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Abstract

Waiting lists offer agents a choice between types of items with associated waiting

times. These waiting times function as prices and are endogenously determined by a

tâtonnement-like price discovery process: an item’s price increases when an agent selects

it, and decreases when an item arrives and is assigned. We show that this simple price

discovery process generates waiting times that fluctuate around market-clearing prices,

and that the loss from price fluctuations is bounded by the size of price adjustments.

The technical approach and intuition for the results relies on a connection between

price adjustments in the waiting list and the stochastic gradient descent optimization

algorithm. We further show that this simple price discovery process is asymptotically

optimal if the size of price adjustments optimally balances between the adaptivity and

the rigidity of the price discovery process.
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1 Introduction

Waiting lists are commonly used to allocate scarce items that arrive over time. To

facilitate an efficient assignment of items to agents, waiting lists offer agents a choice between

items with associated waiting times. The required waiting cost for an item can be interpreted

as the item’s price, as waiting times serve a similar role as monetary prices in guiding

the allocation and rationing items. For example, the New York City Housing Authority

(NYCHA) holds a separate queue for each public housing development, and applicants can

join at most one development’s queue.1 Allowing agents to choose developments allows

NYCHA to better match applicants to developments, and the waiting list rations desirable

projects by requiring higher waiting times for over-demanded projects.

This paper considers waiting times as prices, and studies their endogenous determination

under the waiting list. In contrast to monetary prices that can be set by the planner, the

required waiting time for an item is endogenously determined by the number of agents

queueing for the item. The planner is not required to have any knowledge of market-clearing

prices or agent preferences. Instead, the waiting list determines waiting times through an

adjustment process that resembles a tâtonnement process: the waiting time for an item

increases when an agent joins its queue, and decreases when an item is supplied to an agent

that leaves the queue. We view this adjustment process as a price discovery process and

characterize the resulting prices and allocation.

To illustrate, consider a simple example.

Example 1. A single kind of item is allocated by queue. Items arrive according to a Poisson

process with rate 1. Agents arrive according to a Poisson process with rate 2. Agents have

heterogeneous values for the item distributed v ∼ U [0, 1] and a cost of waiting c(w) = 0.02·w.

Arriving agents choose whether to join the queue or to leave unassigned after observing the

length of the queue.

Intuitively, only half the agents in Example 1 can be assigned items. Items will be

assigned to the highest-value agents if all agents face the market-clearing price of 1/2,

which is equal to the cost of waiting in the queue when the queue length is2 24.

The waiting list has no a priori knowledge of agent preferences or the market-clearing

price and, in particular, the queue length is not specified by the planner. Instead, the

queue length naturally adjusts over time according to agent decisions. Because the length

of the queue continuously changes as agents and items arrive, the price (waiting cost) does

1See NYCHA’s Tenant Selection and Assignment Plan section VII. part D, available at
https://www1.nyc.gov/assets/nycha/downloads/pdf/TSAPlan.pdf (retrieved July 2022).

2An agent who observes a queue length of 24 will wait until 25 copies of the item arrive, as the first 24
copies will be assigned to the agents ahead of him. Because each arrival takes one time unit in expectation,
the expected waiting cost is 0.02 · 25 = 1/2 .
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Figure 1: Distribution of queue lengths observed by a randomly drawn agent arriving to
the waiting list in Example 1.

not converge and continuously fluctuates over time. Figure 1 presents the probability that

an arriving agent observes any possible queue length in steady state. It shows that queue

lengths are likely to be close to 24, but fluctuate considerably. These fluctuations cause

misallocations and reduce allocative efficiency. Figure 2 shows the implied assignment under

the waiting list, and how it differs from the allocative efficiency-maximizing assignment. For

example, agents with a value of 0.4 have an 18% probability of arriving when the queue

is randomly short; thus they face a price that is lower than 0.4 and are assigned an item.

Meanwhile, agents with a value of 0.6 have a 19% probability of arriving when the queue is

randomly long; thus they face a price that is higher than 0.6 and are not assigned an item.

To study the waiting list’s price discovery process in general economies, we study a

model that allows for any number of item types and general agent preferences. In the

model agents and items arrive over time. There are finitely many types of items, and the

waiting list maintains a queue for each item type. Agents have unit demand and their

values for items are drawn i.i.d. from an arbitrary joint value distribution. An arriving

agent observes the queue lengths, and can choose to join a single queue to wait until being

assigned the respective item.3

In general, the waiting list’s price discovery process generates waiting times that fluc-

3Agents cannot switch queues or otherwise change their choice at a later time. An arriving agent chooses
the queue that maximizes her item value minus the expected waiting cost given the current length of its
queue.
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Figure 2: Assignment probabilities under the allocative efficiency-maximizing assignment
and the waiting list assignment in Example 1.

tuate around market-clearing prices.4 To quantify the impact of waiting time fluctuations

on the economy, we evaluate the allocative efficiency of the waiting list assignment.5

A key quantity is the adjustment size ∆, which is defined to be the maximal change in

an item’s price (waiting cost) due to the addition of one agent to the item’s queue. If waiting

costs are linear, the adjustment size ∆ equals the cost of waiting the expected arrival time

of the least frequent item.6

Our main finding is that the allocative efficiency of the allocation generated by the

waiting list is at least as high as the maximal possible allocative efficiency minus an efficiency

loss that is roughly equal to the adjustment size ∆. Somewhat surprisingly, this bound

holds for arbitrary agent value distributions. The bound is tight, and we construct a simple

economy in which the allocative efficiency loss is approximately equal to the adjustment size

∆. We also identify economies in which a tighter bound holds and the allocative efficiency

loss is small.

4Market-clearing prices maximize allocative efficiency, which may be distinct from social welfare. See the
literature review below and Section 6 for a discussion of allocative efficiency and welfare.

5If all agent were to face market-clearing prices, the allocation would yield the maximal allocative ef-
ficiency. But, as in the example, fluctuations that result in waiting times that sufficiently diverge from
market-clearing prices can lead to misallocation. Allocative efficiency loss quantifies the extent to which
waiting time fluctuations meaningfully diverge from market-clearing prices.

6For example, suppose that public housing applicants incur a waiting cost of r USD per month because
they need to pay higher open-market rent until receiving one of J different kinds of subsidized apartments.
If each kind of apartment arrives once a month on average, then ∆ = r. If each kind of apartment arrives
once a year on average, then ∆ = 12 · r.
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The adjustment size ∆ decreases if all items arrive more frequently, or if agents incur

a lower waiting cost per unit time.7 Thus, our results imply that the waiting list asymp-

totically approaches the optimal allocative efficiency as item arrival rates increase or agent

waiting costs decrease. In addition, we show that the waiting list asymptotically generates

prices that are close to market-clearing prices with high probability. Together, these results

imply that the outcome of the waiting list asymptotically approximates the competitive

market outcome in terms of prices, assignment probabilities, and welfare.

As an illustration, consider the assignment of public housing apartments to applicants.

The waiting list has compelling properties. It does not require any calibration, and is simple

to implement. It allows the public housing authority to discover prices (waiting times) for

each kind of apartment. Moreover, if demand changes (for example, some neighborhood

becomes more attractive), prices in the waiting list automatically adjust. However, this price

discovery also generates random fluctuations and misallocation. The allocative efficiency

of the waiting list is roughly at least as high as optimally assigning all agents but making

all agents wait for an additional arrival. The extent of potential misallocation depends

on the environment: if each kind of apartment arrives frequently (say, weekly), then the

adjustment size ∆ is small and the waiting list generates close to the maximal allocative

efficiency. But if each kind of apartment arrives rarely (say, annually), then the adjustment

size ∆ is large, prices can fluctuate considerably, and there can be significant allocative

efficiency loss.

We prove our results and provide an intuition for why the efficiency loss is affected by

the adjustment size through a novel connection between the waiting list and the stochastic

gradient descent (SGD) algorithm. The SGD algorithm is an iterative optimization method

that takes random steps that improve its objective in expectation.8 When used for opti-

mization, the SGD algorithm needs to gradually reduce the step size to zero as it approaches

the optimal value (otherwise it can perpetually fluctuate around the optimal value without

converging). We show that the run of the waiting list is equivalent to a run of the SGD

algorithm that optimizes allocative efficiency, but with a step size that remains constant.

The step size is exogenously given by the item arrival rates and the agent waiting costs,

and is bounded by the adjustment size. Thus, prices under the waiting list tend to adjust

toward market-clearing prices, but never converge due to the constant step size. Intuitively,

the fluctuations and the efficiency loss are smaller if the adjustment size is smaller.

The connection to SGD allows us to employ new tools and avoid technical challenges

in the analysis. A natural approach to analyzing the random price adjustment process is

7Market-clearing prices (denominated in units of utility) remain unchanged if all agents and items arrive
proportionally more frequently, or if all agents incur a lower waiting cost per unit time.

8This algorithm is commonly used with great success and gained much attention in recent years because
of its usefulness for training neural networks (see, e.g., LeCun et al., 2012).
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to calculate the stationary distribution and the implied steady-state distribution of prices.

However, when there are more than two item types the stationary distribution cannot be

tractably calculated.9 Instead, this paper takes a different technical approach, enabled by

the connection to SGD. The proof leverages Lyapunov theory to obtain tractable bounds

for allocative efficiency. By using a Lyapunov function, we are able to obtain a bound that

does not require calculation of the stationary distribution.

Finally, we consider a price discovery process inspired by the waiting list and ask whether

this simple price discovery process can perform well with a fixed adjustment size that

is set appropriately. Consider a market with a finite time horizon in which items and

agents arrive over time. A planner wishes to set monetary prices to maximize welfare, but

has no knowledge of the distribution of agent preferences or the market-clearing prices.

The waiting list suggests a simple pricing heuristic: increasing an item’s price by a fixed

adjustment size when it is demanded and decreasing an item’s price by the adjustment

size when it is supplied. The planner is not required to have any knowledge, except for

calibrating the adjustment size according to the market’s time horizon. We show that for

an appropriately chosen adjustment size this simple heuristic results in an asymptotically

optimal price discovery.

This simple heuristic exhibits a form of price rigidity. In markets with a finite time

horizon, the optimal adjustment size needs to trade off between two different sources of

loss. Roughly speaking, if prices are far from optimal, a large adjustment size helps the

heuristic approach optimal prices faster. But when prices are close to optimal, a smaller

adjustment size reduces price fluctuations by preventing the heuristic from reacting to noise.

Knowledge of the market’s time horizon allows the planner to choose an adjustment size

that balances this trade-off. That is, the optimal adjustment size is flexible enough to allow

the heuristic to learn and adapt, but rigid enough to prevent fluctuations.

Related Literature. This paper contributes to the growing literature on waiting lists as

dynamic assignment mechanisms. Two important motivating applications are the assign-

ment of public housing (Kaplan, 1984, 1988) and organ allocation (Zenios, 1999; Su and

Zenios, 2004). The works of Bloch and Cantala (2017); Leshno (2017); Arnosti and Shi

(2020); Baccara et al. (2018); Che and Tercieux (2021) develop tractable theoretical analy-

sis of dynamic assignment problems. The previous theoretical literature restricts attention

to markets with at most two kinds of items because the theoretical analysis relies on a cal-

culation of the stationary distribution of the stochastic process, which is not possible when

there are three or more kinds of items. This paper takes a different technical approach,

allowing us to consider economies with any number of items.

9For this reason, several papers were limited to considering economies with at most two kinds of items
(see, e.g., Baccara et al., 2018; Leshno, 2017; Bloch and Cantala, 2017).
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A growing empirical literature complements the theory and studies the dynamic assign-

ment of public housing apartments (Waldinger, 2021; van Dijk, 2019), transplant organs

(Agarwal et al., 2021, 2020), cab rides (Buchholz et al., 2020), and hunting licences (Verdier

and Reeling, 2022).

Several papers are concerned with the stochasticity in dynamic two-sided trading mar-

kets in order to optimize clearing timing decisions (Mendelson, 1982; Kelly and Yudovina,

2018; Loertscher et al., 2018). These papers also restrict attention to either a single asset

or a binary type space.

We find that the waiting list’s price discovery process generates waiting times that fluc-

tuate around market-clearing prices. Although market-clearing prices maximize allocative

efficiency, in various circumstances other rationing mechanisms may be preferable (Weitz-

man, 1977). Akbarpour et al. (2020); Dworczak et al. (2021) consider allocation mechanisms

when agents may differ in their marginal utility of money and find that the optimal allo-

cation can incorporate price controls. Hartline and Roughgarden (2008); Condorelli (2013)

find that the allocation that maximizes consumer surplus may be a random lottery. These

papers leverage the technical approach of Myerson (1981), and thus their analysis restricts

attention to single-dimensional heterogeneity (e.g., agents that differ in their value for the

quality of a good). In this paper we allow for any number of goods and heterogeneous

preferences, and focus on price discovery in the waiting list.

Our paper connects to the large literature on strategic queueing, going back to Naor

(1969). See Hassin and Haviv (2003); Hassin (2016) for a comprehensive review. This liter-

ature highlights strategic choices, externalities, and the inefficiencies caused by fluctuations

in queue length. The present paper is distinct from this literature in that it considers the

waiting list as an assignment mechanism and studies the matching between heterogeneous

agents and heterogeneous items.

A growing literature studies matching in queues under nonstrategic stochastic arrivals.

See Weiss (2021) for a review. A Markovian characterization of stochastic matching models

is developed in Caldentey et al. (2009), Adan and Weiss (2012), and Adan et al. (2018), but

Adan et al. (2018) conjectures that calculating the stationary distribution is computationally

hard.

This paper also relates to papers that study the convergence of tâtonnement processes

using gradient descent. Numerous paper analyze these processes in markets with multiple

goods (Uzawa, 1960; Cole and Fleischer, 2008; Cheung et al., 2018, 2019) and in congestion

or transportation settings (Powell and Sheffi, 1982; Correa and Stier-Moses, 2010). Bubeck

et al. (2019) and Roth et al. (2020) leverage SGD-type algorithms to develop dynamic pricing

algorithms that efficiently learn. These papers consider the problem of a planner that needs

to learn prices and identify processes that converge to optimal prices. By contrast, under
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the waiting list prices never converge. A key distinction is that under the waiting list the

adjustment size is fixed, while processes that converge to optimal prices must shrink the

step size over time.

Organization of the Paper. Section 2 presents the model. The main results are stated

in Section 3. Section 4 provides the intuition and proofs of our main results for linear waiting

costs. The proof for general waiting costs is in Appendix A. Section 5 analyzes an SGD

pricing heuristic that mimics the price adjustments of the waiting list and shows that such

heuristics perform well in finite-horizon economies if the adjustment size is appropriately

set. Section 6 concludes with a discussion of our modeling choices.

Appendix B contains all other omitted proofs. Appendix C provides additional results:

calculating the adjustment size under nonlinear waiting costs, and providing explicit con-

vergence rates.

2 Model

We study an infinite-horizon economy10 in which agents and items arrive randomly over

time. We describe the economy, set benchmarks for allocative efficiency, and describe the

waiting list assignment.

Economy. We consider a market in which items and unit-demand agents arrive over time.

Agents arrive according to a Poisson process with rate λ. Each agent has a type θ drawn

independently according to a probability distribution F over the set of types Θ. We assume

that Θ is a compact subset of a Euclidean space, and allow for both finitely many agent

types as well as a continuum of agents.

Items arrive according to a Poisson process with total rate µ normalized to 1. The

agent and item arrival processes are independent. Each arriving item is of a type j ∈ J =

{1, 2, . . . , J}. An item is of type j with probability µj > 0, where
∑

j∈J µj = µ = 1. Denote

µmin , minj∈J µj > 0. We define an auxiliary item type ∅, which denotes being unassigned

and use J∅ , J ∪ {∅}.
The value an agent of type θ ∈ Θ obtains when assigned an item of type j ∈ J∅ is given

by v(θ, j), where we normalize v(θ, ∅) = 0. Agents’ utilities are quasi-linear in waiting costs;

an agent of type θ that is assigned an item of type j after waiting w units of time receives

a utility of

uθ(j, w) , v(θ, j)− c(w) ,

10A finite-horizon economy is analyzed in Section 5.
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where c(w) is the cost of waiting w units of time.

A market is specified by
[
Θ,J , F, λ, {µj}j∈J , v(·, ·), c(·)

]
. We say that there are finitely

many agent types if F corresponds to finitely many atoms. A market with finitely many

agent types can be specified by
[
Θ,J ,λ,µ,v, c(·)

]
with λ ∈ R|Θ|++, µ ∈ R|J |++, and v ∈

R|Θ|×|J |.
We make the following technical assumptions. We assume that for each j ∈ J , v(θ, j)

is continuous in θ and bounded from above by vmax ∈ R. We assume that the waiting cost

function is smooth, strictly increasing, weakly concave,11 and c(0) = 0, limw→∞ c(w) =∞.

To simplify notation, we consider an equivalent discrete-time process,12 indexed by t,

that records the sequence of arrivals. For each arrival epoch t, the indicator ξt equals one

if the t-th arrival is an agent, and equals zero if the t-th arrival is an item. If ξt = 1, let θt

denote the type of the agent arriving at t. If ξt = 0, let jt ∈ J denote the type of the item

arriving at t. To simplify notation, we also let θt = ∅ and v(θt, ·) = 0 for ξt = 0.

Assignments and Allocative Efficiency. An assignment η assigns each arriving item

to at most one agent. The allocative efficiency of a matching is defined as the average item’s

value for the agent to whom it has been assigned. Formally, given assignment η, for each

epoch t such that ξt = 1, let ηt ∈ J∅ be the kind of item assigned under η to the agent of

type θt that arrived in epoch t. Let A(T ) = {t ≤ T | ξt = 1} be the set of epochs up to

epoch T in which agents arrived. Allocative efficiency under η is defined as

W (η) = lim inf
T→∞

1

|A(T )|
∑

t∈A(T )

v(θt, ηt) . (1)

We restrict attention to assignments that satisfy a no-Ponzi condition. Loosely speaking,

this condition ensures that the assignment is approximately valid if the market terminates

at some large finite time.13 Formally, let RT (η) denote the number of agents and items that

arrive by time T and are waiting to be assigned at time14 T . The assignment η satisfies the

no-Ponzi condition if there exists a finite M ∈ R such that RT (η) < M for all T .

11Our results also extend to convex c(w) such that both c′(w) and c′′(w) are subexponential; i.e., there
exists α such that c′(w), c′′(w) ≤ eαw for all w ≥ 0.

12The equivalence is due to the Arrival Theorem of Poisson-driven processes (see, e.g., Wolff, 1982).
13For example, in the market of Example 1 there exists an assignment that assigns all agents items by

assigning agents items that are further and further into the future (and the queue grows arbitrarily long).
However, if the market terminates at any finite time, only approximately half the agents can be assigned
items. The no-Ponzi condition rules out such problematic assignments.

14In other words, RT (η) counts the number of agents who arrive before time T and are assigned under η
an item that arrives after time T , plus the number of items that arrive before time T and are assigned to
agents that arrive after time T .
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Define optimal allocative efficiency to be

WOPT = E

[
sup
η∈H

W (η)

]
,

where H is the set of no-Ponzi assignments and the expectation is taken over all possible

realizations.

Assignment by a Waiting List. The waiting list holds a separate First-Come-First-

Served queue for each item. An arriving agent observes the length of the queue for each

item and chooses to join the end of one of the queues, or to leave immediately without

being assigned an item (i.e., to balk). An agent who joins a queue will wait in that queue

until receiving an item. When an item arrives, it is assigned to the agent at the head of its

queue, if there is any; if the item’s queue is empty, the item is discarded.

To formally describe the waiting list assignment, let q = (q1, . . . , qJ) ∈ ZJ+ denote the

state where there are qj agents in the queue for item j. An arriving agent of type θ who

observes q and chooses to join the queue for item j will wait a random amount of time wj

before receiving item j ∈ J∅, and will receive an expected utility of v(θ, j) − E[c(wj)|qj ].
Thus, the agent chooses to join the queue for item a(θ,q) ∈ J∅ given by

a(θ,q) ∈ argmax
j∈J∅

{
v(θ, j)− pj(qj)

}
, (2)

where we define pj(qj) , E[c(wj)|qj ]. We refer to pj as the price of item j. We allow

agents to leave without joining any queue, and simplify notation by setting p∅(·) ≡ 0. To

further simplify notation, denote p(q) , [p1(q1), · · · , pJ(qJ)]. Denote the queue lengths

just before the t-th arrival by qt. That is, an agent that arrives at epoch t will face prices

pt = p(qt), which depend on the current state of the queues qt. No queue length can ever

exceed qmax , maxj∈J p−1
j (vmax).

Given a realization, let ηWL denote the assignment induced by the waiting list. Under

our assumptions, ηWL satisfies the no-Ponzi condition.15 We denote the expected allocative

efficiency of the waiting list by

WWL , E
[
W (ηWL)

]
.

We refer to WOPT −WWL as the allocative efficiency loss, or loss for short.

15Because no queue length can ever exceed qmax , maxj∈J p−1
j (vmax) we have that Rt(ηWL) ≤ |J |·qmax.
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2.1 The static assignment problem and prices

It will be helpful to consider a natural corresponding static assignment problem in which

all items and agents are simultaneously assigned. To transform the dynamic assignment

problem into a static assignment problem, consider a planner that accumulates all agents

and items that arrive up to some large time T . At time T , the planner assigns all agents

and items to maximize allocative efficiency. In expectation, the number of items of each

kind that arrive up to time T is proportional to each item’s arrival rate (and likewise for

agents).16

We denote the maximal value per agent generated by the static assignment by W ∗ and

refer to it as the optimal static allocative efficiency. The static assignment problem and W ∗

are given by problem (3):

W ∗ = max
{xθj}θ∈Θ,j∈J

∑
j∈J

∫
Θ
xθj v(θ, j) dF (θ)

subject to
∑
j∈J

xθj ≤ 1, xθj ∈ [0, 1] ∀θ ∈ Θ (3)∫
Θ
λxθj dF (θ) ≤ µj ∀j ∈ J .

In problem (3), xθj is the share of agents of type θ that are assigned item j. The

problem’s objective is the average agent’s value for their assigned item. The first constraint

requires that the shares xθj be well defined. The second constraint is the resource constraint;

it requires that the expected number of j items arriving per unit time be at least as large as

the expected number of agents that arrive per unit time and that are assigned item j. The

following proposition shows that optimal allocative efficiency is identical under the static

and dynamic problems.

Proposition 1. The optimal allocative efficiency for the dynamic assignment problem is

WOPT = W ∗ ,

where W ∗ is the optimal static allocative efficiency.

To gain intuition for Proposition 1, observe that WOPT ≤W ∗ because the static problem

ignores the constraints imposed by the arrival order, and is therefore a relaxation of the

dynamic problem.17 To see that WOPT ≥ W ∗, let x∗ be an optimal solution to the static

16For any finite time T , the realized number of arrivals is stochastic, but the stochastic error becomes
negligible as T →∞ by the central limit theorem.

17The no-Ponzi condition ensures that the long-run allocative efficiency is approximated by the allocative
efficiency up to finite time T as T →∞.
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assignment problem (3) and consider the dynamic assignment η that assigns an arriving

agent θ the next unclaimed arrival of item j with probability18 x∗θj . The proof of Proposition

1 is in Appendix B.1.

The static assignment problem is also helpful for providing us with market-clearing

prices. We use P∗ to denote the set of market-clearing prices for the static assignment

problem. Standard results (e.g., Bertsekas, 1981; Demange et al., 1986) imply the existence

of market-clearing prices p∗ ∈ P∗ that induce an optimal static assignment x∗. Such market-

clearing prices p∗ can be used to maximize allocative efficiency in the dynamic problem:

we can generate an optimal dynamic assignment by asking each arriving agent to join the

queue for an item j ∈ J∅ that maximizes v(θ, j)− p∗j .

3 Efficiency of the Price Discovery Process

Prices under the waiting list are not set by a planner or a market-clearing condition.

Instead, prices change over time according to a tâtonnement-like process: the price (waiting

cost) of item j increases when an agent chooses to join queue j, and the price of item j

decreases when item j arrives and one agent is removed from queue j. As Example 1

illustrates, this price discovery process does not necessarily converge to market-clearing

prices p∗, or to any single price. Agents arriving to the waiting list may observe prices that

differ from equilibrium prices, possibly resulting in lower allocative efficiency.

A natural approach to analyzing the waiting list is to calculate the distribution of prices

agents face by calculating the stationary distribution of the waiting list. However, this

stationary distribution is not tractable when |J | ≥ 3 (i.e., when there are more than 3

types of items).19

We therefore take a different approach that allows us to analyze general markets with

any number of items, a general (possibly continuous) distribution of agent types, and non-

linear waiting costs. Our analysis shows that the following attribute plays a central role in

determining allocative efficiency:

Definition 1. The adjustment size ∆ is the maximal change in price due to a single arrival,

and is given by

∆ , max
j∈J

max
1≤q≤qmax

(
pj(q)− pj(q − 1)

)
.

18If the resource constraint for item j holds with equality under x∗, the number of agents waiting to
be assigned item j evolves like the number of agents in a queue with arrival and departure rates equal
to µj . Because this queue is critical, it violates the no-Ponzi condition. The proof shows that we can
achieve approximately the same allocative efficiency with assignments that satisfy the no-Ponzi condition,
for example by imposing a limit on the number of agents that can be waiting for item j.

19Because of this limitation, previous papers that relied on calculation of the stationary distribution were
limited to models with at most two kinds of items (e.g., Leshno, 2017; Bloch and Cantala, 2017; Baccara
et al., 2018).
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In other words, each arrival of an item j reduces the price of item j by at most ∆. Each

arrival of an agent who joins the queue of item j increases the price of item j by at most

∆. If waiting costs are linear c(t) = c · t, we have ∆ = c/µmin; that is, ∆ is the expected

cost of waiting for a single arrival of the least frequent item.

Our main result provides a lower bound for the allocative efficiency under the waiting

list. Theorem 1 bounds WOPT −WWL, which we refer to as the allocative efficiency loss

under the waiting list. This bound holds for any distribution of agent preferences.

Theorem 1. The allocative efficiency under the waiting list is

WWL ≥WOPT − λ+ 2

2λ
∆ . (4)

Theorem 1 states that allocative efficiency under the waiting list is at least the optimal

allocative efficiency minus a loss that depends on the adjustment size. If waiting costs are

linear and the arrival rate of agents is twice as high as the arrival rate of items (λ = 2, µ = 1),

then the allocative efficiency loss is bounded by the cost of waiting for a single arrival of

the least frequent item. The loss will be small if all items arrive frequently and the cost of

waiting for another arrival is small, but the loss can be large if items arrive infrequently.

As an illustration, consider the economy of Example 1. Recall that the distribution

of agent values is U [0, 1] and half the agents can be assigned an item, implying that the

market-clearing price is p∗ = 0.5. If c(w) = 0.02w, the market-clearing price is equivalent to

the expected waiting time of an agent who joins a queue with 24 agents, as E[c(w)|24] = 0.5.

Each arrival or departure of an agent changes the price by ∆ = 0.02, which is 4% of p∗. By

contrast, if the waiting cost is ĉ(w) = 0.1w, the market-clearing price is the expected waiting

time of an agent who joins a queue with 4 agents, as E[ĉ(w)|4] = 0.5. In this case, each

arrival or departure of an agent changes the price by ∆̂ = 0.1, which is 20% of p∗. Figure 3

presents the assignment probabilities under c(·) and ĉ(·), showing more misallocation under

ĉ(·).
The proof of Theorem 1 in Section 4 shows that price adjustment in the waiting list

is identical to the price adjustment of the stochastic gradient descent (SGD) optimization

algorithm, which is an iterative optimization algorithm commonly used for training neural

networks (see, e.g., LeCun et al., 2012). The SGD algorithm searches for an optimal solution

by taking many iterative steps that each improve its objective in expectation. Each arrival

moves prices in a random direction: a price increase if the arrival is an agent who chooses

to join a queue, or a price decrease if the arrival is an item that removes an agent from a

queue. But the expected change in an item’s price is proportional to the difference between

supply and demand for the item given current prices. In other words, in expectation each

arrival moves prices toward market-clearing prices. This makes the price adjustment in the
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Figure 3: Assignment probabilities under c(w) = 0.02w and under ĉ(w) = 0.1w.

waiting list equivalent to a run of the SGD algorithm.

The adjustment size corresponds to the step size of the SGD algorithm. When used for

optimization, the SGD algorithm is run with a step size that decreases to zero over time.

By contrast, the adjustment size in the waiting list is determined exogenously by the item

arrival rates and agent waiting costs. Because the adjustment size is fixed and bounded

away from zero, the SGD algorithm never converges.

Theorem 1 helps identify situations for which public housing assignment through the

waiting list may perform poorly. The adjustment size is determined by the agents’ cost

of waiting, as well as the frequency of apartment arrivals. Thus, the allocative efficiency

loss from the fluctuating waiting times will be small when apartments arrive frequently or

when waiting costs per unit time are small. In such situations, the queues for each item

will typically hold many agents, and relative waiting cost fluctuations will be small. The

loss may be large if apartments arrive infrequently, or if waiting costs per unit time are

significant.

The following theorem provides a tighter bound under a few additional assumptions. It

shows that if all market-clearing prices are strictly positive, then the allocative efficiency

loss is bounded by the adjustment size ∆ plus an exponentially small loss.

Theorem 2. Given an arbitrary distribution of agent types F and arbitrary item and agent

arrival rates {µ}j∈J , λ, consider market ` with linear waiting cost c(w) = c` · w. Let
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WWL(c`) denote the allocative efficiency of the waiting list for market `, and let ∆` =

c`/µmin denote the adjustment size for market `.

Suppose that λ ≥ 1 and p∗j > 0 for any item j ∈ J under any market-clearing prices p∗.

Then we have that

WWL(c`) ≥WOPT −∆` − ε

and there exist α, β, c0 > 0, such that for any c` < c0 we have ε < β · e−α/∆`.

The proof of Theorem 2 can be found in Appendix B.2. The remainder of this section

provides additional results that further explore when the allocative efficiency loss is small

or large.

3.1 Asymptotic optimality

The following corollaries of Theorem 1 show that the allocative efficiency under the

waiting list approaches its optimal value as waiting costs per unit time become smaller or

item arrivals become more frequent.

Corollary 1. Given an arbitrary distribution of agent types F and arbitrary item and

agent arrival rates {µ}j∈J , λ, consider market ` with linear waiting cost c(w) = c` · w. Let

WWL(c`) denote the allocative efficiency of the waiting list for market `. We have that

WWL(c`) −−−→
c`→0

WOPT .

Observe that WOPT and the market-clearing prices p∗ are independent of c`. As c` → 0,

agents become more patient and the adjustment size ∆ = c`/µmin tends to zero. Thus, by

Theorem 1 the loss tends to zero. Intuitively, the length of queue j that is required to

generate the optimal price is q∗j = p∗j/c`, which increases as c` → 0. When queue j is longer,

the price fluctuations due to agents joining and leaving the queue become relatively small.

Corollary 2. Given an arbitrary distribution of agent types F , arbitrary item and agent

arrival rates {µ}j∈J , λ, and waiting cost c(·), consider market n in which the agent arrival

rate is n · λ and the arrival rate of item j is n · µj. Let WWL(n) denote the allocative

efficiency of the waiting list for market n. We have that

WWL(n) −−−→
n→∞

WOPT .

Intuitively, if the market thickens in the sense that arrivals of agents and items be-

come more frequent, the expected cost of waiting for a single arrival becomes smaller. For

example, if c(w) = c · w and µmin →∞, then ∆ = c/µmin → 0.
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3.2 Lower bound for the allocative efficiency loss

A natural question is whether the bound given in Theorem 1 is tight. This section gives

a lower bound for the allocative efficiency loss by constructing an economy in which the

loss is approximately ∆.

Proposition 2. For any J ∈ N,∆ > 0 and ε > 0, there exists a market with J items in

which

WWL ≤WOPT −∆ + ε .

The proof of Proposition 2 is in Appendix B.3. It shows the loss under the waiting list

is large for the following market.

Example 2. Consider a market in which Θ = J ; that is, the set of items is J =

{1, 2, . . . , J} and there is a corresponding agent type for each item type. The distribution

of agent types and the distribution of item types are uniform, i.e., P(θ = j) = µj = 1/J,

∀j ∈ J . The total agent arrival rate is λ = 1, and the waiting cost is linear, i.e., c(w) = c·w.

The value of agent θ for item j is

v(θ, j) =

{
γ if θ = j ,

0 if θ 6= j .

In the market of Example 2, any prices p where 0 ≤ pj ≤ γ are market-clearing prices.

When the price exceeds γ agents leave without being assigned, causing a loss equal to

γ. The length of queue j follows a reflected unbiased random walk over 0, 1, 2, . . . , dγ/∆e,
and an arriving agent is equally likely to observe either of these queue lengths. Thus, the

probability that agents observe a price equal to ∆·dγ/∆e > γ is roughly ∆/γ and the expected

loss is roughly γ · ∆/γ = ∆.

The example of Proposition 2 can be changed slightly to show that the bound in Theo-

rem 2 is tight up to exponentially small terms. Although the market of Example 2 does not

satisfy the condition that p∗j > 0 under any market-clearing prices, we can create a similar

market that satisfies this condition by slightly increasing the agent arrival rate by adding

a small arrival rate of agents θ′ that have a value v(θ′, j) = ∆ for all goods j ∈ J . The

resulting market will have roughly the same allocative efficiency, and strictly positive prices

for all items.

3.3 Small allocative efficiency loss with finitely many agents

The connection between the waiting list and the SGD optimization algorithm allows

us to further explore the parameters of the economy that determine the magnitude of the
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allocative efficiency loss. In the market in Example 2, there is a wide range of market-

clearing prices. Under the waiting list, prices fluctuate widely (see the proof of Proposi-

tion 2), resulting in frequent misallocation. However, in markets with finitely many agent

types, multiplicity of market-clearing prices occurs only under a knife-edge set of parameters

(λ,µ,v).

Lemma 1. A market with finitely many agent types
[
Θ,J ,λ,µ,v, c(·)

]
has unique market-

clearing prices for an open and dense set of vectors (λ,µ,v) ∈ R|Θ|++ × R|J |++ × R|Θ|·|J |.

The following result shows that the waiting list performs well in a market with finitely

many agent types that has unique market-clearing prices.

Theorem 3. Given (λ,µ,v) ∈ R|Θ|++×R|J |++×R|Θ|·|J |, consider market ` with linear waiting

cost c(w) = c` · w. Assume that given (λ,µ,v) the market has unique market-clearing

prices. Let ∆` denote the adjustment size for market `. Let WWL(c`) denote the allocative

efficiency of the waiting list for market `. Then there exists α, β, c0 > 0, such that for any

c` < c0 we have that

WWL(c`) ≥WOPT − β · e−α/∆` .

The intuition for Theorem 3 is as follows. If a market with finitely many agent types

has unique market-clearing prices, the prices are robust in the following sense: as long as

prices are within some δ > 0 distance from the unique market-clearing prices p∗, agents

choose items they can be assigned under an efficient assignment. In other words, loss can

occur only when agents observe a price that is more than δ away from p∗. In addition,

any price different from p∗ causes significant imbalance between supply and demand in the

static assignment problem. This implies that the price adjustment under the waiting list

follows a biased random walk toward p∗, and agents are unlikely to observe prices that are

far from p∗. Together, these facts imply that prices that cause misallocation are unlikely

to occur.

3.4 Price concentration

The following result shows that the waiting costs borne by agents under the waiting

list are approximately equal to market-clearing prices for the static assignment problem.

We use dist(p,P∗) , infp′∈P∗ ||p − p′||2 to denote the minimal distance of a price to a

market-clearing price, and use Bε(P∗) = {p ∈ R|J |+ : dist(p,P∗) < ε} to denote the set of

prices that are within ε of some market-clearing price.

Proposition 3. Given an arbitrary distribution of agent types F and arbitrary item and

agent arrival rates {µ}j∈J , λ, consider market ` with linear waiting cost c(w) = c` · w and
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adjustment size ∆`. Let p(c`) be a random variable generated by drawing the price observed

by a randomly drawn agent arriving to the waiting list in market `. Then for every ε > 0

there exist α, β, c0 > 0, such that for any c` < c0 we have that

P
(
p(c`) /∈ Bε(P∗)

)
< β · e−α/∆` .

Proposition 3 and Corollary 1 together imply that if waiting costs per unit time are

sufficiently small, the outcome of the waiting list approximates the competitive outcome of

the static assignment problem. In particular, social welfare under the waiting list will be

approximately equal to social welfare under the competitive outcome.

The proof of Proposition 3 is in Appendix B.5. Appendix C.2 gives explicit constants

for the rate of convergence shown in Proposition 3.

An immediate implication of Proposition 3 is that items whose market-clearing price is

strictly positive are rarely wasted.

Corollary 3. Given a distribution of agent types F and item and agent arrival rates

{µ}j∈J , λ, consider market ` with linear waiting cost c(w) = c` · w and adjustment size

∆`. Suppose that for item j we have that pj > 0 under any market-clearing prices p. Then

there exist α, β, c0 > 0, such that, for every market with c` < c0, the probability that an

arriving item j is discarded is at most β · e−α/∆`.

4 Intuition and Proofs

Before providing the proof of Theorem 1, we show the connection between the waiting

list and the stochastic gradient descent (SGD) optimization algorithm. This connection

provides the intuition for Theorem 1 and inspired the technical approach of the proof. To

formally show this connection, we use duality to formulate the static assignment problem

as an optimization problem over possible prices. We then show that, in expectation, the

run of the waiting list is a run of the SGD algorithm for this dual problem.

The Dual of the Static Assignment Problem. Consider the dual problem of the

static assignment problem (3), which optimizes over possible prices. The following strong

duality result is well known.20

Lemma 2. [Monge–Kantorovich duality] The optimal value W ∗ of assignment problem (3)

20Problem (3) is known as the (unbalanced) optimal transport problem, which has the strong duality
property stated in Lemma 2. For further details, see, e.g., Galichon (2018).
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coincides with the optimal value of the following dual optimization problem:

minimize
p≥0

h(p) ,

where (here we let pφ , 0)

h(p) ,
∫

Θ
max
j∈J∅

[v(θ, j)− pj ] dF (θ) +
1

λ

∑
j∈J

µjpj . (5)

Throughout the proof, we denote by p∗ an optimal value for the dual problem, and also

refer to p∗ as optimal prices or market-clearing prices.

Relation to Stochastic Gradient Descent. The SGD optimization algorithm is an

iterative optimization algorithm. Each step of the SGD algorithm is random, but in expec-

tation each step is a move in a subgradient direction of the algorithm’s objective function.

Under the waiting list, each arrival is a random draw of an agent or an item, but the ex-

pected arrival corresponds to supply and demand given current prices. In particular, the

stochastic price adjustment from one arrival corresponds to a step in the SGD algorithm

that seeks to minimize the dual objective h(p). The next lemma formalizes this.

Lemma 3. If the system is in state qt such that qj,t ≥ 1 for all j, the expected change to

the queue length from a single arrival E[qt − qt+1] equals λ
1+λ times a subgradient of the

dual objective h(pt) at pt = p(qt).

Indeed, observe that the expected adjustment to the length of queue j from a single

arrival is

E[qj,t+1 − qj,t] = E
[
1{ξt=1, a(θt,qt)=j} − 1{ξt=0, jt=j}

]
(6)

=
λ

1 + λ

∫
Θ
1{j=argmaxj∈J∅

{v(θ,j)−pj(qj,t)}dF (θ)− 1

1 + λ
µj ,

and that 1+λ
λ E[qj,t+1 − qj,t] is a subgradient of h(pt) at pt = p(qt).

Therefore, on average, prices adjust in the right direction (but note that the actual

adjustments are random and depend on the realization of the arrival). For a gradient

descent optimization algorithm to converge, the step size must shrink when approaching

the optimal value. Under the waiting list, the size of the adjustment is fixed and bounded

by the step size ∆. Therefore, the price adjustment in the waiting list corresponds to the

run of an SGD algorithm with a fixed step size that never converges. If the step size ∆

is smaller, the algorithm will eventually fluctuate closer to the optimal value, leading to a

smaller loss.
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4.1 Proof of Theorem 1

The proof is based on a Lyapunov analysis. A Lyapunov function captures the “poten-

tial” in each state, which allows us to decompose the expected value from the next arrival

into the objective, a change in potential, and a per-period loss.

We define the Lyapunov function to be the following quadratic function:

L(p) =
1

2

∑
j∈J

µjp
2
j .

The following lemma is the key step in the proof.

Lemma 4. The following inequality holds:

E[v(θt, a(θt,qt))|qt] ≥
λ

λ+ 1
W ∗ − 1

µmin ·∆
(
L(pt)− E[L(pt+1)|qt]

)
︸ ︷︷ ︸

(I) change in potential

− 2 + λ

2(1 + λ)
∆︸ ︷︷ ︸

(II) loss

. (7)

To interpret equation (7), observe that λ
λ+1W

∗ = λ
λ+1W

OPT is the average per-arrival21

value under the optimal assignment. Equation (7) shows that the waiting list achieves this

value minus a change in potential and a per-period loss. Summing over many periods, the

change in potential (I) forms a telescoping series, and therefore remains bounded. Therefore,

as we average over many periods, we have that (I) tends to zero. The loss term (II) is

uniformly bounded for any pt, which allows us to bound the loss without calculating the

stationary distribution.

Proof of Theorem 1. Let WT (ηWL) be the total value of items assigned to agents that arrive

before epoch T . That is,

WT (ηWL) =
T∑
t=1

v(θt, a(θt,qt)) ,

where we abuse notation by defining v(θt, a(θt,qt)) ≡ 0 when22 ξt = 0. Rescaling, we have

that

WWL =
1 + λ

λ
E
[
lim inf
T→∞

WT (ηWL)

T

]
.

Observe that

E
[
WT (ηWL)

]
= E

[
T∑
t=1

v(θt, a(θt,qt))

]
21Including both agent arrivals and item arrivals.
22That is, when an item arrives in epoch t.
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= E

[
E

[
T∑
t=1

v(θt, a(θt,qt)) | qt

]]

= E

[
T∑
t=1

E [v(θt, a(θt,qt)) | qt]

]

≥ E

[
T∑
t=1

λ

1 + λ
W ∗ − 1

µmin ·∆
(L(pt)− E[L(pt+1 | qt])−

2 + λ

2(1 + λ)
∆

]

= T
λ

1 + λ
W ∗ − 1

µmin ·∆
(L(p1)− E[L(pT+1)])− T 2 + λ

2(1 + λ)
∆ , (8)

where the inequality follows from Lemma 4.

Lemma 8, stated in Appendix B.2, uses standard arguments to establish the following

equality:

WWL =
1 + λ

λ
lim
T→∞

1

T
E
[
WT (ηWL)

]
. (9)

Equality (9) allows us to translate the bound for E[WT (ηWL)] to a bound for WWL.

Plugging (8) into (9) and using Proposition 1, we obtain

WWL ≥ WOPT − 2 + λ

2λ
∆,

which completes the proof of Theorem 1.

Proof of Lemma 4: We begin with a few definitions. Let at and gt be the vectors of indi-

cators representing the agents and items (goods) arriving at time t, respectively:

at , ea(θt,qt)ξt , gt , ejt(1− ξt) .

That is, aj,t = 1{ξt=1, a(θt,qt)=j} and gj,t = 1{ξt=0, jt=j}. Let the indicator lj,t , max {0, gj,t − qj,t − aj,t}
denote whether an item of type j arrived at time t and was discarded.23 Using this notation,

we can write the dynamics governing the evolution of the length of queue j by

qj,t+1 = [qj,t + aj,t − gj,t]+ = qj,t + aj,t − gj,t + lj,t , for each j ∈ J .

23Recall that under our definition of the waiting list, an item is discarded if the item finds its corresponding
queue to be empty when it arrives.
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Step 1. We show that

E
[
v(θt, a(θt,qt))− 〈pt,at − gt〉 | qt

]
=

λ

1 + λ
h(pt) . (10)

Observe that

E
[
v(θt, a(θt,qt))− 〈pt,at − gt〉 | qt

]
= E

[
v(θt, a(θt,qt))−

∑
j∈J

pj,t(aj,t − gj,t) | qt
]

= E
[

max
j∈J∅

[v(θt, j)− pj,t] +
∑
j∈J

pj,tgj,t | qt
]

= E[ξt] · E
[

max
j∈J∅

[v(θt, j)− pj,t] | ξt = 1,qt

]
+ E

[∑
j∈J

pj,tgj,t | qt
]

=
λ

1 + λ

∫
Θ

max
j∈J∅

[v(θt, j)− pj,t] dF (θ) +
1

1 + λ

∑
j∈J

µjpj,t

=
λ

1 + λ
h(pt) .

Step 2. To simplify the exposition, we focus here on the case in which the waiting cost is

linear. The proof for general waiting costs is in Appendix A.

Assume that the waiting cost takes a linear form, where c(w) = c · w for some c > 0.

Thus, c = ∆ · µmin.

We show that:

E[v(θt, a(θt,qt))|qt] =
λ

1 + λ
h(pt)−

1

c
(L(pt)− E[L(pt+1) | qt]) (11)

− 1

2

∑
j∈J

c

µj
E[(aj,t − gj,t)2 + l2j,t | qt]

and

1

2

∑
j∈J

c

µj
E[(aj,t − gj,t)2 + l2j,t | qt] ≤

2 + λ

2(1 + λ)
∆ . (12)

We first show equality (11). We have that the drift of Lyapunov function L(p) in one

period is

L(pt)− L(pt+1)
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=
1

2

∑
j∈J

µj

[
p2
j,t −

(
pj,t +

c

µj
(aj,t − gj,t + lj,t)

)2
]

=
1

2

∑
j∈J

µj

[
p2
j,t −

(
pj,t +

c

µj
(aj,t − gj,t)

)2

− c2

µ2
j

l2j,t −
2c

µj

(
pj,t +

c

µj
(aj,t − gj,t)

)
lj,t

]
(a)
=

1

2

∑
j∈J

µj

[
p2
j,t −

(
pj,t +

c

µj
(aj,t − gj,t)

)2

− c2

µ2
j

l2j,t

]
,

where equality (a) follows from the fact that
(
pj,t + c

µj
(aj,t − gj,t)

)
lj,t ≡ 0 for all j ∈ J .

We further simplify the Lyapunov drift as follows:

−1

c

(
L(pt)− L(pt+1)

)
= − 1

2c

∑
j∈J

µj

[
p2
j,t −

(
pj,t +

c

µj
(aj,t − gj,t)

)2
]

+
1

2

∑
j∈J

c

µj
l2j,t

=
1

2

∑
j∈J

µj

[
2

µj
(aj,t − gj,t)pj,t +

c

µ2
j

(aj,t − gj,t)2

]
+

1

2

∑
j∈J

c

µj
l2j,t

=
∑
j∈J

(aj,t − gj,t)pj,t +
1

2

∑
j∈J

c

µj

(
(aj,t − gj,t)2 + l2j,t

)
= 〈pt,at − gt〉+

∑
j∈J

c

2µj

(
(aj,t − gj,t)2 + l2j,t

)
. (13)

By taking the expectation conditional on qt on both sides of equation (13), adding

equation (10), and rearranging, we establish equality (11).

We proceed to show inequality (12). Observe that

c

2µj

(
(aj,t − gj,t)2 + l2j,t

)
=

{
c
µj

if gj,t = 1 and qj = 0 ,
c

2µj
otherwise.

That is, the above term is equal to c/µj ≤ ∆ for arrivals that correspond to an item that is

discarded because its queue is empty, and equal to c/2µj ≤ ∆/2 for all other arrivals. Note

that the probability that an item is discarded is at most 1/(1 + λ) (the probability that an

item arrives). Therefore

1

2

∑
j∈J

c

µj
E[(aj,t − gj,t)2 + l2j,t | qt]

≤ ∆

2
+

1

1 + λ

∆

2

=
2 + λ

2(1 + λ)
∆ .
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The lemma follows from equations (11) and (12) and the inequality h(pt) ≥W ∗, which

is implied by Lemma 2.

4.2 Proof of Theorem 3

Proof of Theorem 3. Consider a market with finitely many agent types and linear waiting

costs
[
Θ,J ,λ,µ,v, c(·)

]
that has unique dual price p∗. To simplify notation, we use pt to

denote the random variable generated by drawing the price observed by a randomly drawn

agent arriving to the waiting list. By the arrival theorem, the distribution of pt is equal to

the steady state distribution.

Step 1. We first establish that there exists a δ > 0 such that the allocative efficiency loss

is small if prices are within δ of p∗ with high probability.

For each agent θ ∈ Θ, let J ∗θ , argmaxj∈J∅{v(θ, j) − p∗j} be the set of items agent θ

can optimally demand under prices p∗. The following definition24 of δ1 ensures that for any

p such that ‖p− p∗‖∞ < δ1 we have that a(θ,p) ∈ J ∗θ for all θ ∈ Θ:

δ1 , min
θ∈Θ

{
max
j∈J∅
{v(θ, j)− p∗j} − max

j∈J∅\J ∗θ
{v(θ, j)− p∗j}

}
.

Let δ2 = minj∈J {p∗j | p∗j > 0}, and set δ = 1
2 min{δ1, δ2}.

Step 2. Let κ = P (‖pt − p∗‖∞ > δ). By Proposition 3, there exist α, β, c0 such that

κ < βe−α/∆` for any c < c0. We choose c0 > 0 to be sufficiently small so that βe−α/∆` < 1/2.

In addition, we choose c0 > 0 to be sufficiently small so that c0/µmin < δ/2, which implies

that if at time t we have that ‖pt − p∗‖∞ < δ, then for any j such that p∗j > 0 the j-th

queue is not empty at epoch t (that is, qjt > 0).

Step 3. Let x denote the assignment probabilities of agents arriving to the waiting list in

states where ‖pt − p∗‖∞ < δ. By the arrival theorem, x is given by

xθj = E
[
1{a(θ,pt)=j} | ‖pt − p∗‖∞ < δ

]
.

Let y denote the assignment probabilities of the remaining agents, i.e.,

yθj = E
[
1{a(θ,pt)=j} | ‖pt − p∗‖∞ ≥ δ

]
,

and denote xj =
∑

θ∈Θ λθxθj , yj =
∑

θ∈Θ λθyθj .

24We follow the convention that if J∅ \ J ∗θ = ∅ then maxj∈J∅\J ∗θ {v(θ, j)− p∗j} = −∞.
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Because all agents are eventually assigned, we have that (1− κ)xj + κyj ≤ µj for every

j ∈ J . If an item j with p∗j > 0 arrives in epoch t such that ‖pt−p∗‖∞ < δ, then the item

is assigned to a waiting agent. Therefore, at most κ ·µj of j items are wasted, and for every

j ∈ J such that p∗j > 0 we have that (1− κ)xj + κyj ≥ (1− κ)µj or

xj ≥ µj −
κ

1− κ
yj ≥ µj −

κ

1− κ
λ . (14)

Observe that for an optimal assignment x∗ we can write

W ∗ =
∑
θ,j

λθx
∗
θjv(θ, j)

=
∑
θ,j

λθx
∗
θj(v(θ, j)− p∗j ) +

∑
θ,j

λθx
∗
θjp
∗
j

=
∑
θ,j

λθx
∗
θj(v(θ, j)− p∗j ) +

∑
j

(
µjp
∗
j + (x∗j − µj)p∗j

)
=
∑
θ,j

λθx
∗
θj(v(θ, j)− p∗j ) +

∑
j

µjp
∗
j ,

where the last equality follows from complementary slackness. By the definition of δ, we

have that for every θ, j such that xθj > 0 it is the case that j ∈ J ∗θ , implying that∑
θ,j

λθx
∗
θj(v(θ, j)− p∗j ) =

∑
θ,j

λθxθj(v(θ, j)− p∗j ) .

Thus, we have ∑
θ,j

λθxθj(v(θ, j)− p∗j ) = W ∗ −
∑
j

µjp
∗
j . (15)

Using (14),(15) we therefore have

E
[
v(θt, a(θt,pt))

]
= (1− κ)E

[
v(θt, a(θt,pt)) | ‖pt − p∗‖∞ < δ

]
+ κE

[
v(θt, a(θt,pt)) | ‖pt − p∗‖∞ ≥ δ

]
≥ (1− κ)

∑
θ,j

λθxθjv(θ, j)

= (1− κ)

∑
θ,j

λθxθj
(
v(θ, j)− p∗j

)
+
∑
j

xjp
∗
j


= (1− κ)

W ∗ +
∑
j

(xj − µj)p∗j


25
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≥ (1− κ)

W ∗ +
∑
j

(µj −
κ

1− κ
λ− µj)p∗j


≥ (1− κ)

(
W ∗ − J κ

1− κ
λ vmax

)
≥W ∗ − κW ∗ − κJλ vmax .

We chose c0 such that κ < βe−α/∆` , and therefore we have that

WWL(c`) = E
[
v(θt, a(θt,pt))

]
≥W ∗ − κ (W ∗ + Jλ vmax)

≥W ∗ − β (W ∗ + Jλ vmax) e−α/∆` ,

which completes the proof.

5 SGD Pricing Heuristic with Optimal Adjustment Size

In this section we consider a planner who can set prices, but does not know the distri-

bution of agent preferences or the market-clearing prices. The waiting list suggests a simple

pricing heuristic: prices adjust over time, increasing an item’s price when it is demanded

and decreasing an item’s price when it is supplied. We show that this simple pricing heuris-

tic approximately maximizes allocative efficiency. This heuristic can be used by a planner

that has minimal knowledge of the market: the planner only needs to set the adjustment

size according to the market’s time horizon.

Finite-Horizon Economy. The economy is as defined as in Section 2, except that the

world ends after T arrival epochs and agents have no cost of waiting (i.e., c(w) ≡ 0). A

feasible assignment η assigns each agent that arrives before time T to an item that arrives

before time T (or leaves the agent unassigned). For notational convenience, we define the

allocative efficiency of allocation η as the total value of assigned items, i.e.,

WT (η) =

T∑
t=1

v(θt, ηt) . (16)

Define the optimal allocative efficiency to be

WOPT
T = E

[
sup
η
WT (η)

]
,

26

Electronic copy available at: https://ssrn.com/abstract=4192003



where we take the supremum over all possible assignments and the expectation is taken over

all possible realizations. The following proposition relates the optimal allocative efficiency

in the finite-horizon market to the optimal allocative efficiency of the static assignment

problem.

Proposition 4. Let W ∗T , λ
λ+1T ·W

∗, where W ∗ is the optimal static allocative efficiency.

The optimal allocative efficiency in the finite-horizon economy is bounded by

WOPT
T ≤W ∗T .

The proof of Proposition 4 is almost identical to the proof of Proposition 1 and is

therefore omitted.

5.1 The SGD pricing algorithm.

We now formally define the SGD pricing algorithm, which is inspired by the waiting list.

Instead of using waiting times, the SGD pricing algorithm uses monetary prices. Prices

adjust with each arrival, replicating the price adjustment under the waiting list except that

the adjustment size can be specified by the planner (in contrast to the exogenously given

adjustment size of the waiting list).

With a slight abuse of notation, we use pt to denote the monetary prices used by the

planner in arrival epoch t. In an epoch t in which an agent arrives, (i.e., ξt = 1), the agent

can choose any item j ∈ J∅ at price25 pj,t. An agent of type θt chooses item type

a(θt,pt) ∈ argmax
j∈J∅

{
v(θ, j)− pj,t

}
.

If a(θt,pt) = j ∈ J the agent joins the queue to wait for item j (recall that waiting is

costless). In an epoch t in which an item arrives (i.e., ξt = 0), denote the item’s type by

jt ∈ J . The item is assigned to some agent waiting in the queue for that type of item.26 If

there are no agents waiting for item jt, the item is discarded.

Prices adjust with each arrival, as follows. Initialize the prices of all items to zero, i.e.,

p1,j = 0, ∀j ∈ J . Prices for epoch t+ 1 are adjusted according to the arrival in epoch t as

follows:

pj,t+1 =
[
pj,t + ∆ · 1{ξt=1,j=a(θt,pt)} −∆ · 1{ξt=0,j=jt}

]+
. (17)

That is, the price adjustment mimics the adjustment of waiting times under the waiting

25The price of being unassigned is p∅,t = 0 for all t ≤ T .
26For concreteness, items are assigned to agents in the queue according to a First-Come First-Served order.

Because waiting is costless, the choice of agent in the queue can be arbitrary.
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list. If an agent chooses item j, the price of item j increases by a ∆ increment. If item j

arrives, the price of item j decreases by ∆ (or stays at 0).

Let WWL
T denote the allocative efficiency of the SGD pricing algorithm. Theorem 4

shows that this simple pricing algorithm performs well if the adjustment size ∆ is set

appropriately.

Theorem 4. The allocative efficiency of the SGD algorithm with step size ∆ = 1/
√
T

satisfies

WWL
T /T ≥W ∗T /T −

1√
T

(
2 + λ

2 + 2λ
+ J · v2

max

)
.

Setting the adjustment size ∆ = 1/
√
T allows the pricing algorithm to obtain total

allocative efficiency that is within O(
√
T ) of W ∗T . Per-arrival allocative efficiency is within

O(1/
√
T ) of W ∗T /T . Devanur et al. (2019) show that the total allocative efficiency under any

online pricing algorithm is at most W ∗T −Ω(
√
T ), implying that the SGD pricing algorithm

is asymptotically optimal.27

We note two immediate extensions of Theorem 4. First, regardless of the choice of initial

prices p1 ∈ [0, vmax]J , the allocative efficiency of the SGD pricing algorithm is within O(
√
T )

of the optimal W ∗T . Second, setting the adjustment size to ∆ = vmax/
√
T can improve the

allocative efficiency bound. We state both of these observation in the following corollary.

Corollary 4. The allocative efficiency of the SGD algorithm with arbitrary initial prices

p1 ∈ [0, vmax]J and adjustment size ∆ = vmax/
√
T satisfies

WWL
T /T ≥W ∗T /T −

vmax√
T

(
(1 + µ−1

min)J +
2 + λ

2 + 2λ

)
.

Intuition and Proof. Before giving the proof of Theorem 4, we give a stylized explana-

tion of the result. Roughly speaking, we can divide the run of the SGD pricing algorithm

into two phases. First, the algorithm gradually raises prices to “learn” the market-clearing

prices. Second, after some time the distribution of prices is close to the steady-state dis-

tribution of prices. In the second phase the algorithm incurs losses from price fluctuations

(as discussed in Section 3). In the first phase prices are too low, allowing agents with low

valuations to join the queue. This is wasteful because there is a limited supply of items

that arrive by time T : although we always allow agents to join the queue for any item j, if

too many agents choose item j, then at time T there will be agents waiting in queue j, and

these agents will not be assigned any item.

27Given an arbitrary function f(·), and a positive function h(·), we say that f(ρ) = O(h(ρ)) if there
exist positive constants α, ρ0 such that 0 ≤ f(ρ) ≤ αh(ρ) for any ρ > ρ0. Similarly, we say that f(ρ) =
g(ρ)− Ω(h(ρ)) if there exist positive constants α, ρ0 such that 0 ≤ αh(ρ) ≤ g(ρ)− f(ρ) for any ρ > ρ0.
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A lower adjustment size ∆ reduces the loss from fluctuations in the second phase. A

higher adjustment size ∆ helps the algorithm approach market-clearing prices faster and

reduces the loss from the first phase. Setting the adjustment size to an intermediate value

∆ = 1/
√
T allows the algorithm to balance the two sources of loss.

Proof. Let W̃T (η) ,
∑T

t=1 v(θt, ηt) denote the allocative efficiency of the SGD algorithm if

all agents who choose an item are assigned; that is, W̃T (η) is the allocative efficiency of the

SGD algorithm if there were no supply constraints. We separately bound W ∗T − W̃WL
T and

WWL
T − W̃WL

T .

From the analysis of Theorem 1, equation (8), we have:

E
[
W̃T (ηWL)

]
≥ T λ

1 + λ
W ∗ − 1

∆µmin
(L(p1)− E[L(pT+1)])− T 2 + λ

2(1 + λ)
∆ .

Therefore we have:

W ∗T − W̃WL
T ≤ 1

∆µmin

(
L(p1)− E[L(pT+1)]

)
+ T

2 + λ

2(1 + λ)
∆ .

Setting ∆ = 1/
√
T , and observing that L(·) ≥ 0 and L(p1) = L(0) = 0, we have that

W ∗T − W̃WL
T ≤

√
T

2 + λ

2(1 + λ)
. (18)

To bound W̃WL
T −WWL

T , observe that this difference is the total value of items assigned

to agents that are waiting in the queue in the final epoch T (when the economy ends). By

definition, the number of agents waiting for item j at time T is pj,T /∆. Since no agent will

join queue j when pj,t > vmax, we have that pj,t ≤ vmax for all j ∈ J and t ≤ T . Therefore,

W̃WL
T −WWL

T ≤
∑
j∈J

vmax ·
pj,T
∆
≤ J · v2

max ·
√
T . (19)

Combining (18) and (19) completes the proof.

Proof of Corollary 4. The corollary follows from the proof of Theorem 4 by plugging ∆ =

vmax/
√
T to obtain the following inequalities:

W ∗T − W̃WL
T ≤ 1

∆µmin

(
L(p1)− E[L(pT+1)]

)
+ T

2 + λ

2(1 + λ)
∆

≤
√
T

µminvmax

∑
j∈J

µjp
2
j,1 + T

2 + λ

2(1 + λ)

vmax√
T
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≤ µ−1
minJvmax

√
T +

2 + λ

2 + 2λ
vmax

√
T .

And,

W̃WL
T −WWL

T ≤
∑
j∈J

vmax ·
pj,T
∆

=
∑
j∈J

vmax ·
pj,T

vmax/
√
T
≤ J · vmax ·

√
T .

Combining these inequalities and rearranging terms yields the desired result.

6 Conclusion

This paper analyzed the endogenous determination of waiting times under the waiting

list. Waiting times continuously adjust according to a tâtonnement-like process, which

is equivalent to running the SGD optimization algorithm with a fixed and exogenously

given adjustment size. The resulting allocative efficiency is at least the maximal allocative

efficiency minus a loss equal to the adjustment size, given by the marginal increase in

expected waiting cost from having one more agent in the queue. Waiting lists approximately

replicate the static competitive equilibrium outcome when the adjustment size is small, but

can incur an additional loss from fluctuations when the adjustment size is large.

In practice, the adjustment size will be large in applications where the waiting cost per

time unit is large or items arrive infrequently. In the context of public housing assignment,

our results raise concerns about losses due to misallocation when applicants have urgent

housing needs or when apartments arrive infrequently. We emphasize that such losses can

occur even if there are many agents who seek housing. On the other hand, if housing

projects are large and similar apartments arrive frequently, losses due to misallocation are

small.

To focus our analysis on the endogenous determination of waiting times, we focused on

the standard waiting list, which holds a separate queue for each item. This mechanism is

commonly used, and is particularly suitable for our analysis because agents face a single

choice that is analogous to the choice agents make in competitive equilibrium models. In-

sights from the analysis apply to other mechanisms as well. For example, changes to the

queueing policy (e.g., Leshno, 2017) can effectively reduce the adjustment size and thus

reduce misallocation. Similarly, giving agents infrequent updates can be seen as another

method for reducing the effective adjustment size.

Our analysis abstracts away from potential distinctions between waiting times and mone-

tary prices. If payments for items are transfers, competitive equilibria is welfare-maximizing

(in addition to maximizing allocative efficiency). In applications such as public housing wait-
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ing lists, applicants bear a cost while they wait for an apartment, e.g., higher rent payments.

Potential applicants bear this waiting cost whether or not they participate in the waiting

list. Each assigned apartment reduces the waiting cost of one agent. Thus, total waiting

costs are constant under any assignment that assigns all available apartments, and waiting

times are transfers that do not affect social welfare. Our analysis shows that if all items

have a positive price, the waiting list assigns almost all available items. However, we note

that allocative efficiency maximization is distinct from welfare maximization in applications

where agents have an outside option that reduces their waiting costs (for example, visitors

to a theme park can choose to watch a show instead of queueing for a ride).

Finally, we consider a simple pricing heuristic inspired by the waiting list. We show

that a simple SGD pricing heuristic with an appropriate adjustment size performs well

in finite-horizon markets. A planner can implement this simple heuristic with almost no

knowledge of the market; the planner only needs to know the market’s time horizon to select

an appropriate adjustment size.

This simple SGD heuristic gives rise to a form of price rigidity. The optimal adjustment

size balances two potential losses. A larger adjustment size facilitates a faster adjustment

toward market-clearing prices, but a smaller adjustment size creates rigidity that protects

from overreaction to noise. Intuitively, the optimal adjustment size balances the two, and

induces more rigidity when the time horizon T indicates a more stable environment. Because

of this trade-off, the SGD heuristic can appear to be too rigid and slow to adjust prices in

initial periods.
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A Proof of Theorem 1 for General Waiting Costs

In this section we complete the proof of Theorem 1 for the general case. The proof

is identical to the proof in the main body except for the second step of Lemma 4. The

following three lemmas establish inequalities that give versions of inequalities (11) and (12)

for general waiting cost functions that satisfy the conditions in Section 2. Replacing Step 2

in the proof of Lemma 4 with these lemmas gives the general proof.

We use the same Lyapunov function in the analysis, where L(q) is such that ∇L(q) =

p(q). The analysis uses the Bregman divergence generated by L(q) as the notion of prox-

imity, which is defined as

DL(q1,q2) , L(q1)− L(q2)− 〈∇L(q2),q1 − q2〉 .

Lemma 5. We have

L(qt+1) ≤ L(qt + at − gt) +
∆

2
· 1{ξt=0} .

Proof. By definition of Bregman divergence, we have

DL(qt + at − gt,qt+1) = L(qt + at − gt)− L(qt+1)− 〈p(qt+1),qt + at − gt − qt+1〉

= L(qt + at − gt)− L(qt+1) + 〈p(qt+1),ut〉 .

Therefore,

L(qt+1) = L(qt + at − gt) + 〈p(qt+1),ut〉 −DL(qt + at − gt,qt+1) . (20)

To bound the RHS of (20), we consider two cases:

Case 1. If ∃j ∈ J such that dj,t = 1 and qj,t = 0, we have qj,t+1 = 0 and lj,t = 1. Note

that in this case ξt = 0. Let Pj(q) be an anti-derivative of pj(q); then L(q) =
∑

j∈J Pj(q)

is a Lyapunov function because it satisfies ∇L(q) = p(q). We have

〈p(qt+1),ut〉 −DL(qt + at − gt,qt+1)

= pj(0)− (Pj(−1)− Pj(0)− pj(0) · (−1))

= Pj(0)− Pj(−1) . (21)

Since pj(·) is nonnegative and ∆-Lipshitz, we have

Pj(0) ≤ Pj(−1) +

∫ 1

0
∆ · xdx = Pj(−1) + ∆/2 .
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Plugging the above equality into (21), we have

〈p(qt+1),ut〉 −DL(qt + at − gt,qt+1) ≤ ∆

2
· 1{ξt=0} . (22)

Case 2. If the condition in Case 1 does not hold, we have ut = 0 and qt+at−gt = qt+1;

hence

〈p(qt+1),ut〉 −DL(qt + at − gt,qt+1) = 0 .

Therefore, plugging the above two cases into (20), we have

L(qt+1) ≤ L(qt + at − gt) +
∆

2
· 1{ξt=0} .

Lemma 6. We have

E[v(θt, a(θt,qt))|qt] ≥
λ

1 + λ
h(pt)− (L(qt)− E[L(qt+1) | qt])−

∆

2(1 + λ)

− E[DL(qt + at − gt,qt) | qt] .

Proof. We have that the drift of Lyapunov function L(q) in one period is

L(qt)− L(qt+1)

≥ L(qt)− L(qt + at − gt)−
∆

2
· 1{ξt=0}

= − 〈p(qt),at − gt〉 −DL(qt + at − gt,qt)−
∆

2
· 1{ξt=0} , (23)

where the inequality follows from Lemma 5, and the equality follows from the definition of

Bregman divergence.

Adding v(θt, a(θt,qt)) to both sides of equation (23), we have

v(θt, a(θt,qt)) + L(qt)− L(qt+1)

≥ v(θt, a(θt,qt))− 〈p(qt),at − gt〉 −DL(qt + at − gt,qt)−
∆

2
· 1{ξt=0} .

Taking expectation conditional on qt and applying equation (10), we have

E[v(θt, a(θt,qt))|qt] + (L(qt)− E[L(qt+1) | qt])

≥ λ

1 + λ
h(pt)− E[DL(qt + at − gt,qt) | qt]−

∆

2(1 + λ)
.
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Rearranging the terms, we obtain the desired inequality.

Lemma 7. We have that for any qt,

E[DL(qt + at − gt,qt) | qt] ≤
∆

2
.

Proof. Note that L(q) is convex because its gradient ∇L(q) = p(q) is increasing in each

coordinate. Also note that L(q) has a ∆-Lipschitz gradient, because for queue lengths

q1,q2,

||∇L(q1)−∇L(q2)|| = ||p(q1)− p(q2)|| ≤ ∆||q1 − q2|| .

Equivalently, L(q) is ∆-strongly smooth, i.e.,

L(q2)− L(q1) ≤ 〈∇L(q1),q2 − q1〉+
∆

2
||p(q2)− p(q1)||2 .

By the definition of Bregman divergence, we have

DL(qt + at − gt,qt)

= L(qt + at − gt)− L(qt)− 〈∇L(qt),at − gt〉

≤ ∆

2
||at − gt||2

=
∆

2
,

where the inequality follows from the strong smoothness of L(q). This completes the proof.

B Omitted Proofs

B.1 Proof of Proposition 1 from Section 2

In this section we prove Proposition 1, showing that WOPT = W ∗.

Proof of Proposition 1. We first show that WOPT ≤ W ∗. This part of the proof mostly

consists of a careful treatment of expectations and limits.

Let η ∈ H be any no-Ponzi allocation. Without loss of generality, assume that Θ = [0, 1]

and that F is a CDF on [0, 1]. This allows us to rewrite problem (3) as

W ∗ = max
Gj(θ), j∈J

∑
j∈J

∫
Θ
v(θ, j) dGj(θ)
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subject to
∑
j∈J

Gj(θ) ≤ F (θ) , ∀θ ,

Gj(0) = 0; Gj(1) ≤ µj/λ , ∀j , (24)

Gj(·) is nondecreasing and right-continuous , ∀j .

Let AT = |A(T )|, and recall that A(T ) is the set of epochs up to T in which an agent

arrived. Recall that ηt ∈ J∅ is the kind of item assigned under η to the agent that arrived

in epoch t. For each j ∈ J and θ ∈ Θ, define ĜTj (θ) as

ĜTj (θ) ,
1

AT

∑
t≤T

1{ξt=1,θt≤θ,ηt=j} .

Therefore, ĜTj (θ) is proportional to the empirical cumulative distribution function of the

types of the agents who arrived in epochs in A(T ) and are assigned a type j item. When

AT = 0, we set ĜTj (θ) = 0 for all j ∈ J and θ ∈ Θ. By definition, the allocative efficiency

under η is defined as

W (η) = lim inf
T→∞

1

AT

∑
j∈J

∑
t≤T

ξtv(θt, j) = lim inf
T→∞

∑
j∈J

∫
θ∈Θ

v(θ, j)dĜTj (θ) . (25)

Note that for any T , ĜTj (θ) satisfies

∑
j∈J

ĜTj (θ) ≤ 1

AT

∑
t≤T

ξt1{θt≤θ} , ∀θ ∈ Θ , (26)

ĜTj (0) = 0 , ĜTj (1) ≤ 1

AT

∑
t≤T

1{ηt=j} +M

 , ∀j ∈ J , (27)

ĜTj (θ) is nondecreasing and right-continuous, ∀j ∈ J , (28)

for some M ∈ R. Here (26) and (28) are trivial. Equality (27) is satisfied by any no-Ponzi

assignment for the following reason: the agents arriving in epochs A(T ) who are assigned

a type j ∈ J item are either assigned before the T -th epoch or after the T -th epoch. The

number of those who are assigned before T cannot exceed the total number of type j items

that arrive before T . The number of those who are assigned after T is bounded by some

M ∈ R by the definition of no-Ponzi assignments.

Combining the above, we have

E

∑
j∈J

∫
θ∈Θ

v(θ, j)dĜTj (θ)

 ≤ E

 max
Ĝj(θ) satisfying (26)(27)(28)

∑
j∈J

∫
θ∈Θ

v(θ, j)dĜj(θ)

 .
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It is easy to check that the optimal value of the inner maximization problem above is concave

and nondecreasing in the RHS of (26) and (27). Note that

Expectation of RHS of (26) = F (θ) , ∀θ ∈ Θ ,

Expectation of RHS of (27) =
µj
λ

+
(1 + λ)M

λT
, ∀j ∈ J .

It follows from Fatou’s Lemma that

E[W (η)] = E

lim inf
T→∞

∑
j∈J

∫
θ∈Θ

v(θ, j)dĜTj (θ)

 ≤ lim inf
T→∞

E

∑
j∈J

∫
θ∈Θ

v(θ, j)dĜTj (θ)

 .
Applying Jensen’s inequality, we have

lim inf
T→∞

E

∑
j∈J

∫
θ∈Θ

v(θ, j)dĜTj (θ)

 ≤W ∗ ,
where W ∗ is defined in (3). Therefore E[W (η)] ≤ W ∗ for any η ∈ H. Since W (η) is

uniformly bounded above by vmax, by the Bounded Convergence Theorem we have WOPT =

E[supη∈HW (η)] = supη∈H E[W (η)] ≤W ∗. This completes the first part of the proof.

Next we prove that WOPT ≥ W ∗. We explicitly construct a sequence of randomized

policies that can achieve allocative efficiencies that are arbitrarily close to W ∗. Note that

the constructed policies are technical devices used to prove the desired bound, rather than

practical policies.

Denote the optimal solution of the optimization problem (3) by x∗. Consider the follow-

ing randomized policy: maintain a separate First-Come First-Served queue for each item.

An arriving agent will be assigned to one of the queues or rejected based on a coin toss

(to be specified later). An agent who joins a queue will wait in that queue until receiving

an item. When an item arrives, it is assigned to the agent at the head of its queue; if the

queue is empty, the item is discarded. The coin toss is defined as follows: fix M ∈ Z+. If

the arriving agent is of type θ, she is assigned to a queue j with probability x∗θj , or rejected

from all queues with probability 1−
∑

j∈J x
∗
θj . If the length of the queue to which the agent

is assigned exceeds M , the agent is also rejected.

Denote the match value collected by the randomized policy in epoch t by vRD
t . Then by

definition of the policy, we have

E[vRD
t |qj,t < M, ∀j ∈ J ] =

λ

1 + λ

∑
j∈J

∫
Θ
x∗θj v(θ, j)dF (θ) =

λ

1 + λ
W ∗ .
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It follows that

E[vRD
t ] ≥ λ

1 + λ
W ∗ · P(qj,t < M, ∀j ∈ J ) .

Let WRD be the allocative efficiency of the randomized policy. We therefore have

WRD ≥W ∗ · P(qj,∞ < M, ∀j ∈ J ) ,

where q∞ is the steady-state queue length distribution. The allocative efficiency loss of the

randomized policy can be bounded by

W ∗ −WRD ≤ W ∗ −W ∗ · P(qj,∞ < M, ∀j ∈ J )

≤ vmax · P(qj,∞ = M,∃j ∈ J )

≤ vmax ·
∑
j∈J

P(qj,∞ = M) , (29)

where the second inequality follows from the fact that W ∗ ≤ vmax, and the last inequality

comes from the union bound. It remains to bound P(qj,∞ = M) for any j ∈ J under the

randomized policy. Fix j ∈ J ; then qj,t is a birth–death process on {0, 1, · · · ,M} with

death rate µj and birth rate

λ∗j = λ

∫
Θ
x∗θjdF (θ) .

It follows from the constraint in (3) that λ∗j ≤ µj . As a result, P(qj,∞ = M) ≤ P(qj,∞ =

M − 1) ≤ · · · ≤ P(qj,∞ = 0); hence P(qj,∞ = M) ≤ 1
M+1 . Plugging in the bound on

P(qj,∞ = M) to (29), we have

W ∗ −WRD ≤ vmax|J |
M + 1

.

Notice that by definition, WRD ≤WOPT, and hence

W ∗ −WOPT ≤ vmax|J |
M + 1

.

Since M can be chosen arbitrarily, it must be true that W ∗ −WOPT ≤ 0. This completes

the proof.

41

Electronic copy available at: https://ssrn.com/abstract=4192003



B.2 Omitted proofs from Section 3

The following lemma was used in the proof of Theorem 1. Its proof uses standard

arguments, and is presented here for completeness.

Lemma 8. The following equality holds:

WWL =
1 + λ

λ
lim
T→∞

1

T
E
[
WT (ηWL)

]
. (30)

Proof. We need to argue that the limiting operator and the expectation can be interchanged.

This is done in the following two steps.

First, we show that the stochastic process {(ξt, v(θt, a(θt,qt)))}t≥0 is ergodic. Note that

v(θt, a(θt,qt)) only depends on qt and independent variables θt. The finite-state Markov

chain {qt}t≥0 is irreducible and aperiodic;28 therefore it has a unique steady-state distribu-

tion and {(ξt, v(θt, a(θt,qt)))}t≥0 is ergodic.

Second, we exchange the order of the limiting operator and the expectation. It follows

from Birkhoff’s ergodic theorem that WT (ηWL)
AT

converges almost surely to E[v∞|ξ∞ = 1],

where (ξ∞, v∞) is the steady-state distribution of (ξt, v(θt, a(θt,qt))). Since WT (ηWL)
AT

is

nonnegative and uniformly bounded from above by vmax for all T > 0, we have

WWL = E
[

lim
T→∞

WT (ηWL)

AT

]
= lim

T→∞
E
[
WT (ηWL)

AT

]
= E[v∞|ξ∞ = 1] ,

where we apply the Bounded Convergence Theorem in the second equality to exchange

the limits; the last equality holds because the boundedness of WT (ηWL)
AT

and its almost sure

convergence imply L1 convergence. Finally, observe that

E[v∞] = E[v∞|ξ∞ = 1] · P(ξ∞ = 1) + E[v∞|ξ∞ = 0] · P(ξ∞ = 0)

= E[v∞|ξ∞ = 1] · λ

1 + λ
+ 0

= WWL · λ

1 + λ
,

where the second equality follows from the fact that all the rewards are collected when

agents arrive, i.e., ξt = 1. Note that

lim
T→∞

1

T
E
[
WT (ηWL)

]
= E[v∞] ,

28Irreducibility follows from the fact that all states can go to 0 with positive probability. Aperiodicity
comes from the fact that the state can stay at 0 for an arbitrary number of periods.
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and therefore we have

WWL =
1 + λ

λ
E[v∞] =

1 + λ

λ
lim
T→∞

1

T
E
[
WT (ηWL)

]
.

Proof of Theorem 2. The proof is identical to the proof of Theorem 1 presented in Section 4,

except for the following changes. We replace inequality (12) with the following inequality,

1

2

∑
j∈J

c

µj
E[(aj,t − gj,t)2 + l2j,t | qt] ≤

1

2
∆ + ε , (31)

and show there exist α, β, c0 > 0, such that for any c` < c0 we have ε < β · e−α/∆` .
To show inequality (31), observe that

c

2µj
(aj,t − gj,t)2 +

c

2µj
l2j,t =

{
c
µj

if gj,t = 1 and qj = 0 ,
c

2µj
otherwise.

That is, the above term is equal to c/µj ≤ ∆ for arrivals that correspond to an item that is

discarded because its queue is empty, and is equal to c/2µj ≤ ∆/2 for all other arrivals. By

Corollary 3, there exist α, β, c0 > 0, such that for every market with c` < c0 the probability

that an arriving item j is discarded is at most β · e−α/∆` . Thus,

1

2

∑
j∈J

c

µj
E[(aj,t − gj,t)2 + l2j,t | qt]

≤ ∆

2
+ β · e−α/∆`

∆

2
.

Using (31), we can replace (8) in the proof of Theorem 1 with

E
[
WT (ηWL)

]
= E

[
T∑
t=1

ξt · v(θt, a(θt,qt))

]

≥ E

[
T∑
t=1

λ

1 + λ
W ∗ − 1

µmin ·∆
(L(pt)− E[L(pt+1 | qt])−

1

2
∆− ε

]

= T
λ

1 + λ
W ∗ − 1

µmin ·∆
(L(p1)− E[L(pT+1)])− T 1

2
∆− Tε . (32)

Following the same steps as in the proof of Theorem 1 and using the assumption that
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λ ≥ 1, we have

WWL =
1 + λ

λ
lim
T→∞

1

T
E
[
WT (ηWL)

]
≥W ∗ − 1 + λ

2λ
∆− 1 + λ

λ
ε

≥W ∗ −∆− 2ε ,

which completes the proof.

B.3 Omitted proofs from Section 3.2

Proof of Proposition 2. We prove the result by calculating the allocative efficiency loss in

the market of Example 2. By Proposition 1, we have that WOPT = γ.

Under the waiting list, an agent of type θ will only join the queue for item j = θ. A

type θt = j agent arriving in epoch t will join queue j to receive a value of γ only if

γ ≥ pj(qj) =
c

µj
(1 + qt,j) = ∆(1 + qt,j) ,

or

qt,j ≤
γ

∆
− 1 .

Therefore, the possible states of each queue j ∈ J are 0, 1, . . . ,K with K = bγ/∆c. Let

πj(k)0≤k≤K denote the steady-state distributions over the length of queue j. Because the

length of the queue follows a reflected unbiased random walk, all states are equally likely

and29 πj(k) = 1
K+1 .

The allocative efficiency loss under the waiting list is given by

WOPT −WWL = γ −
∑
j∈Θ

F (j)

(
πj(K) · 0 +

∑
k<K

πj(k) · γ

)

= γ − J 1

J

(
1

K + 1
· 0 +

K

K + 1
· γ
)

=
1

K + 1
· γ

=
1

bγ/∆c+ 1
· γ, .

29To see this directly, observe that equating probability flows across a cut gives for any 0 < k < K that
πj(k)λ/J = πj(k + 1)µj , which implies that πj(0) = πj(1) = · · · = πj(K).
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By choosing γ such that bγ/∆c ≈ γ/∆− 1 we get that

WOPT −WWL ≥ 1
γ/∆− 1 + 1

· γ − ε

= ∆− ε .

B.4 Omitted proofs from Section 3.3

Proof of Lemma 1. A problem instance (λ,µ) is said to satisfy generalized imbalance (GI)

if there is no pair of nonempty subsets of agent types I ′ ⊂ Θ and item types J ′ ⊂ J such

that the total arrival rate of agents with type in I ′ exactly matches the total arrival rate of

items with types in J ′, that is,∑
j∈J ′

µj 6=
∑
θ∈I′

λθ ∀J ′ ⊂ J , I ′ ⊂ Θ .

The set of (λ,µ) satisfying GI is open and dense in R|I|++×R|J |++. The result follows because

GI implies uniqueness of market-clearing prices (see Proposition C.2 of Johari et al., 2016).

B.5 Omitted proofs from Section 3.4

Proof of Proposition 3. For ease of reading, the proof is divided into three steps. First, we

provide a lower bound for the dual objective. Second, we use that lower bound to construct

a lower bound on the Lyapunov drift. Third, we derive a concentration bound using the

Lyapunov drift.

Step 1. We first establish a lower bound of the dual function h(p); namely, for any ε > 0,

there exists γ > 0, such that ∀p /∈ Bε(P∗),

h(p)− h(p∗) ≥ γ · dist(p,P∗) . (33)

To establish (33), we use the ε-level set of the dual function h(p), which we denote by

Ph(ε) , {p ∈ R|J |+ : h(p) ≤ h(p∗) + ε} for ε > 0, where p∗ ∈ P∗ is some market-clearing

price.

Let there be ε > 0. By continuity of h(p) and boundedness of Ph(ε) for any ε, there

exists ε1 > 0 such that Ph(ε1) ⊂ Bε(P). Thus, for any p /∈ Bε(P), we have that p /∈ Ph(ε1).
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Since h(p) is convex and P∗,Ph(ε) are bounded, Proposition 1 in Deng (1998) implies

that for ε1 > 0, there exists γ1 > 0, such that ∀p /∈ Ph(ε1),

h(p)− h(p∗)− ε1 ≥ γ1 · dist(p,Ph(ε1)) . (34)

We will show that the desired inequality (33) holds for γ , min{γ1,
ε1

dist(P∗,Pch(ε1))} > 0,

where dist(P∗,Pch(ε1)) , infp∈P∗,p′ /∈Ph(ε1) ||p− p′||2.

Note that dist(P∗,Pch(ε)) > 0 for any ε > 0. It follows from the triangle inequality that

dist(p,Ph(ε1)) ≥ dist(p,P∗)− dist(P∗,Pch(ε1)) .

We thus have that for any given p /∈ Bε(P),

h(p)− h(p∗) ≥ γ1 · dist
(
p,Ph(ε1)

)
+ ε1

≥ γ
(

dist(p,P∗)− dist(P∗,Pch(ε1))
)

+ ε1

≥ γ · dist(p,P∗)− ε1
dist(P∗,Pch(ε1))

dist(P∗,Pch(ε1)) + ε1

≥ γ · dist(p,P∗) .

This completes the proof of step 1.

Step 2. We now bound the Lyapunov drift for the Lyapunov functions

L̃(p) = inf
p′∈P∗

1

2

∑
j∈J

µj(pj − p′j)2

 and Ṽ (p) ,
√
L̃(p) ,

showing that

E[L̃(pt+1)|qt]− L̃(pt) ≤ −c (h(pt)− h(p∗)) + c
2 + λ

2(1 + λ)
∆ . (35)

Fix pt and let p∗t , argminp′∈P∗
1
2

∑
j∈J µj(pj,t−p′j)2 be the closest market-clearing price

to pt in the weighted norm (note that the minimum is attainable since P∗ is compact).

As an intermediate step, we first show that

E[L̄t(pt+1)|qt]− L̄t(pt) ≤ −c (h(pt)− h(p∗)) + c
2 + λ

2(1 + λ)
∆ , (36)

for L̄t(pt) , 1
2

∑
j∈J µj(pj,t − p∗j,t)2.
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To see that (36) holds, recall that pj,t+1 = pj,t + c
µj

(aj,t − gj,t + lj,t). We have that

L̄(pt+1)− L̄(pt)

=
1

2

∑
j∈J

µj

(
c2

µ2
j

(aj,t − gj,t + lj,t)
2 +

2c

µj
(pj,t − p∗j,t)(aj,t − gj,t + lj,t)

)

= c〈pt − p∗t ,at − gt〉+
1

2

∑
j∈J

µj

(
c2

µ2
j

(aj,t − gj,t + lj,t)
2 +

2c

µj
(pj,t − p∗j,t)lj,t

)
(a)

≤ c〈pt − p∗t ,at − gt〉+
1

2

∑
j∈J

µj

(
c2

µ2
j

(aj,t − gj,t + lj,t)
2 +

2c

µj
pj,t · lj,t

)
= c〈pt − p∗t ,at − gt〉

+
1

2

∑
j∈J

µj

(
c2

µ2
j

(
(aj,t − gj,t)2 + l2j,t

)
+

2c

µj

(
pj,t +

c

µj
(aj,t − gj,t)

)
lj,t

)
,

where inequality (a) follows because p∗j,t ≥ 0 and lj,t ≥ 0. Note that (pj,t+
c
µj

(aj,t−gj,t))lj,t ≡
0.

Recall equation (12), which establishes that

1

2

∑
j∈J

c

µj
E[(aj,t − gj,t)2 + l2j,t|qt] ≤

2 + λ

2(1 + λ)
∆ .

By taking expectations and plugging the above into the RHS, we have

E[L̄(pt+1)|qt]− L̄(pt) ≤ cE[〈pt − p∗,at − gt〉|qt] + c
2 + λ

2(1 + λ)
∆ .

Using the fact that E[at − gt|qt] ∈ −∂h(pt), we have

E[L̄(pt+1)|qt]− L̄(pt) ≤ −c (h(pt)− h(p∗)) + c
2 + λ

2(1 + λ)
∆ . (37)

To see that the bound (36) for L̄ implies the desired bound (35) for L̃, observe that

L̄t(pt) = L̃(pt) (by definition), and that L̃(pt+1) ≤ L̄t(pt+1).

Step 3. Let ε > 0. By the previous steps, there exists γ such that for all p /∈ Bε(P∗) we

have

E[L̃(pt+1)|qt]− L̃(pt) ≤ −c (h(pt)− h(p∗)) + c
2 + λ

2(1 + λ)
∆

≤ −cγ||pt − p∗||2 + c
2 + λ

2(1 + λ)
∆ .
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Because f(x) =
√
x is concave for x ≥ 0, we have that for y > x > 0, f(y) − f(x) ≤

(y − x)f ′(x) = y−x
2
√
x
. Therefore,

Ṽ (pt+1)− Ṽ (pt) ≤
L̃(pt+1)− L̃(pt)

2Ṽ (pt)
. (38)

Taking conditional expectations given qt on both sides of (38) and plugging in (35), we

have

E[Ṽ (pt+1)|qt]− Ṽ (pt) ≤
E[L̃(pt+1)|qt]− L̃(pt)

2Ṽ (pt)

≤ − cγ

2
+

2 + λ

2(1 + λ)

c2

2µminṼ (pt)
.

For pt such that

Ṽ (pt) ≥
c

µminγ

2 + λ

1 + λ
,

we have

E[Ṽ (pt+1)|qt]− Ṽ (pt) ≤ −
cγ

4
.

Now we use a concentration bound from Bertsimas et al. (2001) to prove the desired

result. Ṽ (·) is a Lyapunov function with exception parameter c
µminγ

2+λ
1+λ and negative drift

cγ
4 . In each step, the Lyapunov function can increase by at most c

µmin
. Using Theorem 1 in

Bertsimas et al. (2001), we have for any r = 0, 1, . . . ,

P
(
Ṽ (p(c`)) >

c

µminγ

2 + λ

1 + λ
+ 2r

c

µmin

)
≤

(
c

µmin

c
µmin

+ cγ
4

)r+1

=

(
1

1 + γµmin
4

)r+1

.

If p /∈ Bε(P∗) we have that Ṽ (p) ≥ µmin
2 ε. Choosing c0 = µ2

minεγ/8 we have that

∆` = c`/µmin ≤ µminεγ
1+λ

4(2+λ) for any c` < c0. Plugging in r = µminε
8∆`

we have

P(p(c`) /∈ Bε(P)) ≤ P
(
Ṽ (p(c`)) >

µmin

2
ε
)

≤ P
(
Ṽ (p(c`)) >

c

µminγ

2 + λ

1 + λ
+ 2r

c

µmin

)
≤
(

1

1 + γµmin
4

)µminε

8∆`

= exp

(
− log

(
1 +

γµmin

4

)(µminε

8∆`

))
.
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This completes the proof.

Proof of Corollary 3. Let κj denote the probability that an arriving item j is discarded.

Denote ε = 1
2 inf{pj | p ∈ P∗}. We have that if p ∈ Bε(P∗), then pj ≥ ε > 0.

For sufficiently small c1 > 0 we have that E[c(wj)|qj = 0] = c/µj < ε for every c < c1.

Thus, pt ∈ Bε(P∗) and c < c1 imply qjt > 0; that is, the j-th queue is nonempty in epoch

t and an item arriving in epoch t is assigned to some agent. By Proposition 3, there exist

α, β, c0 > 0, such that for any c` < min{c0, c1} we have that

κ ≤ P
(
p(c`) /∈ Bε(P∗)

)
< β · e−α/∆` .

C Auxiliary Results

This appendix provides auxiliary results to complement our analysis. Appendix C.1

bounds the adjustment size for nonlinear waiting cost functions. Appendix C.2 provides a

lemma that tightens the bound of Proposition 3.

C.1 Adjustment size of nonlinear waiting cost functions

We stated our main result (Theorem 1) in terms of the adjustment size ∆. This section

shows how ∆ is related to the waiting cost function c(w) for nonlinear waiting costs. We

focus on the waiting costs that satisfy the assumption below.

Assumption 1. We consider the following classes of waiting cost functions.

• Convex waiting costs. c(w) is convex, twice-differentiable for w ≥ 0, and c′(w) and

c′′(w) are subexponential; i.e., there exists α such that c′(w), c′′(w) ≤ eαw for all

w ≥ 0.

• Concave waiting costs. c(w) is concave and twice-differentiable for w ≥ 0.

Proposition 5. Consider the asymptotic regime in Corollary 2 and waiting cost functions

satisfying Assumption 1. The following holds:

1. For convex c(w), there exists `0 <∞ such that for ` ≥ `0, ∆ ≤ 2c′(c−1(vmax))
`µmin

.

2. For concave c(w), for any ` > 0, ∆ ≤ c′(0)
`µmin

.
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Proof of Proposition 5. Consider the system with index `. Let Xt be the interarrival time

between the t-th type j item and the (t + 1)-th type j item. Hence, Xt is an exponential

random variable with rate `µj , and {Xt}∞t=1 are i.i.d. Let Sn ,
∑n

t=1Xt.

Let qmax,` be the threshold queue length above which no arriving agent will join that

queue. Then approximately

vmax = pj(qmax,`) = E[c(Sqmax,`
)] .

For convex cost function c(w), by Jensen’s inequality we have

E[c(Sqmax,`
)] ≥ c

(
E[Sqmax,`

]
)

= c

(
qmax,`

`µj

)
.

Comparing the above two inequalities, we have qmax,` ≤ `µjc−1(vmax). Notice that

pj(qj + 1)− pj(qj) = E[c(Sqj +Xqj+1)− c(Sqj )] ≤ E[c′(Sqj +Xqj+1) ·Xqj+1] ,

where the inequality follows from the convexity of c(w). Take the supremum over all 0 ≤
qj ≤ qmax,` on both sides of the above inequality. Because c(w) is convex, c′(w) must be

nondecreasing, and hence

∆ = sup
0≤qj≤qmax,`

(pj(qj + 1)− pj(qj)) ≤ E[c′(Sqmax,`
+Xqmax,`+1) ·Xqmax,`+1] .

Using Holder’s inequality, we have

E[c′(Sqmax,`
+Xqmax,`+1) ·Xqmax,`+1] ≤ α

√
E[(c′(Sqmax,`+1))α] · β

√
E[Xβ

1 ] ,

where α, β ∈ (1,∞) and 1
α + 1

β = 1. Because c(w) satisfies Assumption 1, for any α ∈ (1,∞)

we can apply Lemma 9 and it follows that

lim
`→∞

α

√
E[(c′(Sqmax,`

))α] = α

√
c′
(
E[Sqmax,`

]
)α

= c′
(
qmax,`

`µj

)
.

Therefore,

lim
`→∞

E[c′(Sqmax,`
+Xqmax,`+1) ·Xqmax,`+1] ≤ c′

(
qmax,`

`µj

)
inf
β>1

β

√
E[Xβ

1 ]

≤ c′
(
qmax,`

`µj

)
E[X1] =

c′
(
qmax,`

`µj

)
`µj

.
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As a result, there exists `0 > 0 such that for ` ≥ `0, it holds that

∆ ≤
2c′
(
qmax,`

`µj

)
`µj

≤
2c′
(
c−1(vmax)

)
`µj

. (39)

By the concavity of c(w), we have that for any 0 ≤ qj ≤ qmax,`,

pj(qj + 1)− pj(qj) = E[c(Sqj +Xqj+1)− c(Sqj )] ≤ E[c′(0)X1] =
c′(0)

`µj
. (40)

Combining (39) and (40) completes the proof.

Lemma 9. Let {Xi}∞i=1 be i.i.d. exponential random variables with rate 1, X̄n , 1
n

∑n
i=1Xi,

and α ∈ (0,∞). Let C1, C2 ∈ (0,∞) and let f(x) : R+ → R be a continuously differentiable

function such that f(x) ≤ C1e
C2x, f ′(x) ≤ C1e

C2x for all x ∈ R+. We have

lim
N→∞

E
[
f(α · X̄N )

]
= f(α) .

Proof of Lemma 9. The result simply follows the proof of Theorem 1(c) in Kozakiewicz

et al. (1947), and therefore we omit the details.

C.2 The rate of convergence of waiting costs

This section presents additional results that provide explicit constants for the rate of

convergence shown in Proposition 3. We consider discrete economies with unique market-

clearing, and show that prices are very likely to be close to p∗ by showing that prices

that deviate from p∗ quickly adjust back. The rate of price adjustment is related to the

“sharpness” of the dual objective (5).

The proof of Proposition 3 shows that if for γ(v,λ,µ) > 0 it holds that

h(p)− h(p∗) ≥ γ(v,λ,µ)||p− p∗||2 , (41)

for any p ∈ R|J |, then the following bound holds:

P(p(c`) /∈ Bε(P)) ≤ exp

(
− log

(
1 +

γµmin

4

)(µminε

8∆`

))
.

The following lemma provides an explicit lower bound for such γ.

Lemma 10 (Geometry of dual function). There exists γ(v,λ,µ) > 0 such that for any

p ∈ R|J |, we have

h(p)− h(p∗) ≥ γ(v,λ,µ)||p− p∗||2 . (42)
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Moreover,

γ(v,λ,µ) ≥ 1

λ

{
min
I⊂J

λ−
∑

j∈I µj√
|I|

, min
{I:I⊂J ,I⊃∪θ∈Θ∗J ∗θ }

∑
j∈I µj −

∑
θ∈Θ∗ λθ√

|I|
, min
j∈J

µj

}
.

The proof shows that the rate of adjustment is positive for p ∈ P and by the convexity

of h(p)− h(p∗) this holds also for prices not in P.

Proof of Lemma 10. We proceed in two steps.

Step 1. We first show that we can lower bound h(p)− h(p∗) by a support function:

h(p)− h(p∗) ≥ sup
s∈S
〈p∗ − p, s〉

for some convex set S.

For each agent type θ ∈ Θ, define

∆θ ,

x ∈ R|J |+ :
∑
j∈J

xj = 1 , xj = 0 for j /∈ J ∗θ

 ,

∆̃θ ,

x ∈ R|J |+ :
∑
j∈J

xj ≤ 1 , xj = 0 for j /∈ J ∗θ

 ,

∆ ,

x ∈ R|J |+ :
∑
j∈J

xj = 1

 , ∆̃ ,

x ∈ R|J |+ :
∑
j∈J

xj ≤ 1

 .

Using the definitions above, we can rewrite the dual function (5) as

h(p) =
1

λ

∑
θ∈Θ

λθ

max
xθ∈∆̃

∑
j∈J

(v(θ, j)− pj)xθ,j

+
1

λ

∑
j∈J

µjpj .

Let x∗θ be a maximizer of the inner maximization problem described above. Define s ∈ R|J |,
where

sj =
∑
θ∈Θ

λθ · x∗θ,j − µj ;

then it is easy to see that − 1
λs is a subgradient of h(p) at p, denoted by − 1

λs ∈ ∂h(p).
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For θ ∈ Θ∗, let

x′θ , argmaxxθ∈∆θ

∑
j∈J

(p∗j − pj)xθ,j ,

and for θ ∈ Θ\Θ∗, let

x′θ , argmaxxθ∈∆̃θ

∑
j∈J

(p∗j − pj)xθ,j .

The interpretation of x′θ is as follows. Consider an agent of type θ. If the current price is

exactly p∗, then the agent is indifferent between the items in J ∗θ , and strictly prefers these

items to other items. If the price deviates a little from p∗: (1) if θ ∈ Θ∗, the agent will

prefer the item in J ∗θ that is the cheapest; (2) if θ /∈ Θ∗, the agent’s optimal utility is zero

and she will choose an item in J ∗θ that is the cheapest only if the price is lower than the

optimal price, and she will not choose any item otherwise. Finally, x′θ characterizes the

choice of an agent when p is sufficiently close to p∗.

A key observation is that when p ∈ P, the above observation for “sufficiently close” p

holds. Therefore, for s′ ∈ R|J | defined as

s′j ,
∑
θ∈Θ

λθ · x′θ,j − µj ,

we have that − 1
λs′ ∈ ∂h(p) and that, for p ∈ P∗,

λh(p) =
∑
θ∈Θ

λθ
∑
j∈J

(v(θ, j)− pj)x′θ,j +
∑
j∈J

µjpj

=
∑
θ∈Θ

λθ
∑
j∈J

(p∗j − pj)x′θ,j +
∑
j∈J

µj(pj − p∗j )

+
∑
θ∈Θ

λθ
∑
j∈J

(v(θ, j)− p∗j )x′θ,j +
∑
j∈J

µjp
∗
j .

Note that the sum of the terms in the last row is exactly λh(p∗). This is because for an

agent of type θ ∈ Θ∗, under price p she must choose an item from J ∗θ . Hence∑
j∈J

(v(θ, j)− p∗j )x′θ,j = max
j∈J

(v(θ, j)− p∗j ) ,

whereas for an agent of type θ /∈ Θ∗, she either chooses an item from J ∗θ , or she balks.
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Hence ∑
j∈J

(v(θ, j)− p∗j )x′θ,j = 0 = max
j∈J

(v(θ, j)− p∗j ) .

Thus we have

λ(h(p)− h(p∗)) =
∑
θ∈Θ∗

λθ

 max
xθ∈∆θ

∑
j∈J

(p∗j − pj)xθ,j


+

∑
θ∈Θ\Θ∗

λθ

 max
xθ∈∆̃θ

∑
j∈J

(p∗j − pj)xθ,j

+
∑
j∈J

µj(pj − p∗j ) . (43)

Define the rate region S as:

S ,

{∑
θ∈Θ

λθxθ − µ : xθ ∈ ∆θ for θ ∈ Θ∗ ,xθ ∈ ∆̃θ for θ ∈ Θ\Θ∗
}
,

which is the set of possible rates of change of dual prices when p ∈ P. Therefore we can

rewrite the RHS of (43) as

sup
s∈S
〈p∗ − p, s〉 .

Using the fact that h(p) is convex, we have for any p,

h(p)− h(p∗) ≥ 1

λ
sup
s∈S
〈p∗ − p, s〉 .

This completes step 1.

Step 2. Characterizing the set S. Note that S is the Minkowski sum of simplices shifted

by µ, which is known as the generalized permutohedron (see, e.g., Postnikov, 2009). Using

Proposition 6.3 from Postnikov (2009), we have the following defining inequalities of S:∑
j∈I

sj ≤ λ−
∑
j∈I

µj , ∀I ⊂ J ,

∑
j∈I

sj ≥
∑
θ∈Θ∗

λθ −
∑
j∈I

µj , ∀I : I ⊂ J , I ⊃ ∪θ∈Θ∗J ∗θ ,

sj ≥ − µj , ∀j ∈ J .

We first argue that there exists ε > 0 such that the ball B(0, ε) is contained in S. This
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can be proved by contradiction: if it is not true, then using (43), we can show that the

minimizer of h(p) is nonunique, leading to a contradiction of the assumption that the dual

optimum is unique. Note that this already leads to a lower bound of h(p)−h(p∗): we have

ε p∗−p
||p∗−p||2 ⊂ S, and hence λ(h(p)− h(p∗)) ≥ ε||p∗ − p||2.

It remains to quantitatively characterize ε. To simplify the notation, we consider the

centered version of p, defined as p̃ , p∗ − p; let h̃(p̃) , h(p)− h(p∗).

Since S is defined “locally” (i.e., for p ∈ P), all the arguments below assume that p ∈ P.

We have derived that h̃(p̃) = sups∈S 〈p̃, s〉. Define the level sets of h̃(p̃):

L ,
{

p̃ ∈ R|J | : p̃j ≤ 0 for j 6= J ∗, h̃(p̃) ≤ 1
}
.

Here the constraints p̃j ≤ 0 for j 6= J ∗ come from the fact that p ≥ 0. Using the theory of

polar duality (see, e.g., Gallier, 2008), since the ball B(0, ε) is contained in S, we have

(S ∩ {p̃ : p̃j ≤ 0 for j 6= J ∗})∗ ⊂ (B(0, ε) ∩ {p̃ : p̃j ≤ 0 for j 6= J ∗})∗ .

Here the asterisks outside the parentheses stand for polar sets. Denote the LHS set as B∗

and the RHS set as L∗. We have

B∗ =

s +
∑
j /∈J ∗

γjej : ||s||2 ≤ ε , γj ≥ 0

 ,

L∗ =

s +
∑
j /∈J ∗

γjej : s ∈ S , γj ≥ 0

 .

Because B∗ ⊂ L∗, ε can take a value up to the inradius of S, which is larger than the

minimum of the distances between 0 and the defining hyperplanes of S. It follows that

ε ≥

{
min
I⊂J

λ−
∑

j∈I µj√
|I|

, min
{I:I⊂J ,I⊃∪θ∈Θ∗J ∗θ }

∑
j∈I µj −

∑
θ∈Θ∗ λθ√

|I|
, min
j∈J

µj

}
.
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