(A) be the set of agents matched to agents in A. Therefore, γ(C) is the set of

students who are assigned under γ.

Theorem 4.1. Suppose n = m+ 1 and fix a student s ∈ S. Then, under MTB, we have

lim
n→∞

P
[
µ̈(s) ≥ n

(log n)2+ε

]
→ 1

for any constant ε > 0.

Next, we will define a random variable Π(s), which we will use in the proof of Theorem 4.1.

Recall that r, r respectively denote n/(log n)1+ε, n/(log n)1−ε. For a fixed student s, we will define

the random variable Π(s), which represent a preference profile that is constructed by fixing the the

interval [r, r] of the preference list of s, while letting the rest of the preference profile be constructed

randomly. This notion is formally defined below.

Definition 4.2. For a fixed student s, we define a random variable Π(s), which is a subset of

preference profiles. We define Π(s) by constructing it, this would implicitly define the corresponding

support and probability mass function (PMF); we denote the PMF by P(s). We define Π(s) by first

defining a partial preference profile π̂, as follows:

1. For all students s′ 6= s, let π̂(s′) be drawn independently uniformly at random.
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2. Positions r, . . . , r in π̂(s) are filled with schools r, . . . , r, respectively.

Π(s) contains the set of all preference profiles π who are consistent with π̂ (i.e. agree with π̂ on the

positions where π̂ is defined). Given a realization Π(s), let U(Π(s)) denote the uniform distribution

over the elements of Π(s).

Lemma 4.3. Suppose Π(s) ∼ P(s). Also, suppose π, π′ are preference profiles that are drawn

independently uniformly at random from Π(s). Then, whp µπ = µπ′. (i.e., almost all student-

optimal matchings in Π(s) are identical, whp)

Proof. By definition, π, π′ are selected so that they are identical everywhere except on a fixed

student, namely s. So, π, π′ coincide on the interval [r, r] of the preference list of s, but they are

constructed independently (and uniformly at random) everywhere else in the preference list of s.

(In other words, the schools listed in the interval [r, r] of π′(s) are the same as π(s), but in all other

schools in π′(s) are shuffled randomly)

Using lemma 3.8 and a simple union bound we obtain that

P
[
µ#
π (s) 6∈ [r, r]

∨
µ#
π′(s) 6∈ [r, r]

]
≤P
[
µ#
π (s) 6∈ [r, r]

]
+ P

[
µ#
π′(s) 6∈ [r, r]

]
= o(1). (5)

The preference list of each student s′ 6= s is the same in π, π′; also, whp, µπ(s), µπ′(s) are both in

the interval [r, r] of the preference list of s. If this holds, then since the preference lists π(s), π′(s)

are identical in this interval, we get µπ = µπ′ (It is straight-forward to verity this). Therefore,

µπ = µπ′ , whp.

Proof of Theorem 4.1. For a preference profile π, define Bπ(s) to be the subset of students s′ for

which µπ(s) �s′ µπ(s′). Define Aπ(s) to be the subset of students s′ for which s′ ∈ Bπ(s), and

moreover, µπ(s′) �s µπ(s). The proof is done in two steps. In Step 1, we show that |Bπ(s)| is

“large”, whp. In Step 2, we show that |Aπ(s)| is “large”, whp; this would prove the lemma.

Step 1. Consider an arbitrary school c ∈ C. We will show that wvhp, there are “many” students

who rank c above their match in the student-optimal matching. Then, taking a union bound over
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all schools c ∈ C would show that wvhp, many students rank µπ(s) above their current match,

implying that |Bπ(s)| is large. Instead of showing that many students rank c above their match

in the student-optimal matching, we can equivalently show that c receives many proposals in the

student-proposing DA. This is what we proved in Lemma 3.5.

We now formalize this idea. By Lemma 3.5, for any constant ε > 0, each school receives at least

n(1−ε)
2 logn proposals wvhp, which also implies that all schools receive at least n(1−ε)

2 logn proposals wvhp.

Thus, µπ(s) receives at least n(1−ε)
2 logn proposals wvhp, which means for any constant ε > 0, wvhp we

have |Bπ(s)| > n(1−ε)
2 logn . This completes Step 1.

Observe that in Step 1 we showed that

Pπ∼P
[
|Bπ(s)| > n(1− ε)

2 log n

]
≥ 1− o(1), (6)

where P denotes the uniform distribution over all preference profiles. Next, we write an alternative

version of (6), which will be used later in Step 2.

Recall Definition 4.2, by which Π(s) is a random variable containing the set of all the possible

placements of schools [m]\[r, r] in positions [m]\[r, r]. Note that, without loss of generality, we can

assume that schools listed on positions r, . . . , r of π(s) are schools r, . . . , r, respectively. Thus, we

can rewrite (6) as

PΠ(s)∼P(s),π∼U(Π(s))

[
|Bπ(s)| > n(1− ε)

2 log n

]
≥ 1− o(1). (7)

Step 2 Lemma 4.3 shows that, when Π(s) ∼ P(s), almost all student-optimal matchings in

Π(s) (i.e. a fraction 1 − o(1) of them) are the same whp. Let µ denote this matching. Suppose

that, for π, π′ ∈ Π(s), we have µπ = µπ′ = µ. Then, see that by the definition of Π(s), we have

Bπ(s) = Bπ′(s). Thus, we let B(s) denote Bπ(s) for any π ∈ Π(s) for which µπ = µ. Now, (7)

implies that |B(s)| is large, whp. This means, if π ∼ U(Π(s)), then, both of the events µπ = µ

and |Bπ(s)| ≥ n(1−ε)
2 logn hold whp. We use this fact to prove that |Aπ(s)| is large, whp. This would

conclude Step 2.

Let π ∼ U(Π(s)). We show that whp, a large number of schools in B(s) have a rank better

than r in π(s). This would imply that |Aπ(s)| is large, whp. First note that we can safely assume

that µπ = µ (and so Bπ(s) = B(s)), since µπ 6= µ is a low-probability event (has probability o(1))
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by Lemma 4.3. Therefore, we assume that the event µπ = µ holds in the rest of this analysis.

Let X(c) be a binary random variable which takes the value 1 iff school c has a rank r or better

in π(s). Also, let X =
∑

c∈µ(B(s))Xc. For any c ∈ µ(B(s)), we have

P [Xc = 1] ≥ r

n
=

1

(log n)1+ε
.

Thus, E [X] ≥ |B(s)|
(logn)1+ε

. A standard application of Chernoff bounds imply that for any δ > 0, we

have

P [X < (1− δ) · E [X]] ≤ exp

(
−δ

2E [X]

2

)
.

Thus, |Aπ(s)| is at least (1−δ)·|B(s)|
(logn)1+ε

whp. In Step 1, (7) shows that |B(s)| is large whp. Consequently,

PΠ(s)∼P(s),π∼U(Π(s))

[
|Aπ(s)| ≥ n(1− ε)(1− δ)

2(log n)2+ε

]
≥ 1− o(1)

for any constants ε, δ > 0. This concludes Step 2 and completes the proof.

Theorem 4.4. Fix a student s. Under MTB, if n < m

lim
n→∞

P [µ̈(s) ≥ 1]→ 0.

Proof. Let l = 3 log2 n. Pittel (1989) proves that wvhp, every student is assigned to one of her

top l choices. Let L(s) denote the top l schools listed by student s. We show that for any student

s′ 6= s,

P
[
|L(s) ∩ L(s′)| ≥ 2

]
≤ O

(
log4 n

n2

)
. (8)

That is, the probability that (s, s′) is a Pareto improving pair is very small. Assuming (8) holds

the proof is completed by taking a union bound over all s′ 6= s since the union bound implies that

P [µ̈(s) ≥ 1] ≤ n ·O
(

log4 n

n2

)
= o(1).

It remains to show that (8) holds. First fix L(s) and then start constructing L(s′) randomly
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(we are using the principle of deferred decisions). It is straight-forward to verify that

P
[
|L(s) ∩ L(s′)| ≥ 2

]
≤
(
l

2

)
· (l/m)2 ≤ l4/m

= O

(
log4 n

n2

)
.

5 Proofs for Section 1.3

5.1 Equivalence of social inequity and variance

Proof of Lemma 1.4. Let q = min{m,n} be the number of assigned students, which is the same in

all stable matchings. Then,

Eπ [Si(µπ)] = Eπ

 1

|µπ(C)|
·
∑

t∈µπ(C)

(Ar (µπ)− µ#
π (t))2


= Eπ

1

q
·
∑

t∈µπ(C)

Ar (µπ)2 + µ#
π (t)2 − 2Ar (µπ)µ#

π (t)


=
∑
t∈S

Pπ [t ∈ µπ(C)] · Eπ
[

1

q
· Ar (µπ)2 + µ#

π (t)2 − 2Ar (µπ)µ#
π (t)

∣∣∣∣t ∈ µπ(C)

]
=
∑
t∈S

q

n
· Eπ

[
1

q
· Ar (µπ)2 + µ#

π (t)2 − 2Ar (µπ)µ#
π (t)

∣∣∣∣t ∈ µπ(C)

]
=

1

n
·
∑
t∈S

Eπ
[

Ar (µπ)2 + µ#
π (t)2 − 2Ar (µπ)µ#

π (t)

∣∣∣∣t ∈ µπ(C)

]
(9)

= Eπ
[

Ar (µπ)2 + µ#
π (s)2 − 2Ar (µπ)µ#

π (s)

∣∣∣∣s ∈ µπ(C)

]
(10)

= Eπ(s)E{π(s′):s′∈S,s′ 6=s} [Var [rs]] (11)

= E{π(s′):s′∈S,s′ 6=s} [Var [rs]] . (12)

In the above inequalities, (10) holds because the term inside the expectation in (9) is equal for all

students by symmetry. (12) holds since, by symmetry, the inner expectation in (11) is equal for all

preference profiles of s.
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5.2 Proof of Lemma 1.6

5.2.1 preliminaries

Proposition 5.1. Suppose d ≤ n, and define the random variable X = min{X1, . . . , Xd}, where

X1, . . . , Xd respectively represent the first d elements of a permutation over [n] that is chosen

uniformly at random. Then, E
[
X2
]

= d(n+1)(n−d)
(d+1)2(d+2)

+ (n+1)2

(d+1)2
.

Proof. It is known that E [X] = n+1
d+1 and Var[X] = d(n+1)(n−d)

(d+1)2(d+2)
(see Arnold et al. (1992), Page 55).

Plugging these equations into Var [X] = E
[
X2
]
− E [X]2 proves the claim.

Lemma 5.2. Suppose n ≤ m. Then, a student s with priority number n− t is assigned to one of

her top n log(n)
t choices with probability at least 1− 1/n.

Proof. The probability that s is not assigned to his top choice is 1 − t
n . The probability that s is

not assigned to his second top choice is (1− t
n)(1− t

n−1), which is at most (1− t
n)2. Similarly, it is

straightforward to see that the probability that s is not assigned to her i-th top choice is at most

(1− t
n)i, which is at most e−

ti
n . Setting i = n

t log(n) proves the claim.

Lemma 5.3. Suppose |n−m| = 1. Then, under STB, for any student s,

Eπ
[
µ#
π (s)2

∣∣µπ(s) 6= ∅
]

= O(n).

Proof. We prove this assuming that m ≥ n. The proof for m < n is identical to the proof for

m = n: To see this, suppose that n = m, and note that the expected social inequity does not

change when one more student is added to the market.

Let t =
√
n log n and let ps be the “priority number” of s in the corresponding random serial

dictatorship. We consider two cases: either ps ≤ n− t or not. Note that

Eπ
[
µ#
π (s)2

∣∣µπ(s) 6= ∅
]

= P [ps ≤ n− t] · E
[
µ#
π (s)2

∣∣ps ≤ n− t]
+ P [n− t < ps] · E

[
µ#
π (s)2

∣∣n− t < ps

]
. (13)

We provide an upper bound for each of the terms in the right-hand side of (13).
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By Lemma 5.2, we have:

E
[
µ#
π (s)2

∣∣ps ≤ n− t] ≤ (1− 1

n
) · (n log(n)/t)2 +

1

n
· (n2) ≤ 2n,

which implies that

P [ps ≤ n− t] · E
[
µ#
π (s)2

∣∣ps ≤ n− t] ≤ 2n. (14)

Also, we have that

P [n− t < ps] · E
[
r2
s

∣∣n− t < ps
]
≤ t

n
·

t∑
i=1

1

t
E
[
r2
s

∣∣ps = n− i+ 1
]

≤ 1

n
·

t∑
i=1

2(n/i)2. (15)

≤ n · π
2

3
. (16)

where (15) holds since for a geometric random variable X with mean p we have E [X] = 2−p
p2

.

Finally, putting (14) and (16) together implies

Eπ
[
µ#
π (s)2

∣∣µπ(s) 6= ∅
]
≤ n(2 +

π2

3
).

5.2.2 Proof of Lemma 1.6 - Part 1

The proof for Part 1 of Lemma 1.6 is directly implied by Lemmas 5.4 and 5.5.

Lemma 5.4. When n = m+ 1, expected social inequity in MTB is Ω( n2

log2 n
).

Proof. The proof has two steps. In Step 1, we show that if we run the school-proposing DA, then

the variance of the rank of each student is high. In Step 2, we show that even when we move from

the school-optimal matching to the student-optimal matching, the variance remains high. The

rough intuition behind Step 2 is that only o(n) of the students would have a different match under

the school-optimal and the student-optimal matchings.
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Step 1. Since the social inequity and the expected variance in the rank of a fixed student are

equal by Lemma 1.4, there is no harm in analyzing the latter notion (we switch to the former notion

in Step 2). We are interested in providing a lower bound on E
[
(rs − r)2

]
, where rs is a random

variable denoting the rank for student s and r = Ar (η) (note that r is also equal to the average

rank of s, conditioned on being assigned). Since E
[
(rs − r)2

]
= E

[
r2
s

]
− r2, we can instead provide

a lower bound on the RHS of the equality.

Fix an arbitrary small constant ε > 0. Let Es denote the event in which student s receives at

most (1 + ε) log n proposals. Then

E
[
r2
s

]
≥ P [Es] · E

[
r2
s

∣∣Es]+ (1− P [Es]) · 0. (17)

To give a lower bound on the RHS of (17), we provide a lower bound on E
[
(rs − r)2

∣∣Es]. If student

s receives ds proposals in school-proposing DA, then it chooses the best out of these ds proposals,

which means its rank is the first order statistic among the proposals that she had received. In

Proposition 5.1, we calculate E
[
r2
s

∣∣ds] (which is the expected rank squared for s conditioned on

receiving ds proposals).

Using Proposition 5.1 and (17) together we can write

E
[
r2
s |Es

]
≥ P [Es] · E

[
r2
s

∣∣Es]+ (1− P [Es]) · 0

≥ (1− o(1)) · 3n2

2 log2 n
+ o(1) · 0, (18)

where (18) follows from Lemma 3.1, which shows event Es happens whp.

It is known that, r ∈ [ (1−δ)n
logn , (1+δ)n

logn ] for any constant δ > 0 and large enough n (see Ashlagi

et al. (2017)). Therefore, together with (18),

E
[
(rs − r)2

]
= E

[
r2
s

]
− r2 ≥ (1− o(1)) · (3/2− (1 + δ)2) · n2

log2 n
= Θ(

n2

log2 n
).

This finishes Step 1.

Step 2. In this step, instead of working with the notion of expected variance in the rank of a

fixed student, we switch to its equivalent notion, expected social inequity. Step 1 and Lemma 1.4
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together imply that Eπ [Si(ηπ)] is Ω( n2

log2 n
). In this step, we show that moving from the school-

optimal matching to the student-optimal matching does not change the social inequity much in

expectation, and as the result, we would prove that Eπ [Si(µπ)] is also Ω( n2

log2 n
). This is done as

follows.

m · Eπ [Si(µπ)− Si(ηπ)] = Eπ

[ ∑
s∈µπ(C)

µ#
π (s)

2
+ Ar (µπ)2 − 2µ#

π (s)Ar (µπ)

−
∑

s∈ηπ(C)

η#
π (s)

2
+ Ar (ηπ)2 − 2η#

π (s)Ar (ηπ)

]

= m · Eπ
[
Ar (µπ)2 − Ar (ηπ)2

]
+ Eπ

 ∑
s∈µπ(C)

µ#
π (s)

2 − η#
π (s)

2


− 2Eπ

 ∑
s∈µπ(C)

µ#
π (s)Ar (µπ)−

∑
s∈ηπ(C)

η#
π (s)Ar (ηπ)

 . (19)

We can rewrite the above inequality by simplifying (19) as

2Eπ

 ∑
s∈µπ(C)

µ#
π (s)Ar (µπ)−

∑
s∈ηπ(C)

η#
π (s)Ar (ηπ)


=2m · Eπ

[
Ar (µπ)2 − Ar (ηπ)2

]
,

which together with the previous equation implies that

m · Eπ [Si(µπ)− Si(ηπ)] = (20)

−m · Eπ
[
Ar (µπ)2 − Ar (ηπ)2

]
(21)

+ Eπ

 ∑
s∈µπ(C)

µ#
π (s)

2 − η#
π (s)

2

 . (22)

To prove the lemma, we provide lower bounds for (21) and (22). When we move from the

school-optimal matching to the student-optimal matching, each student gets assigned to a school

at least as good as before. Let ∆π(s) = η#
π (s)− µ#

π (s), and ∆π =
∑

s∈µπ(C) ∆π(s).
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A Lower Bound for (21). First, we note that m (Ar (ηπ)− Ar (µπ)) = ∆π is “small” wvhp. This

is a direct consequence of Theorem 5 in Ashlagi et al. (2017); they show that there exist constants

n0, δ > 0 such that for n > n0, we have

Pπ∼Π [∆π ≥ δn log n] < exp
{
−(log n)0.4

}
. (23)

According to this bound, we have that

m · (Ar (µπ)2 − Ar (ηπ)2) = m ·
(
(Ar (ηπ)−∆π/m)2 − Ar (ηπ)2

)
= ∆2

π/m− 2∆πAr (ηπ).

By taking expectation from both sides of the above equation, we can write

m · Eπ
[
Ar (µπ)2 − Ar (ηπ)2

]
= Eπ

[
∆2
π/m− 2∆πAr (ηπ)

]
≤ (δn log n)2/m, (24)

where the last inequality follows from (23), for any constant δ > δ and sufficiently large n. This

implies a lower bound of −(δn log n)2/m for (21).

A Lower Bound for (22). First, we rewrite (22) as follows.

Eπ

 ∑
s∈µπ(C)

µ#
π (s)

2 − η#
π (s)

2

 = Eπ

 ∑
s∈µπ(C)

(η#
π (s)−∆π(s))2 − η#

π (s)
2


≥ −2Eπ

 ∑
s∈µπ(C)

η#
π (s)∆π(s)

 . (25)

We proceed by providing a lower bound on (25). First, we use the Cauchy-Schwarz inequality

to write

∑
s∈ηπ(C)

η#
π (s)∆π(s) ≤

 ∑
s∈ηπ(C)

(η#
π (s))2 ·

∑
s∈ηπ(C)

(∆π(s))2

1/2

≤ m3/2 ·

 ∑
s∈ηπ(C)

(∆π(s))2

1/2
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Taking expectation from both sides of the above inequality implies

Eπ

 ∑
s∈ηπ(C)

η#
π (s)∆π(s)

 ≤ m3/2 · Eπ


 ∑
s∈ηπ(C)

(∆π(s))2

1/2
 .

Using (23), we can rewrite the above upper bound:

Eπ

 ∑
s∈ηπ(C)

η#
π (s)∆π(s)

 ≤ m3/2 · n(δ log n)1/2,

which holds for any constant δ > δ. According to (25), this upper bound can be directly translated

into a lower bound −2m3/2 · n(δ log n)1/2 for (22).

Using the lower bounds that we provided for (21) and (22), we can rewrite equation (20) as

follows:

m · Eπ [Si(µπ)− Si(ηπ)] ≥ −(δn log n)2/m− 2m3/2 · n(δ log n)1/2.

In the other hand, In Step 1 we established that Eπ [Si(ηπ)] ≥ Ω(n2/ log2 n). The two latter

inequalities together imply that

Eπ [Si(µπ)] = Eπ [Si(ηπ)] + Eπ [Si(µπ)− Si(ηπ)] ≥ Ω(n2/ log2 n).

This completes the proof.

Lemma 5.5. Suppose |n−m| = 1. Then, under STB, the expected social inequity is Θ(n).

Proof. First, we compute a lower bound on the expected social inequity in STB. With probability

at least 1/2, the student with the lowest priority number in STB gets assigned to a school that she

has ranked on lower half of her preference list. So, for any student s ∈ S we can write:

E [Si(µSTB)] = E
[
Var

[
rs
]]
≥ 1

n
·
(

Ar (µ#
STB(s))− n

)2
.

It is proved by Knuth (1995) that Ar (µ#
STB(s)) = Θ(log n). Plugging this into the above inequality
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implies that E [Si(µSTB)] ≥ Ω(n). On the other hand, by Lemma 5.3 we have that

Si(µSTB) = Eπ
[
(Ar (µπ)− µ#

π (s))2
∣∣µπ(s) 6= ∅

]
= Eπ

[
µ#
π (s)2

∣∣µπ(s) 6= ∅
]
− Eπ [Ar (µπ)]2

≤ Eπ
[
µ#
π (s)2

∣∣µπ(s) 6= ∅
]

= O(n),

which completes the proof.

5.2.3 Proof of Lemma 1.6 - Part 2

Pittel (1989) shows that wvhp, maxs∈S µ
#
MTB(s) ≤ 3 log2 n. Therefore, wvhp

1

n
·
∑
s∈S

(Ar (µMTB)− µ#
MTB(s))2 ≤ 9 log4 n.

This implies that the expected social inequity under MTB is O(log4 n). On the other hand, Lemma

5.5 implies that the expected social inequity under STB is Θ(n).

5.2.4 Proof of Lemma 1.6 - Part 3

First note that Part 2 implies a weaker version of Part 3. That is, If n = m−1, the expected social

inequity under MTB is still O(log4 n), by the same analysis for n = m. On the other hand, by

Lemma 5.5 the expected social inequity under STB is Θ(n). This gap is large enough that Theorem

1.5 still holds, even with this weaker version of Part 3.

We prove here that the gap is even larger, by showing how the bound on the expected social

inequity under MTB can be improved to O(log2 n). The proof follows the same steps as the proof of

Lemma 5.7, where we provide an upper bound on E [Si(µMTB)] when the imbalance is linear. During

the proof, we will also use Lemma 3.5, which was proved in Section 4.

The proof is done in 2 Steps. In Step 1, we show that that the variance of the rank of student s in

the student-proposing DA is approximately equal to the variance of its rank in the school-proposing

DA. Then, in Step 2, we provide an upper bound on the variance of rank in the school-proposing

DA. Steps 1,2 then together will prove the claim.
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Step 1. First, we rewrite the following equality from the proof of Lemma 5.4.

m · Eπ [Si(µπ)− Si(ηπ)] = (26)

−m · Eπ
[
Ar (µπ)2 − Ar (ηπ)2

]
(27)

+ Eπ

 ∑
s∈µπ(C)

µ#
π (s)

2 − η#
π (s)

2

 . (28)

To complete Step 1, we need to provide upper bounds for (27) and (28).

An upper bound for (27) We will use the following relation between average ranks, provided

by Theorem 3 of Ashlagi et al. (2017): wvhp we have

Ar (ηπ) ≤ Ar (µπ)(1 + o(1)).

Consequently, m · o(1) · Eπ [Ar (µπ)] is a valid upper bound for (27).

An upper bound for (28) 0 is a valid upper bound since, by the definition of µ, η, we always

have µ#
π (s) ≤ η#

π (s).

Plugging the provided upper bounds into (26) implies

Eπ [Si(µπ)− Si(ηπ)] ≤ o(1) · Eπ [Ar (µπ)] .

When there are linearly more seats, Eπ [Ar (µπ)] = O(1). This implies

Eπ [Si(µπ)− Si(ηπ)] ≤ o(1), (29)

which concludes Step 1.
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Step 2. Suppose we are running the school-proposing DA. First, see that

Eπ [Si(ηMTB)] = Eπ
[
(Ar (ηπ)− η#

π (s))2
∣∣ηπ(s) 6= ∅

]
= Eπ

[
η#
π (s)2

∣∣ηπ(s) 6= ∅
]
− Eπ [Ar (ηπ)]2

≤ Eπ
[
η#
π (s)2

∣∣ηπ(s) 6= ∅
]
.

For notational simplicity, let rs denote the rank of student s. Note that since s is always assigned,

then rs ∈ [m]. We can write the above bound as

Eπ [Si(ηMTB)] ≤ E
[
r2
s

]
. (30)

Next, we provide an upper bound on E
[
r2
s

]
. Fix an arbitrary small constant ε > 0. Let Es

denote the event in which student s receives at least κ = (1−ε)n
2 logn proposals. Lemma 3.5 shows that

Es happens wvhp. Consequently,

E
[
r2
s |Es

]
. P [Es] · E

[
r2
s

∣∣Es] ≤ O(log2 n), (31)

where we used Proposition 5.1 to bound E
[
r2
s

∣∣Es].
Now we are ready to finish the proof of Part 3. See that (30) and (31) together imply that

Eπ [Si(ηMTB)] ≤ O(log2 n).

Therefore, together with Step 1, we have that

Eπ [Si(µπ)] ≤ Eπ [Si(µπ)− Si(ηπ)] + Eπ [Si(ηπ)]

≤ o(1) + Eπ [Si(ηπ)] ≈ O(log2 n).

5.3 Proof of Theorem 1.7

We first prove a weaker version of Theorem 1.7 (Theorem 5.6) and at the end of this section, we

explain how our proof for Theorem 5.6 can be adapted to work for Theorem 1.7.

Theorem 5.6. Suppose m = n + λn for any positive λ ≤ 0.008. Then, limn→∞
E[Si(µSTB)]
E[Si(µMTB)] > 1,
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where the expectations are taken over preferences and the tie-breaking rules.

To prove this theorem, we need the following lemmas, the proofs for which appears after the

proof of the theorem.

Lemma 5.7. Suppose m = n+ λn. Then, under MTB we have

lim
n→∞

Eπ [Si(µπ)] ≤ T (2T − 1)−K2,

where K = (1 + λ) log(1 + 1/λ) and T = 2(1+λ)
λ+1/(1+K) .

Lemma 5.8. Suppose m = n+ λn. Then, under STB we have

Eπ [Si(µπ)] ≥ 2(1 + λ)

λ
− (1 + λ) log(1 + 1/λ)− (1 + λ)2 log(1 +

1

λ
)2.

Proof of Theorem 5.6. The proof is directly implied by Lemmas 5.7 and 5.8 below.

lim
n→∞

E [Si(µSTB)]

E [Si(µMTB)]
≥

2(1+λ)
λ − (1 + λ) log(1 + 1/λ)− (1 + λ)2 log(1 + 1

λ)2

T (2T − 1)−K2.
.

where K = (1 + λ) log(1 + 1/λ) and T = 2(1+λ)
λ+1/(1+K) . For λ ≤ 0.008, RHS of the above inequality is

strictly greater than one.

Next, we prove the two lemmas that we used in the proof of this theorem. To simplify alge-

braic calculations, we use the notions ≈,& which respectively mean equality and inequality up to

vanishingly small terms.

Proof of Lemma 5.7. We use Lemma 1.4, by which the expected social inequity and the expected

variance of the rank of a fixed student are equal. So, to prove the lemma, we fix a student s and

show that

lim
n→∞

E{π(s′):s′∈S,s′ 6=s} [Var [rs]] ≤ T (2T − 1)−K2. (32)

We prove (32) in 2 Steps. In Step 1, we show that that the variance of the rank of student s in

the student-proposing DA is approximately equal to the variance of its rank in the school-proposing
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DA. Then, in Steps 2, we provide an upper bound T (2T − 1)−K2 on the variance of rank in the

school-proposing DA. Steps 1,2 then together will imply that (32) holds.

To prove the lemma, it remains to prove each of the steps separately.

Step 1. This step is identical to Step 1 in the proof of Part 3 of Lemma 1.6, which was presented

in Section 5.2.4).

Step 2. This Step is similar to Step 1 in the proof of Lemma 5.4.

Since the expected social inequity and the expected variance of the rank of a fixed student are

equal by Lemma 1.4, in this step we use the latter notion. We will switch to the former notion

in Step 2. We are interested in providing an upper bound on E
[
(rs − r)2

]
, where rs is a random

variable denoting the rank for student s and r = Ar (η) (note that r is also equal to the average

rank of s, conditioned on being assigned). Since E
[
(rs − r)2

]
= E

[
r2
s

]
− r2, we can instead provide

an upper bound on the RHS of the equality.

Fix an arbitrary small constant ε > 0. Let Es denote the event in which student s receives at

least (1− ε)κ, where κ = n
2(1+K) + λn

2 . (recall that K = (1 + λ) log(1 + 1/λ)) Therefore

E
[
r2
s

]
≤ P [Es] · E

[
r2
s

∣∣Es]+ (1− P [Es]) · (n+ λn)2. (33)

We proceed by providing an upper bound on the RHS of (33). Lemma 3.2 implies Es happens

wvhp, and so, we can ignore the second term in the RHS of (33) since it is a lower order term.

We provide an upper bound on the first term in the RHS of (33), i.e. on E
[
r2
s

∣∣Es]. If student s

receives ds proposals in school-proposing DA, then it chooses the best out of these ds proposals,

which means its rank is the first order statistic among the proposals that she had received. In

Proposition 5.1, we calculate E
[
r2
s

∣∣ds] (which is the expected rank squared for s conditioned on

receiving ds proposals).
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Using Proposition 5.1 and (33) together we can write

E
[
r2
s |Es

]
. P [Es] · E

[
r2
s

∣∣Es]
. (

n(1 + λ)

κ
)(

2n(1 + λ)

κ
− 1) (34)

=

(
1 + λ
1

2(1+K) + λ
2

)(
2(1 + λ)

1
2(1+K) + λ

2

− 1

)
= T (2T − 1). (35)

Now, (35) implies that

lim
n→∞

Eπ [Si(ηπ)] = lim
n→∞

Eπ
[
r2
s − r2

]
= T (2T − 1)−K2. (36)

This completes Step 2.

Now we are ready to finish the proof of the lemma. Note that

Eπ [Si(µπ)] ≤ Eπ [Si(µπ)− Si(ηπ)] + Eπ [Si(ηπ)]

≤ o(1) + Eπ [Si(ηπ)] (37)

≈ T (2T − 1)−K2, (38)

where (37) follows from Step 1, and (38) follows from (36).

Next, we show how the proof works for Lemma 5.8.

Proof of Lemma 5.8. Suppose students indexed with respect to their priority number in STB, i.e.

the student with the highest priority number is indexed 1, and the student with the lowest priority

number is indexed with n. Fix a student s. Using Lemma 1.4, we can write

Eπ [Si(µπ)] = Var [rs] = E
[
r2
s

]
− E [rs]

2 , (39)

where rs denotes the rank assigned to student s.

To provide a lower bound for (39), we lower bound E
[
r2
s

]
and upper bound E [rs]

2.

Upper bound for E [rs]
2. First, we state the following claim.

Claim 5.9. Suppose m = (1 + λ)n. Then, E [rs] ≈ (1 + λ) log(1 + 1
λ).
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Proof. This follows from Ashlagi et al. (2017).

By Claim 5.9, we have that

E [rs]
2 ≈ (1 + λ)2 log(1 +

1

λ
)2.

Lower bound for E
[
r2
s

]
First, see that

E
[
r2
s

]
=

1

n
·
n−1∑
i=0

E
[
r2
s

∣∣s has priority i+ 1
]
.

Next, we state the following claim; its proof comes after the proof of this lemma.

Claim 5.10. Suppose m = (1 + λ)n. Then, E
[
r2
k+1

]
≥ 2−p

p −O( log5m
m ), where p = m−k

m .

Now, we use Claim 5.10 to calculate an upper bound on the RHS of the above inequality:

E
[
r2
s

]
=

1

n
·
n−1∑
i=0

E
[
r2
s

∣∣s has priority i+ 1
]

&
1

n

n−1∑
i=0

2

(m−im )2
− 1

(m−im )

≈ 1

n

n−1∑
i=0

2

(m−im )2
− (1 + λ) log(1 + 1/λ).

Now, using the inequality 1
x2
≥ 1

x −
1

x+1 we can write

E
[
r2
s

]
&

2m2

n
·
n−1∑
i=0

1

(m− i)2
− (1 + λ) log(1 + 1/λ).

≥ 2m2

n
·
(

1

λn
− 1

(λ+ 1)n

)
− (1 + λ) log(1 + 1/λ).

=
2(1 + λ)

λ
− (1 + λ) log(1 + 1/λ).

By combining the above bounds, we can provide the promised lower bound on (39).

Eπ [Si(µπ)] = E
[
r2
s

]
− E [rs]

2

&
2(1 + λ)

λ
− (1 + λ) log(1 + 1/λ)− (1 + λ)2 log(1 +

1

λ
)2.
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Proof of Claim 5.10. A straight-forward calculation gives

E
[
r2
k+1

]
=

k∑
j=0

(j + 1)2 · (1− k − j
m− j

) ·
j−1∏
l=0

k − l
m− l

. (40)

Define t = min{k, 5 logn1+λ}. To provide a lower bound, we only consider the first t summands in

the above sum (the sum of the rest of the summands will be very small). Fix an arbitrary t ≤ t.

We provide a lower bound for the summand corresponding to j = t. This summand contains the

term
∏t−1
l=0

k−l
m−l , which is at least

t−1∏
l=0

k − l
m− l

≥
t−1∏
l=0

k

m
−

t−1∑
l=0

∣∣∣ k
m
− k − l
m− l

∣∣∣ ≥ t−1∏
l=0

k

m
− λt2

m− t
= (k/m)t − λt

2

2m
.

Now, using the above inequality, we provide the following upper bound on (40):

E
[
r2
k+1

]
≥

 t∑
j=0

(j + 1)2 · (1− k

m
)(
k

m
)j

− λt
5

2m
. (41)

We are almost done. In the RHS of (41), we bound the first term from below by

t∑
j=0

(j + 1)2 · (1− k

m
)(
k

m
)j ≥ 2− p

p
−O(n−2),

which holds because of the following well-known fact: E
[
Z2
]

= 2−q
q where Z is a geometric random

variable with success probability q. Using the above bound, we can rewrite (41) as

E
[
r2
k+1

]
≥ 2− p

p
−O(

log5m

m
),

which completes the proof.

5.4 Proof Sketch for Theorem 1.7

Finally, we describe how proof of Theorem 5.6 can be adapted to prove Theorem 1.7. The main

difference is in Lemma 3.2. By proving a stronger version of Lemma 3.2, the same proof would
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work for λ > 0. Some of the less important details are omitted from this proof.

We define the stronger version of Lemma 3.2 simply by using, the variable

κ′ =

(
n

1 +K
+ λn

)
·

 1

2−
(

1
(1+K)(1+λ) + λ

1+λ

)
· 1

2


instead of a variable κ. Replacing κ with κ′ in the lemma statement would give the stronger version

of the lemma. To show why the stronger version holds, we need to consider again the coupling

(DA,B) which we defined in the proof of Lemma 3.2. There, for each successful coin-flip (a proposal

made to s), we removed n coins. However, instead of doing that, here we remove n−y coins, where

y is the number of proposals made by the proposer so far. Everything else in the coupling remains

the same, e.g. the number of coins that we flip will remain 2nκ(1 − δ)). We will follow the same

proof that we gave for Lemma 3.2, with some adjustments. We sketch the proof below.

Let X be a random variable that denotes the total number of successful coin flips in the coupling.

Our goal is showing that X ≥ κ′(1− δ) holds wvhp.

Claim 5.11. Wvhp, X ≥ κ′(1− δ).

First, we verify that the lemma is proved by the above claim, and after that we prove the claim

itself. To prove the lemma, we follow the proof of Lemma 5.7 by rewriting (34) and (35) as follows.

Let Es denote the event at which s receives at least κ′(1− δ) proposals. Then,

E
[
r2
s |Es

]
. P [Es] · E

[
r2
s

∣∣Es]
.
n(1 + λ)

κ′
· (2n(1 + λ)

κ′
− 1) (42)

Now, (42) implies that

lim
n→∞

Eπ [Si(ηπ)] = lim
n→∞

Eπ
[
r2
s − r2

]
≤ n(1 + λ)

κ′
· (2n(1 + λ)

κ′
− 1)−K2. (43)

Note that (43) is an improved upper bound. On the other hand, as we showed in Step 1 of the

proof of Lemma 5.7,

Eπ [Si(µπ)] ≈ Eπ [Si(ηπ)] .
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Consequently,

lim
n→∞

E [Si(µSTB)]

E [Si(µMTB)]
≥

2(1+λ)
λ − (1 + λ) log(1 + 1/λ)− (1 + λ)2 log(1 + 1

λ)2

(n(1+λ)
κ′ )(2n(1+λ)

κ′ − 1)−K2
.

where K = (1 + λ) log(1 + 1/λ). The RHS of the above inequality is strictly greater than one for

any positive constant λ ≤ 0.01. (Note that the RHS is only a function of λ) This would prove the

lemma. It remains to prove Claim 5.11.

First, we will argue that the claim holds in expectation, i.e. E [X] ≥ κ′(1 − δ). Recall that in

the (new) coupling, after each successful coin-flip, i.e. a proposal made to s by a school c, only zc

coins are removed where zc = n − yc and yc is the number of proposals that c has made so far.

Let dc be the total number of proposals made by school c. Also, let Fc denote the event in which

school c makes a proposal to s. Conditioning on school c making exactly dc proposals, we get

E
[
yc
∣∣dc, Fc] =

dc + 1

2
,

which holds for any arbitrary school c ∈ C. This holds simply because we can relabel the students

(using a consistent permutation of the labels), without changing the student-optimal matching (up

to relabeling). This equality, together with

E
[
dc
∣∣Fc] ≈ 1

1 + λ
· n

1 +K
+

λ

1 + λ
· n

(which follows from Ashlagi et al. (2017)) imply

E
[
yc
∣∣Fc] ≈ n

2(1 + λ)
·
(

1

1 +K
+ λ

)
. (44)
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Now, since all of the 2nκ(1− δ) coins will be flipped wvhp, the following holds wvhp as well:

E [X] · n+ E [X] ·
(
n− E

[
yc
∣∣Fc]) ≈ 2nκ, (45)

=⇒ E [X] (2n− E
[
yc
∣∣Fc]) ≈ 2nκ,

=⇒ E [X] ≈ 2nκ

2n− E
[
yc
∣∣Fc]

=
2κ

2− E
[
yc
∣∣Fc] /n =

n
(1+K) + λn

2− 1
2(1+λ) ·

(
1

1+K + λ
) (46)

where (45) holds since, on average, for any n unsuccessful coin flips, we have 1 successful one,

which results in removal of E
[
zc
∣∣Fc] coins in expectation, and also, (46) holds by (44). So, the

weaker version of Claim 5.11 that we mentioned holds, i.e. when wvhp is replaced with expectation.

Following the same approach, we can prove Claim 5.11. We explain the high-level idea here. Note

that if the random variables {yc} were known to be independent, we could simply apply the Chernoff

bound, which would imply that the sum
∑

c yc taken over all c that propose to s is concentrated

around its mean, X · E [y1|F1]. This would let us write a stronger version of (45) (which holds

wvhp, and not in expectation), which then proves Claim 5.11. Although {yc} are not independent,

they are “almost” independent, roughly speaking, because preferences of schools are constructed

independently. A careful treatment of these dependencies let us write the same concentration

bounds. We omit the details.

6 Computational experiments (not for publication)

This section presents simulations that complement our theoretical results. First we consider markets

with complete preference lists for students and varying capacities for schools. After that, we

consider markets with short preference lists, and finally, tiered markets where a subset of of schools

are preferred by all students over the rest of schools.

6.1 Numerical results for our model

The first computational experiments illustrates the effect of the imbalance in the market on the

students’ rank distributions under STB and MTB and the relationship between the two. For each
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instance that we consider,6 we sample realizations by drawing complete preference lists uniformly at

random and independently for each student. In addition, under MTB, for each market realization

we draw a complete order over students for each school, independently and uniformly at random.

Under STB, for each market realization we draw a single ranking over students uniformly at random.

Then, we compute the student optimal stable matching. The plots and the tables that we present

here are generated by taking average over several (between 100 to 1000) samples for each instance.

Figure 1 shows the cumulative rank distribution under each tie-breaking rule in a market with

1000 students. We consider instances with a small imbalance of either 1 or 10 seats, i.e. four

different instances with 1000±1 and 1000±10 seats. Each school has one seat (capacity 1). Observe

that when there is a shortage of seats (left panel), the rank distribution under STB stochastically

dominates the rank distribution under MTB. When there is a surplus of seats (right panel), there

is no stochastic dominance.
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Figure 1: The cumulative rank distributions under MTB and STB in random market with 1000 students.
Panels 1a and 1c plot the distributions in markets with a shortage of 1 and 10 seats, respectively. Panels
1b and 1d plot the distributions in markets with a surplus of 1 and 10 seats, respectively. The dashed and
solid lines indicates the rank distributions under MTB and STB, respectively.

6An instance contains the information regarding market characteristics (size, capacities, list length), and the choice
of tie-breaking rule.

37



Figure 2 illustrates similar findings for a market with only 100 students, unit capacities, and a

shortage or surplus of a single seat.
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Figure 2: The rank distribution under MTB and STB in random market with 100 students with a shortage
(left) and surplus (right) of one seat. The dashed and solid lines indicates the rank distribution under MTB
and STB, respectively.

Table 1 reports the expected average rank and expected social inequity (or the variance of a

student’s rank) for markets with varying imbalances and each school has a single seat. Observe

that the variance of the rank is larger under MTB (than under STB) when there is a shortage of

seats and that the variance increases significantly in this case as the shortage grows from 1 to 10.

Furthermore, notice that the variance of the rank is smaller under MTB when there is a surplus of

seats.

PPPPPPPPPP
m

n−m
-10 -1 1 10

100
Ar (µSTB)/Ar (µMTB) 2.52/2.54 3.78/4.1 4.14/29.5 4.23/19.79

Si(µSTB)/Si(µMTB) 9.47/3.87 49.8/12.6 69.6/516.9 78.2/322.9

1000
Ar (µSTB)/Ar (µMTB) 4.53/4.59 6/6.46 4.14/203.5 6.5/136.8

Si(µSTB)/Si(µMTB) 144.4/16.51 628.9/35.7 69.6/35780 947/18300

Table 1: Average rank and social inequity under under STB and MTB in the student optimal stable matching
for different markets. A student’s most preferred rank is 1 and larger rank indicates a less preferred school.

6.2 Robustness to large imbalances and capacities

This section presents simulation results to examine the effect of different imbalances as well as

capacities on the random assignments under MTB and STB. We find that for all markets with a
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shortage of seats, the rank distribution under STB stochastically dominates the one under MTB.

Figure 3 shows the rank distribution under each tie-breaking rule in markets with 10000 stu-

dents. Each school has 10 seats, and there is a total imbalance of 100 seats.
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Figure 3: The rank distribution under MTB and STB in a random market with 1000 schools where each
school has 10 seats and in total there is a shortage (left) or surplus (right) of 100 seats. The dashed and
solid lines indicates the rank distribution under MTB and STB, respectively.

Table 3 reports the expected average rank and social inequity for eight markets with imbalances

1 or 100 and school capacities are either 5 or 10. All schools have the same capacity in each instance;

we denote this capacity by q.

PPPPPPPPPP
m (q)

n− qm
-100 -1 1 100

1000 (5)
Ar (µSTB)/Ar (µMTB) 1.77/1.77 2.74/2.94 2.86/112 2.86/234.9

Si(µSTB)/Si(µMTB) 7.36/1.37 213.6/5.8 280/12429 289.2/44348

1000 (10)
Ar (µSTB)/Ar (µMTB) 1.57/1.57 2.15/2.25 2.19/104.2 2.19/206.8

Si(µSTB)/Si(µMTB) 6.29/0.9 134.7/2.844 166.7/10851 36773/167.5

Table 2: Average rank and social inequity under under STB and MTB in the student optimal stable matching
for different markets. A student’s most preferred rank is 1 and larger rank indicates a less preferred school.

Figure 4 shows the ratio between Si(µSTB) to Si(µMTB) in a market with 10000 students, unit

capacities, and the surplus of seats varying from 100 to 1000. Observe that the ratio decreases as

the surplus grows because the larger the surplus, the more students will receive their top choices.
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Figure 4: The ratio between Si(µSTB) to Si(µMTB) in a random market with 10000 students, unit capacities,
and a surplus of seats. (the x-axis denotes the surplus of schools)

6.3 Short preference lists

In this section, we present simulations to illustrate the effect of shortening the students’ preference

lists on our results.

Figure 5 presents the rank distribution in random market with 1000 schools, each with capacity

of 10. In addition there are either 10100 or 9900 students, each of which ranks independently

uniformly at random 10 schools. (Note that we consider the same instance with complete preference

lists in Appendix 6.2, Table 3). When there is a shortage of seats and the preference lists are

complete, our simulations reveal that the rank distribution under STB stochastically dominates the

rank distribution under MTB; when the preference lists are short, stochastic dominance “almost”

holds.

Shortening the lists reduces competition among students (see Ashlagi et al. (2015)), which

impacts the market balance, i.e. whether students are “effectively” on the long side or the short side

of the market. Therefore, whether there is a surplus or shortage in the market, as the preference lists

become shorter, the crossing point of the rank distributions moves to the left (if the crossing happens

at all).7 In overdemanded markets, shortlists and large capacities act as two forces pushing in

opposite directions: the former reduces competition and the latter increases it: When the capacities

are large in an overdemanded market, MTB creates a much harsher competition relative to when

the capacities are small, i.e. rejection chains become longer. On the other hand, under STB, a

rejection reveals much more information about the rejected student’s priority number, and thus,

7The extreme case is when the list length is 1, where both distributions become identical.
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that student is less likely to initiate rejection chains. Consequently, as the capacities increase, the

crossing point moves to the right (if crossing happens at all).
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Figure 5: The rank distribution under MTB and STB in random market with 1000 schools each with 10
seats and in total there is a shortage (left) or surplus (right) of 100 seats. Each student ranks 10 schools.
The dashed and solid lines indicates the rank distribution under MTB and STB, respectively.

PPPPPPPPPP
m (q)

n− qm
-100 100

1000 (10) Ar (µSTB)/Ar (µMTB) 1.36/1.57 1.4/2.6
Si(µSTB)/Si(µMTB) 1.24/0.89 1.44/3.59

Table 3: Average rank and social inequity under under STB and MTB in the student optimal stable matching
for different markets. A student’s most preferred rank is 1 and larger rank indicates a less preferred school.

6.4 Comparison to a hybrid tie-breaking rule

This section provides simulation results for two different tiered markets where some schools are

considered as top schools and others are considered as bottom schools. In these markets every

student prefers every top school to every bottom school and the preferences within a tier are drawn

independently uniformly at random. Motivated by our findings, we compare three tie-breaking

rules: (i) STB, (ii) MTB, and (iii) HTB (Hybrid Tie-Breaking rule), in which all top schools use a

single preference order and each bottom school uses an independently drawn preference order.

Example: unit capacity Figure 6 shows the rank distribution under the three tie-breaking rules

in a market with 1000 students and 1000 schools, each with unit capacity. We consider 100 schools
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to be the top schools. Notice that up to rank 100, the STB and HTB plots coincide and are above

the MTB plot. Conditioning on being above the 100 rank, the MTB and HTB coincide and note

that there is no stochastic dominance in this range.
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Figure 6: Students’ rank distribution under STB, MTB and HTB. The market consists of n = m = 1000
and 100 top schools.

We list down the expected average rank and social inequity under the three tie-breaking rules

below.

E [Ar (µSTB)] ≈ 96.23 E [Ar (µMTB)] ≈ 101.48 E [Ar (µHTB)] ≈ 96.97

E [Si(µSTB)] ≈ 1752.81 E [Si(µMTB)] ≈ 422.40 E [Si(µHTB)] ≈ 1005.34.

Example: large capacity Figure 7 shows the rank distribution under the three tie-breaking

rules in a market with 1000 students, 26 schools each with capacity 50. We consider 5 schools to

be the top schools. Observe the same patterns as in the previous example.
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Figure 7: Students’ rank distribution under STB, MTB and HTB. The market consists of 1000 students,
26 schools each with 50 seats and 5 top schools.

We list down the expected average rank and social inequity under the three tie-breaking rules

below.

E [Ar (µSTB)] ≈ 5.61 E [Ar (µMTB)] ≈ 5.80 E [Ar (µHTB)] ≈ 5.61

E [Si(µSTB)] ≈ 2.60 E [Si(µMTB)] ≈ 1.21 E [Si(µHTB)] ≈ 2.39.
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