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A Proofs

A.1 Preliminary results

We begin with a lemma showing that hospital supply can be aggregated, so that hospitals
behave as a single hospital that takes the aggregate cost curve into account. This is similar
to standard aggregation results in neoclassical �rm theory (Mas-Colell et al., 1995 p. 148).

Lemma A.1. Fix a vector of rewards p. Aggregate supply S(p) is the Minkowski sum of
individual supply Sh(p) for all hospitals. Moreover, if there is a set of individual supply
vectors (qh)Hh=1 with each qh ∈ Sh(p), then

H∑
h=1

Ch(qh) = C

(
H∑
h=1

qh

)
. (A1)

Proof. Note that

max
(qh)Hh=1

p ·
(

H∑
h=1

qh
)
−

H∑
h=1

Ch(qh) =
max
q∈RI

+

max
(qh)Hh=1

p ·
(

H∑
h=1

qh
)
−

H∑
h=1

Ch(qh),

s.t.
H∑
h=1

qh = q,

= max
q∈RI

+

p · q − C(q).

(A2)

Consider q0 =
∑H

h=1 q
h
0 with each qh0 in Sh(p). By the optimality of aggregate cost, we have

that

p · q0 − C(q0) ≥ p ·

(
H∑
h=1

qh0

)
−

H∑
h=1

Ch(qh0). (A3)

Optimality of the qh0 implies that the right-hand side of this inequality attains the maximum
in the left-hand side of equation (A2). Hence,

p · q0 − C(q0) ≥ max
q∈RI

+

p · q − C(q),

so that q0 is in S(p). Inequality (A3) holds as an equality, which implies (A1) as desired.

Conversely, consider q0 in S(p). Equation (A2) implies that

p · q0 − C(q0) = max
(qh)Hh=1

p ·

(
H∑
h=1

qh

)
−

H∑
h=1

Ch(qh).
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Let (qh0) be supply vectors that minimize the sum of costs conditional on total supply being
q0. Then

p · q0 − C(q0) = p ·

(
H∑
h=1

qh0

)
−

H∑
h=1

Ch(qh0).

Therefore, each qh0 is in Sh(qh).

Given the assumptions in the body of the paper, we can treat aggregate supply and aggregate
inverse supply as functions rather than correspondences.

Lemma A.2. The aggregate supply S (p) is a single-valued correspondence.

Proof. Since we assume that the maximum of each hospital's objective is attained for some
quantity for every vector of rewards, Lemma A.1 implies that S (p) is non-empty for any
rewards vector p. Because C (q) is strictly convex, S (p) is the unique maximizer of the
function p · q − C (q).

Lemma A.3. For any strictly positive q, P S (q) is single-valued and P S (q) = ∇C (q).

Proof. Since q is interior and C (q) is smooth and strictly convex, the �rst-order necessary
conditions are also su�cient for a maximum of the aggregate supply program.

A.2 Proof of the Main Theorem

Proof of Theorem 1. Let (p∗, (qh∗)h=1,...,H) maximize hospital welfare subject to all hospitals
choosing qh in Sh (p) given p and subject to allocating the number of transplants that are
produced. Mathematically, the tuple (p∗, q∗, (qh∗)h=1,...,H) in RI × RI

+ × RIH
+ maximizes

f (q)−
h∑
h=1

Ch(qh)

subject to

q =
H∑
h=1

qh, (A4)

to each h
qh ∈ Sh(p), (A5)

and to
p · q = f(q). (A6)

Lemma A.1 implies that this maximization problem is equivalent to �nding a pair (p∗, q∗) in
RI × RI

+ that maximizes
f(q)− C(q) (A7)
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subject to
q ∈ S(p), (A8)

and to (A6).

By Lemma A.3, constraint (A8) is equivalent to p = ∇C(q). Thus, q∗ maximizes (A7) in
RI

++ subject to
∇C(q) · q = f(q).

The production function and aggregate cost function are smooth, and RI
++ is an open set.

Therefore, the Lagrange multiplier theorem implies that there exists λ such that q∗ maximizes

f(q)− C(q) + λ · {f(q)−∇C(q) · q} .

Setting the derivative equal to zero, we have

∇f(q)−∇C(q) =
λ

1 + λ
q′D2C(q).

To solve for the Lagrange multiplier, we multiply by q on the right, and use the equality
∇C · q = f . We have

∇f(q) · q − f(q) = λ

1 + λ
q′D2C(q)q.

Therefore,
∇f(q) · q − f(q)

q′D2C(q)q
=

λ

1 + λ
.

Substituting λ we get the �nal formula,

∇C(q) = ∇f(q)−
(
∇f(q) · q − f(q)

q′D2C(q)q

)
· (q′D2C(q)).

Lemma A.3 allows us to replace D2C(q) with DP S(q).

Part 1 of the theorem follows by substituting p = ∇C(q). Part 2 follows because, with
constant returns to scale, ∇f(q) · q − f(q) = 0 so that λ = 0. Part 3 follows because, with
no agency problems, welfare and social welfare coincide.

A.3 Additional Proofs

Proof of Proposition 1. In what follows, we are considering an asymptotic where q0 → q∗.
Note that, by Lemma (A.1) and the fact that q∗ is strictly positive, p∗ = ∇C(q∗). Further,
since q0 is positive, we have that p0 = ∇C(q0).

Part 1: Approximation of q∗ − q0:
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Theorem (1) shows that
∇f(q∗)−∇C(q∗) = 0.

Taking a Taylor expansion of the left-hand side about q0, we have

∇f(q0)−∇C(q0) + (q∗ − q0)
′ [D2f(q0)−D2C(q0)

]
+ ε1 = 0, (A9)

where ‖ε1‖ is o(‖q∗ − q0‖). Therefore,

q∗ − q0 = −
[
D2f(q0)−D2C(q0)

]−1 · [∇f(q0)− p0]
′ + ε2, (A10)

where the error term
ε2 = −

[
D2f(q0)−D2C(q0)

]−1 · ε′1
has a magnitude that is o(‖q∗ − q0‖).
Part 2: First approximation of the deadweight loss:

The deadweight loss at q0 is given by

DWL = f(q∗)− C(q∗)− [f(q0)− C(q0)].

A second-order Taylor expansion of f(q∗)− C(q∗) around q0 yields that

DWL = [∇f(q0)−∇C(q0)] · (q∗ − q0)

+
1

2
· (q∗ − q0)

′ ·
[
D2f(q0)−D2C(q0)

]
· (q∗ − q0) + ε3,

where ε3 is o(‖q∗ − q0‖2). We can substitute

(q∗ − q0)
′ [D2f(q0)−D2C(q0)

]
= − [∇f(q0)− p0]− ε1

using equation (A9). This yields

DWL =
1

2
· [∇f(q0)− p0] · (q∗ − q0) + ε4,

where ε4 = −ε1 · (q∗ − q0) + ε3 is o(‖q∗ − q0‖2). This establishes the �rst approximation
formula, as Lemma A.3 lets us replace D2C(q0) with DPS(q0).

Part 3: Second approximation of the deadweight loss:

To establish the second approximation formula we substitute q∗ − q0 from equation (A10)
into the �rst approximation to get

DWL = −1

2
· [∇f(q0)− p0] ·

[
D2f(q0)−D2C(q0)

]−1 · [∇f(q0)− p0]
′

+
1

2
· [∇f(q0)− p0] · ε2 + ε4, (A11)

where ε4 is o(‖q∗ − q0‖2) and ‖ε2‖ is o(‖q∗ − q0‖). Since equation (A9) shows that
‖∇f(q0)− p0‖ is O (‖q∗ − q0‖), and the product of a o(‖q∗−q0‖) term and a O (‖q∗ − q0‖)
term is o

(
‖q∗ − q0‖2

)
, we conclude that ε5 = 1

2
· [∇f(q0)− p0] · ε2 + ε4 is o

(
‖q∗ − q0‖2

)
.

Lemma A.3 lets us replace D2C(q0) with DPS(q0).
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Proposition 2. Let (p∗, (qh∗)h=1,...,H) maximize social welfare subject to all hospitals choosing
supply optimally given p (breaking ties by looking at social cost) and subject to not promising
more transplants than are produced. Mathematically, the tuple (p∗, (qh∗)h=1,...,H), in RI×RIH

+

maximizes

f(q)−
H∑
h=1

SCh
(
qh
)

subject to constraints (A4), (A5), and (A6). By Lemma A.1 , the assumption that the maxi-
mum is strictly positive, and the assumption that C is smooth and convex, the maximization
problem is equivalent to �nding q∗ in RI

++ that maximizes

f(q)− SC(q)

subject to
P S(q) · q = f(q).

By the Lagrange multiplier theorem, there exists a multiplier λSW such that, at the optimum,

∇f(q)−∇SC(q) + λSW (∇f(q)− P S(q)− q′DPS(q)) = 0.

If we use the fact that ∇C(q) = P S(q), this becomes

0 = ∇f(q)− P S(q) + (∇C(q)−∇SC(q)) + λSW (∇f(q)− P S(q)− q′DPS(q)),

P S(q)−∇f(q) =
1

1 + λSW
(∇C(q)−∇SC(q))− λSW

1 + λSW
q′DPS(q),

The right-hand side of the last expression is the adjustment term A. To obtain the formula
for the Lagrange multiplier we multiply on the right by q∗ and use the fact that∇f(q∗)·q∗ =
p∗ · q∗ = f(q∗):

λSW =
(∇C(q)−∇SC(q)) q

q′DPS(q)q
.

The second and third parts of the proposition follow from the formula for the Lagrange
multiplier.

Proposition 3. The platform chooses q in RI
+ to maximize

f(q)

subject to
f(q) = PRS(q) · q.

Because the solution is interior, there exists a Lagrange multiplier λ such that

∇f(q) + λ(∇f(q)− PRS(q)− q′DPRS(q)) = 0.
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Substituting that the optimal rewards p = PRS(q), we obtain

p = ∇f(q) +
1

λ
∇f(q)− q′DPRS(q).

To calculate the Lagrange multiplier, we right multiply by q and use p ·q = ∇f(q) ·q = f(q)
to obtain

λ =
f(q)

q′DPRS(q)q
.

These two formulas imply part 1 of the proposition statement. The observation in part 2
follows directly from the formula in part 1.

B Data Appendix

This study used �ve main anonymized data sets: a database of all kidney exchange trans-
plants done in the US from January 1, 2008 through December 4, 2014 (the OPTN transplant
data), databases of all kidney exchange transplants organized by each of the three largest
multi-hospital platforms in the US (the NKR, APD, and UNOS transplant data), and a
database of all patient and donor registrations to the largest of those platforms (the NKR
registration data).

B.1 Transplant data

In order to document the kidney exchange market, we merged the OPTN transplant data
with the transplant data from NKR, APD, and UNOS. In what follows, we will describe
these data and the merge procedure we used.

Obtaining the datasets The OPTN provided us with a dataset on all transplants con-
ducted in the US, known as the Standard Transplant Analysis and Research (STAR) dataset.
The STAR dataset by itself lacks two key pieces of information: the transplant hospitals
where the kidney was put into the patient and removed from the donor (which we use to
determine whether a transplant is internal or external) and the unacceptable antigens for the
patient (which we need to measure sensitization). These supplemental pieces of information
are also available from the OPTN on request. Merging is done by using OPTN identi�ers.
The OPTN database contains records on 4377 kidney exchange transplants.

We obtained each of the platform datasets directly from the platform. The platform datasets
contain records on 1400 kidney exchange transplants in total: 1193 from NKR, 100 from
APD, and 107 from UNOS.
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Dataset merge algorithm In order to identify which transplants in the comprehensive
OPTN database were organized by each of the three platforms, we matched records in the
platform �les to records in the OPTN �le. However, because all datasets are anonymized,
the merge must be done on the biological characteristics of each transplant's recipient and
donor ans logistical information on the transplant itself.

Fortunately, we can also use the fact that the OPTN database is comprehensive while the
platform database is not.1 This implies that the transplants in the platform data are a subset
of transplants in the OPTN data if record-keeping is perfect. However, without perfect record-
keeping, we should be wary of false matches. Our matching procedure is designed to limit
false matches by keeping only the highest quality match that meets a minimum threshold.
We formalize this idea below.

Let the set of records in the platform data be Dp and the set in the OPTN data be Do. Let
the universe of acceptable matches of one platform record rp ∈ Dp to one OPTN record
ro ∈ Do be represented by U ⊆ Dp × Do. De�ne the set of collisions a match (rp, ro) has
relative to some set X to be κ (rp, ro, X) ≡

{(
r′p, r

′
o

)
∈ X | r′p = rp or r

′
o = ro

}
\ {(rp, ro)}. A

set of matches M ⊆ U is called a merge if none its matches have any collisions relative to
the merge, that is, for each (rp, ro) ∈ M , we have κ (rp, ro,M) = ∅. Any record that is not
part of a match in merge M should be interpreted as unmatched.

Now, we can discuss what makes an individual match good. De�ne a ranked criterion to
be a series of N subsets of the universe C = (Cn)Nn=0 such that Cn ⊆ Cn+1, C0 = ∅, and
CN = U . The ranked criterion codi�es a hierarchy of match quality levels. Further, de�ne
the rank of a match (rp, ro) to be ρ (rp, ro) ≡ min {n | (rp, ro) ∈ Cn}.2

Finally, we are ready to state our notion of merge quality. Recall that the main idea is that
a match of rank n should be in the merge if and only if it is the unique match of rank n or
better whose component records aren't part of a better match in the merge. For a given set
X and rank level n, de�ne the universe excluding records that matched better than

n in X to be

Un (X) ≡ U \

 ⋃
(rp,ro)∈X∩Cn−1

κ (rp, ro, U)

 .
Then, a set of matches M ⊆ U is stable relative to ranked criterion C if it satis�es

(rp, ro) ∈M ⇔


(rp, ro) ∈ Uρ(rp,ro) (M)

and
κ
(
rp, ro, C

ρ(rp,ro) ∩ Uρ(rp,ro) (M)
)
= ∅.

 .

The �rst condition on the right-hand side ensures that (rp, ro) doesn't collide with a strictly
better match in M , while the second condition ensures that (rp, ro) is the unique such match

1The OPTN is required by federal administrative law to �[m]aintain records of all transplant candidates,
all organ donors and all transplant recipients� (42 C.F.R. � 121.11(a)(1)(ii)).

2Note that we could equivalently start with a rank function and construct C to be the lower contour sets
of that function.
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of its rank. Note that any set M that is stable relative to ranked criterion C is necessarily a
merge (see Lemma B.4 below).

Finding a stable merge relative to some ranked criterion C is a simple matter of following
Algorithm 1. It is also true that for a ranked criterion C, the stable merge is unique, so
we need not worry that there is some other stable merge that we might prefer on di�erent
grounds. Proofs of these claims (which are summarized in Proposition B.1) can be found at
the bottom of this subsection.

Algorithm 1. Initialize by setting M0 = ∅. Then for n ∈ {1, . . . , N},

Xn = Cn ∩ Un
(
Mn−1)

Mn =Mn−1 ∪ {(rp, ro) ∈ Xn | κ (rp, ro, Xn) = ∅} .

The output merge is MN .

Basically, in Step n, the algorithm adds any match to the output set that is the unique
rank-n or better match whose records are not involved in a rank n− 1 or better match that
is already in the output set.

Proposition B.1. Algorithm 1 yields the unique set that is stable relative to ranked criterion
C. Furthermore, this set is a merge.

Quality of the merge We merged the OPTN and platform transplant databases using
Algorithm 1. The set of acceptable matches, U , was the set of all potential matches where
the transplant dates are within 31 days of each other and the ages of the donor and the
recipient are each within 10 years of each other. The ranked criterion we used is de�ned as
follows.

� C1 is the set of all acceptable matches where the donor and recipient each match exactly
on blood type, sex, the hospital where the transplant was conducted, and all six major
HLA alleles (two each on the HLA-A, HLA-B, and HLA-DR loci).

� For n ∈ {2, . . . , 5}, Cn is the set of all acceptable matches where the donor and recipient
each match on either blood type or sex and also each match on at least 7 − n out of
the six major HLA alleles.

Given the ranked criterion described in the previous section, the merge algorithm performed
well. The percentage of platform records matched to an OPTN record was 94% overall (94%
for NKR, 97% for APD, and 94% for UNOS). Moreover, the matches seem to be high quality:
Table B1 reports the percentage of matches that meet various criteria.
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Table B1: Agreement Between Matched Records in the Transplant Merge

Platform

NKR 97.8% 97.4% 94.9% 95.1% 97.2% 97.6% 87.6%

APD 92.8% 95.9% 93.8% 96.9% 95.9% 96.9% 90.7%

UNOS 87.1% 99.0% 96.0% 99.0% 99.0% 99.0% 83.2%

All of the above 96.6% 97.4% 94.9% 95.5% 97.3% 97.6% 89.9%

Age within 
5 years

Transplant 
date within 

1 day

5 or more 
HLA alleles 

match

Blood type 
and gender 

match

Transplant 
hospital 
matches

At most 1 
criterion to 
the left is 
violated

No 
criterion to 
the left is 
violated

Con�rming the merge is correct It was necessary to use the merge described above to
match transplants in the APD and NKR databases to the OPTN transplant database, since
all of these datasets are anonymized to di�erent sets of identi�ers. However, since UNOS is
a contractor for the OPTN, the UNOS and OPTN databases share common identi�ers that
allow us to see the actual true merge of the UNOS transplant dataset to the OPTN dataset.
Comparing true matches to the matches selected by our algorithm, we �nd that only one
UNOS record was incorrectly matched. That is, our algorithm chose the correct match in
the OPTN dataset for 99% of the UNOS records it matched. This gives us added con�dence
that our merge algorithm is working well.

Proofs concerning Algorithm 1 and stable merges To prove Proposition B.1, three
lemmas are helpful. First, we show that in Algorithm 1, once a match collides in some step
of the algorithm, there is no chance that the match will ever be added to the merge.

Lemma B.1. In Algorithm 1, if (rp, ro) ∈ Xn, then any
(
r′p, r

′
o

)
∈ κ (rp, ro, Xn) cannot be

part of MN .

Proof. Consider the base case n = N . By the de�nition of collision,
(
r′p, r

′
o

)
∈ Xn, and by

the de�nition of the algorithm,
(
r′p, r

′
o

)
/∈MN .

Now, we prove the induction step: for n < N , if (rp, ro) ∈ Xn and
(
r′p, r

′
o

)
∈ κ (rp, ro, Xn),

then (rp, ro) ∈ Xn+1 and
(
r′p, r

′
o

)
∈ κ (rp, ro, X

n+1). By the de�nition of collision, both(
r′p, r

′
o

)
∈ Xn and (rp, ro) ∈ κ

(
r′p, r

′
o, X

n
)
must hold, and hence by the de�nition of the

algorithm,
{
(rp, ro) ,

(
r′p, r

′
o

)}
∩ Mn = ∅. Now, clearly

{
(rp, ro) ,

(
r′p, r

′
o

)}
⊆ Cn+1 since

Cn ⊆ Cn+1, so to show that
{
(rp, ro) ,

(
r′p, r

′
o

)}
⊆ Xn+1, we just need to establish that{

(rp, ro) ,
(
r′p, r

′
o

)}
⊆ Un+1 (Mn).

By way of contradiction, assume otherwise. Then, there must exist some
(
r′′p , r

′′
o

)
∈Mn ∩Cn

such that either (rp, ro) ∈ κ
(
r′′p , r

′′
o , U

)
or
(
r′p, r

′
o

)
∈ κ

(
r′′p , r

′′
o , U

)
. Without loss of generality,

let (rp, ro) ∈ κ
(
r′′p , r

′′
o , U

)
. Since (rp, ro) ∈ Xn, we know that

(
r′′p , r

′′
o

)
/∈ Mn−1. Then, for(

r′′p , r
′′
o

)
∈ Mn to hold, it must be that

(
r′′p , r

′′
o

)
∈ Xn. But then, (rp, ro) ∈ κ

(
r′′p , r

′′
o , X

n
)
,
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which contradicts
(
r′′p , r

′′
o

)
∈ Mn. Hence, we have shown that

{
(rp, ro) ,

(
r′p, r

′
o

)}
⊆ Xn+1.

Clearly then,
(
r′p, r

′
o

)
∈ κ (rp, ro, Xn+1). Thus we have proved the result via induction.

Next, we show that in Algorithm 1, any match is either added to the merge in the step equal
to its rank, or it is never added at all.

Lemma B.2. In Algorithm 1, if (rp, ro) isn't in M
ρ(rp,ro), then it is not in MN .

Proof. The statement is trivially true if ρ (rp, ro) = N , so we consider ρ (rp, ro) = n < N . By
the de�nition of the algorithm, Step n is the �rst step at which (rp, ro) could join the merge.

Now, if (rp, ro) /∈ Mn because (rp, ro) /∈ Xn, then for any n′ > n, (rp, ro) /∈ Mn. To see this,
note that since (rp, ro) ∈ Cn, if (rp, ro) /∈ Xn, then it must be that (rp, ro) /∈ Un (Mn−1).
By de�nition, we know that Un′ (X ′) ⊆ Un (X), for any n′ > n and X ⊆ X ′. Hence,
Un′

(
Mn′−1) ⊆ Un (Mn−1) for any n′ > n and hence (rp, ro) /∈ Xn′ . From this, it follows that

for any n′ > n, (rp, ro) /∈Mn′and hence (rp, ro) /∈MN .

Now, if (rp, ro) fails to join the merge at Step n and (rp, ro) ∈ Xn, then it must be that there
exists some

(
r′p, r

′
o

)
∈ κ

(
rp, ro, X

N
)
. By Lemma B.1, we conclude that {(rp, ro) , (rp, ro)} ∩

MN = ∅.

Then, we establish the existence of a set that is stable relative to ranked criterion C by
showing that Algorithm 1 produces it.

Lemma B.3. Algorithm 1 outputs a set that is stable relative to ranked criterion C.

Proof. To prove that the algorithm's output, M , is stable relative to C, we must consider
both the forward and backward implication in the de�nition. First, consider the forward
implication, which requires that for any (rp, ro) ∈ M both κ (rp, ro, C

n ∩ Un (M)) = ∅ and
(rp, ro) ∈ Un (M), where n = ρ (rp, ro). We will prove both implications by contradiction.

By way of contradiction, assume that there exists
(
r′p, r

′
o

)
∈ κ (rp, ro, C

n ∩ Un (M)). By
Lemma B.2, (rp, ro) must join the merge in Step n. For this to be true, it must be that
(rp, ro) ∈ Xn. But since

(
r′p, r

′
o

)
∈ κ (rp, ro, Cn ∩ Un (M)) and Un (M) ⊆ Un (Mn−1), it must

also be that
(
r′p, r

′
o

)
∈ κ (rp, ro, Xn), which by Lemma B.1 means that (rp, ro) /∈M , providing

the required contradiction.

Now, by way of contradiction, assume that (rp, ro) /∈ Un (M). Since Lemma B.2 tells us that
Mn−1 = M ∩ Cn−1, we can conclude that Un (M) = Un (Mn−1). This then tells us that
(rp, ro) /∈ Xn, and hence that (rp, ro) /∈Mn, providing the required contradiction.

Now, consider the backward implication. By way of contradiction, assume that
κ (rp, ro, C

n ∩ Un (M)) = ∅ and (rp, ro) ∈ Un (M), but (rp, ro) /∈ M , where n = ρ (rp, ro).
It must be that (rp, ro) ∈ Xn, since Un (M) ⊆ Un (Mn−1). Hence, (rp, ro) /∈ M re-
quires that there exists

(
r′p, r

′
o

)
∈ κ (rp, ro, Cn ∩ Un (Mn−1)). But, Lemma B.2 tells us that

Mn−1 =M ∩Cn−1, so Un (Mn−1) = Un (M). Hence,
(
r′p, r

′
o

)
∈ κ (rp, ro, Cn ∩ Un (M)), which

provides the required contradiction.
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We also need to show that any set that is stable with respect to ranked criterion C is a merge.

Lemma B.4. Any set M ⊆ U that is stable with respect to ranked criterion C must be a
merge.

Proof. By way of contradiction, assume that M is stable with respect to ranked criterion
C, but is not a merge. Then, there exists (rp, ro) ∈ M such that κ (rp, ro,M) 6= ∅. Let(
r′p, r

′
o

)
∈ κ (rp, ro,M). Now, if ρ (rp, ro) 6= ρ

(
r′p, r

′
o

)
, then without loss of generality, let

ρ (rp, ro) > ρ
(
r′p, r

′
o

)
. Then, it must be that (rp, ro) /∈ Uρ(rp,ro) (M), which contradicts the

de�nition of stable with respect to ranked criterion C.

So, assume that ρ (rp, ro) = ρ
(
r′p, r

′
o

)
. Further, assume that

{
(rp, ro) ,

(
r′p, r

′
o

)}
⊆ Uρ(rp,ro) (M);

otherwise we have already contradicted the de�nition of stable. Then,
{
(rp, ro) ,

(
r′p, r

′
o

)}
⊆

Cρ(rp,ro) ∩ Uρ(rp,ro) (M), and hence κ
(
rp, ro, C

ρ(rp,ro) ∩ Uρ(rp,ro) (M)
)
6= ∅, contradicting the

de�nition of stable with respect to ranked criterion C.

Finally, we are ready to prove that the stable match relative to C produced by Algorithm 1
is in fact the unique stable merge relative to C.

Proof of Proposition B.1. Lemma B.3 shows that Algorithm 1 outputs a stable match. Unique-
ness can be established by induction on rank. For the base case, consider some (rp, ro) ∈
M ∩ C1. Since M is stable, it must be that κ (rp, ro, C

1) = ∅. But this would require that
(rp, ro) be included in M ′ as well. So, M and M ′ must agree on their intersection with C1.

Now, for the inductive step, assume that M ∩ Cn = M ′ ∩ Cn. Take a match (rp, ro) ∈
(M \ Cn) ∩ Cn+1. Since M is stable, it must be that κ (rp, ro, C

n+1 ∩ Un+1 (M ∩ Cn)) = ∅.
But sinceM ∩Cn =M ′∩Cn, it is also true that κ (rp, ro, C

n+1 ∩ Un+1 (M ′ ∩ Cn)) = ∅, which
means that (rp, ro) ∈M ′. So, by induction, any two merges must contain the same matches,
that is, the stable match is unique.

B.2 Registration data

In this subsection, we describe how the list of registrations to the NKR was assembled. The
NKR provided us with snapshot �les of the patient and donor pool between April 1, 2012 and
December 4, 2014. These �les are typically daily snapshots except for some missing periods,
each of which is up to a month in length. Each snapshot corresponds to a di�erent date
and includes basic medical records for each patient and donor in the pool, their listing dates,
the related patient for each donor (if any), and whether a patient is unpaired. From these
snapshots we recover patient and donors departures, which may be due to being transplanted
or other undocumented reasons. A small number of patients and donors depart without a
transplant during the period of a missing snapshot; for these, we use bounds on the departure
time using the two closest available snapshots, before and after the real departure date. These
snapshots also include each patient's set of donors that may not be matched (i.e. are blocked)
despite being virtually compatible. Some of these blocked donors are due to patient preference
(not to match with these donors) and others are due to match failures.
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C Simulation Details

We now provide details on the procedure used in Section 5.1.

C.1 Matching O�ers

C.1.1 The matching algorithm and examples

We describe solve the linear programming problem subject to cycle length and chain con-
straints. Because it is computationally burdensome to compute all cycles in a pool with
many patients and donors, we �rst solve the relaxed problem by ignoring the constraint that
cycles cannot involve more than three transplants. Speci�cally, we solve:

max
xjk∈{0,1}

∑
j∈P∪U

∑
k∈P∪A

cjk wjk xjk

s.t. xjk −
∑̀
xk` = 0 for all k∈ P∑

j

xjk ≤ 1∑
k

xjk ≤ 1

 for all k

where A is the set of altruistic donors, P is the set of pairs, U is the set of unpaired recipients,
xjk = 1 denotes a proposed transplant from the donor in k ∈ P∪A to the patient in j ∈ P∪U ,
wjk is the weight described in Section C.1.2 below, and cjk = 1 if a transplant from k to j
is allowed and 0 otherwise. The �rst constraint ensures that a donor who is part of a pair is
only asked to donate an organ if the intended recipient has been proposed a transplant. The
second and third constraints ensure that no donor or recipient is involved in more than one
transplant.

If the solution to the problem does not involve any long cycles, i.e. there do not exist
j1, . . . , jn ∈ P such that x∗jk+1jk

= 1 for k ∈ {1, . . . , K − 1}, x∗j1jK = 1, and K ≥ 4, then it
must be that x∗ is optimal, given the no long-cycle constraints, and is our desired solution. In
87.2% of simulation days the solution to this relaxed problem yields a feasible match without
any further cycle restrictions.

If the solution to this problem contains at least one long cycle, then we proceed as follows.
We begin by following the algorithm in Anderson et al. (2015). The algorithm includes a
constraint that explicitly prohibits all long cycles in x∗, i.e. for each sequence j1, . . . , jK ∈ P
such that for k ∈ {1, . . . , K − 1}, x∗jk+1jk

= 1, x∗j1jK = 1, and K ≥ 4, we include a constraint

in the problem above to ensure that x∗j1jK
∏K−1

k=1 x
∗
jk+1jk

= 0. If the solution to the modi�ed
problem also contains long cycles, we modify the problem again to prohibit those cycles. We
iterate this procedure up to ten times. This procedure yields a feasible solution in about
50% of the remaining cases (about 7.8% of all cases) with an average of approximately 6.3
iterations.
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If the algorithm above does not yield a feasible solution even after 10 repetitions, we proceed
to the next phase in which we use Johnson (1977)'s algorithm to compute cycles and explicitly
add constraints that prohibit long cycles. This algorithm searches the compatibility graph
induced by c to calculate cycles. We enumerate and add a constraint to our program to
prohibit any long cycles we have found. The number of cycles is usually small, but sometimes
is very large. Therefore, we search for cycles with a time-out of one second. We �nd a solution
to the problem with these additional constraints and terminate our algorithm if the solution
is feasible. This procedure is repeated once more, if necessary. At the end of this phase,
we are able to �nd an optimal solution to the full problem in about 99.0% of the simulation
days.

For the remaining 1.0% of days in the simulation, our matching algorithm still ends up with
long cycles. Whenever this is the case, we attempt to �nd a solution with the following,
alternative algorithm:

max
y`∈{0,1}

∑̀
∈C
w` y`

s.t. w` =
|`|−1∑
i∈`

wi,i+1 + w|`|,1 if ` is a cycle,

w` =
|`|∑
i∈`
wi,i+1 if ` is a chain,

` ∩ `′ = ∅ if y` y`′ = 1,
ci,i+1 = 1, c|`|,1 = 1,∀i ∈ ` if ` is a cycle,
ci,i+1 = 1,∀i ∈ ` if ` is a chain.

where C is the set of feasible chains and cycles, y` = 1 denotes implementing chain or cycle `,
w` is the sum of the weights for each transplant in the chain or cycle indexed by `, and cjk = 1
if a transplant from k to j is allowed and 0 otherwise. Denote the number of pairs/altruistic
donors/unpaired recipients in a chain or cycle ` by |`|. The �rst set of constraints de�nes the
total weight w` for each chain or cycle; the second set ensures no donor or recipient is involved
in more than one transplant; the third set ensures that all simultaneously proposed chains
and cycles do not overlap. Because it is computationally burdensome to compute all chains
in a pool with many patients and donors, we solve the problem chains with up to length of
5. We abandon the match on that �simulation day� if we still cannot �nd a solution, and all
patients and donors are returned to the kidney exchange pool to wait for the next day for
the transplant o�er. Even in these rare cases, we can �nd an optimal match within 2.9 days
on average.

Figure C1 illustrates a few kidney exchange pools. The left panel shows compatibility as
captured by c, feasible transplants, and the optimal match. Blue dots denote patient-donor
pairs, and magenta dots denote altruistic donors. We ignore unpaired patients in this il-
lustration for simplicity. A blue arrow depicts a feasible transplant with the origin of the
arrow denoting the donor. Red and green arrows depict cycles and chains, respectively, in
the optimal match. Given feasible transplants on left, our match algorithm o�ers the one on
the right. The �gure shows there may be several feasible transplants, and in these cases, the
optimal match may be relatively easy to determine. Figure C2, on the other hand, illustrates
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a relatively hard-to-match problem where the optimal match is relatively more di�cult to
determine.

Figure C1: Optimal matches for two simple pools

Figure C2: Optimal matches for two more complicated pools

C.1.2 Weights

We attempt to closely match the weights, wij, on a NKR transplant between patient i and
donor j. These weights are designed to favor patients who are highly sensitized, in other
words, who are harder to transplant. To de�ne weights, w, NKR �rst de�nes a matching
power for each submission. Each patient has a Patient Match Power (PMP), a number
between 0 and 1, that is a fraction of compatible donors in the NKR pool for that patient.
A low PMP for patient i implies that few donors are compatible with patient i. Similarly,
the Donor Match Power (DMP) is de�ned as the fraction of patients in the NKR pool with
whom that donor is compatible. Because these quantities and the pool used by the NKR
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WNKRij interval wij

WNKRij > 70 1
25 < WNKRij ≤ 70 1.01
5 < WNKRij ≤ 25 1.2
WNKRij ≤ 5 1.5

Table C2: Weights used by the NKR

to compute these match powers are not directly observed in our dataset, we calculate them
using our sample.

Given these characteristics, NKR calculates a scaled measure of how likely a feasible trans-
plant can occur between i and j, WNKRij. Speci�cally,

WNKRij = PMP ×DMP × 10, 200.

A low WNKRij correlates with a transplant between i and j being unlikely. It is important
to note that the magnitude of WNKRij is not related to the success of a transplant if it
turns out to be feasible. These weights therefore accord higher priority to hard-to-match
patients and donors. Using WNKRij, NKR assigns the weights wij as follows:

Because these weights are less than 2, they typically maximize the total number of trans-
plants. However, these weights may sometimes result in two transplants, each with weight
1.5, instead of three transplants with weight 1 each.

C.2 Arrival and Departure

C.2.1 Arrival process

We assume the daily number of submissions in the NKR is given by a Poisson distribution
with parameter λ, where λ represents the mean daily arrival rate for NKR. We estimate that
parameter to be λ = 1.975. In each period, our simulations draw a number, say nt, from this
distribution. Then we draw nt submissions with replacement from the entire pool that ever
registered in the NKR during the April 2012 to June 2014 sample period.

Figure C3 shows the �t of the arrival per day distributions of NKR and Poisson. Notice that
NKR's distribution has more 0 arrivals per days than the poisson distribution. This mass
point is explained by weekends, which appear to have a much lower arrival rate.3 Figure
C4 shows the arrival per day distribution of NKR for weekdays and our estimated poisson
distribution, which shows a better �t.

3Only 40 arrivals in weekends over the course of 140 weeks.
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Figure C3: Distribution of NKR and Poisson Number of Submissions Per Day

C.2.2 Departure process

To model departures, we estimate an interval censored hazard model to calculate the rate
at which patients and/or donors depart the NKR without a transplant. Speci�cally, let tai ,
t∗i , and tdi be the (latent) arrival, transplant, and departure dates for an unpaired patient,
donor, or patient-donor pair i. Our dataset records t0i and t

∗
i if i was transplanted. Further,

if i is transplanted, then we know that tdi > t∗i . If i is not transplanted, then in most cases we
observe tai , but in some cases, we only know that tai belongs to an interval

[
ta−i , ta+i

]
(typically

within a week). If i departed without a transplant, we observe tdi either exactly or up to a
small interval. If i remains in the NKR at the end of our sample, then we know that tdi > T.
Using these observations, we can construct bounds on the duration τi that each unit i remains
in the NKR without a transplant.

With these observations, we estimate the exponential hazards model. The model is charac-
terized by a survival function

Si (τ) = exp (−λi t) ,

where we use the parametric form
λi = α + zi β.

The likelihood of the model for the interval censored survival data is straightforward to derive,
and estimation via intcens in STATA is straightforward.
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Table C3: Departure Hazard Rate Estimates

(1) (2) (3)
Patient-Donor Pairs Unpaired Patients Altruistic Donors

Patient Matching Power 1.824*** 16.35***
(0.244) (2.446)

Donor Matching Power 0.0699 0.000167
(0.137) (0.00126)

Patient Age 0.994* 1.002
(0.00349) (0.00383)

Donor Age 1.008* 1.011
(0.00442) (0.0140)

AB Blood-type Patient 2.465*** 1.557*
(0.698) (0.390)

A Blood-type Patient 1.184 1.294
(0.160) (0.265)

B Blood-type Patient 1.077 0.635*
(0.172) (0.158)

AB Blood-type Donor 0.584** 1.249
(0.150) (1.357)

A Blood-type Donor 0.667*** 1.562
(0.0832) (0.654)

B Blood-type Donor 0.608*** 0.764
(0.0957) (0.520)

Constant 0.00578*** 0.000892*** 0.0656
(0.00565) (0.000203) (0.234)

Observations 1,264 498 164

Note: Interval censored exponential hazard model. Patient (Donor) Match Power is the
fraction of donors (patient) in the NKR pool over the course of a sample a given patient
(donor) is compatible with. Sample restricted to patients and donors that registered after
April 2012.
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Figure C4: Distribution of NKR and Poisson Number of Submissions Per Day for Weekdays

Table C3 presents the estimates. Note that the hypothesis tests in a hazard model are
reported relative to 1, which implies no e�ect. As can be seen, patients with blood types that
are easier to match or who are paired with easier-to-match donors have a higher departure
rate. This �nding is consistent with patients and patient-donor pairs departing in response
to transplantation opportunities elsewhere, either through direct donation, deceased donor
transplants, or live-donor exchanges outside the NKR.

C.3 Compatibility and acceptance

To calculate whether donor j is compatible with patient i, we use the blood types of the
patient and donor, the tissue type of the donor, and the list of unacceptable antigens listed
by the patient. There are three additional ways in which a transplant between a patient and
a donor can be prohibited.

First, upon registration, each patient can declare criteria for excluding donors based on a
variety of characteristics. These include thresholds for the maximum donor age and minimum
donor weight that are acceptable. These criteria are recorded in our dataset.

Second, upon arrival a patient can list as unacceptable any number of speci�c donors who
were in the NKR pool at the time. This rejection can be done for any reason, including known
pathologies. Patients can also exclude donors later, but according to our understanding, the
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practice is most common during registration. Our dataset includes the anonymized identi�ers
for these excluded donors.

Third, when a transplant is proposed, a patient may refuse the speci�c donor. A �rst phase of
refusals is at the patient's discretion (with advise from his/her surgeon). If a patient chooses
to proceed after the �rst phase, a �nal tissue-type compatibility test is conducted. We refer
to this as the second phase.

In our simulations, we initialize cij = 1 if j is compatible with i and if j is not excluded by i.
Otherwise, we set cij = 0. If j is o�ered to i during the simulation and a transplant is ruled
out during either the �rst or second phases in the third type of exclusion, then we set cij = 0
for future �simulation days.�

C.4 Burn-in and calculating standard errors

We may start our simulations from any initial state for the NKR because the e�ect of the
chosen initial state fades over time. A convenient choice is to pick an initial pool with no
unpaired patients, altruistic donors, or patient-donor pairs. Although the initial pool does
not a�ect long-run averages with enough simulations, it is advisable to discard or burn-in a
portion of the initial chain in order to improve the estimates' precision. A burn-in of about
2000 days appears to yield potential scale reduction factors for the number of transplants
per day that is close to 1, suggesting that the chain is likely to have converged at that point.

Our simulations produce a series y1, . . . , yT of the transplants that occur on each day after an
initial burn period. We estimate f(q) as the sample mean of the yt and calculate the standard
errors of this estimate using the non-overlapping batch means estimator by following Chapter
12 in Robert and Casella (2004). The method divides the time series of yt into batches,
calculates the sample mean in each of those batches, and uses the variability in sample
means to estimate the standard error of f(q). We use the commonly recommended batch
size of approximately

√
T . The procedure is a simple and popular method that accounts for

autocorrelation of the yt.

C.5 Calibration

C.5.1 Calibration Procedure

Our simulation procedure is tailored to match the procedures and practices used by the NKR.
In most cases, the data or institutional knowledge directly tell us the parameters; e.g., the
weights wij are chosen to match NKR's practices. However, there are a few aspects of the
real-world procedures and outcomes in the NKR on which we don't directly have information.
We model and parametrize these aspects in our simulation model and calibrate them to match
the realized number of matches in the NKR.

There are two main sets of parameters we need to calibrate. First, we do not have direct data
on the frictions of translating proposed transplants into surgeries. As mentioned in Section
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C.3, the various acceptance phases may result in some transplants not being consummated.
Each phase introduces a time-lag between transplants being proposed and �nalized as well as
the chance of a match being aborted. Roughly speaking, these frictions reduce the number
of transplants facilitated by the NKR.

We parametrize these phases and calibrate the parameters to best �t the observed number
of transplants by patient type. To do so, we simulate outcomes predicted by our model
for various lengths (number of days) and various failure probabilities for both phases. The
�rst phase parameters can be interpreted as controlling the frictions in the system because
proposed matches are refused, whereas the second phase parameters govern the frictions due
to biological compatibility tests.

Second, as mentioned earlier, when chains are aborted because of a refusal, NKR usually
tries to use the donor, called the bridge donor, of the last transplanted patient for a new
chain. However, the exchange prefers not to wait too long to start a chain with this donor.
If a new chain cannot be found, the donor is o�ered to a patient without a related donor.
Unfortunately, we do not know of a consistent policy rule followed by the NKR. We therefore
also experimented with the number of days the NKR tries to match a bridge donor.

In summary, we calibrated �ve parameters: (i) the number of days a bridge donor can initiate
a new chain, (ii) the number of days for consent and the probability of consent for the two
phases of match acceptance, and (iii) the number of days taken for testing and the probability
of failing the tissue type biological test.

This approach parsimoniously parametrizes the nature of frictions in the NKR. However,
these models' single parameter versions are clearly a simpli�cation. Most likely, NKR policies
and their ability to translate proposed matches into transplants evolves over time and includes
some ad hoc modi�cations to their basic procedure.

For our calibrations, we conduct our simulations by setting an initial market with the patients
and donors who were present in the NKR on 1 April, 2012. This is the date from which we
have clear registration data. Then, for each parameter set, we run 100 simulations until
December 2014, the last date of the available data.

We calibrated our parameters to match the transplantation probabilities, days in the exchange
broken by whether or not the patient/donor was transplanted, the total stock of patients and
donors in the exchange, and the total number of transplantations. The best �tted parameters
were 14 days of waiting and 80% success rate for each of the two phases.

C.5.2 Calibration Results

Figures C5 - C8 compare the trends for these statistics across the data and the simulations
for our chosen parameters. The dashed lines depict data, darker lines are the mean of 100
simulations, and dashed lines are 95% con�dence interval from the simulations.

Green lines show the number of submissions of a given type (altruistic, pair, or unpaired),
red lines show the cumulative number of submissions that departed the market without a
transplant, and blue lines show cumulative number of submissions that were transplanted.
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Figure C5: Calibration for All Submissions
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Figure C6: Calibration for Pairs
Note: Observed Quantities and Simulations are shown with solid and dashed lines respectively. Solid grey
lines represent 95% con�dence intervals.
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Figures C5 and C6 show that, at the calibrated parameters, the model �ts the data extremely
well. Although the averages are not as well matched in Figures C8 and C7, the observed
quantities are within the 95% con�dence intervals for the model.

Table C4 presents the summary statistics comparison between simulations and NKR data.
Although we calibrated only �ve parameters, the table shows that the model matches several
data moments extremely well.
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Figure C7: Calibration for Altruistic Donors
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Figure C8: Calibration for Unpaired Patients
Note: Observed Quantities and Simulations are shown with solid and dashed lines respectively. Solid grey
lines represent 95% con�dence intervals.
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Figure C9: Chain Length Distribution
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Figure D11: Robustness: Production Function versus Scale
Notes: Constructed as in �gure 6.

D Robustness analyses

This section assesses the robustness of our results to calibrated parameters. Speci�cally, fric-
tions in consummating proposed transplants due to longer waiting times but higher approval
rates produce similar moments as lower waiting times and lower acceptance rates. Chain
lengths, however, are increasing in acceptance rates and are best matched by our baseline
parameters. We compare our baseline results with two substantially di�erent parameters.
The �rst, labelled �Higher Wait-time and Lower Frictions,� has two weeks and three weeks
for each of the two approval periods (approval and biological testing) but increases the ac-
ceptance rates in each phase from 80% to 85%. The other, labelled �Lower Wait-time and
Higher Friction,� uses three days and three weeks for each phase, respectively, but decreases
the acceptance rates in each phase from 80% to 75%.

The qualitative and quantitative �ndings are robust to these alternative parameters. Figure
D11 plots average products, as in Figure 6. These alternative parameters yield average
product functions that closely follow the baseline. Table D6 shows the ine�ciency estimates
as in Table 3. The estimated ine�ciency is within 5-10% of the baseline. Figure D12 shows
marginal product versus matching probability of registrations aggregated by category, as in
7b. These results are also qualitatively similar. Table D7 shows marginal product, matching
probability, and point system summary statistics, as in Table C5. Again, the points system
under the alternative parameters are similar in magnitude.
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Table D6: Robustness: Total E�ciency Loss

Efficiency Loss

 Additional Kidney Exchange Transplants

Base

Panel A: All Hospitals

All Hospitals 164 447.7 454.2 357.1

Panel B: By hospital size (number of PKEs per year)

Top Quartile 42 237.5 229.7 238.0

2nd Quartile 48 132.7 126.8 77.4

3rd Quartile 40 57.9 72.1 22.0

Bottom Quartile 34 19.7 25.7 19.7

Panel C: By Platform Membership

NKR 68 234.8 231.2 215.6

Only UNOS and APD 45 106.0 107.2 73.4

None 51 106.9 115.8 68.0

Panel D: By NKR Participation Rate (Fraction of PKEs facilitated through the NKR)

Top Quartile 17 14.5 15.8 9.0

2nd Quartile 17 44.2 44.2 28.7

3rd Quartile 17 81.5 80.9 78.3

Bottom Quartile 17 94.7 90.3 99.6

Number of
Hospitals

Higher Waittime 
Lower Friction

Lower Waittime 
Higher Friction

Notes: Constructed as in Table 3.



31

●
●

●●

●
●

●

●

●●

●
●

0.00

0.25

0.50

0.75

1.00

0.0 0.5 1.0 1.5 2.0
Marginal Product

M
at

ch
in

g 
P

ro
ba

bi
lit

y

PRA

●●

●●

(−0.01,10]
(10,90]
(90,100]
[0,10]
Altruist

Category
●
●
●
●
●
●

Altruist non−O
Altruist O
Overdemanded
Selfdemanded
Underdemanded
Unpaired

(a) Baseline

●

●
●●

●

●

●

●●

●

0.00

0.25

0.50

0.75

1.00

0.0 0.5 1.0 1.5 2.0
Marginal Product

M
at

ch
in

g 
P

ro
ba

bi
lit

y

PRA

●●

●●

(−0.01,10]
(10,90]
(90,100]
[0,10]
Altruist

Category
●
●
●
●
●
●

Altruist non−O
Altruist O
Overdemanded
Selfdemanded
Underdemanded
Unpaired

(b) Higher Wait-time Lower Friction

●

●
●●

●
●

●

●

●
●

●
●

0.00

0.25

0.50

0.75

1.00

0.0 0.5 1.0 1.5 2.0
Marginal Product

M
at

ch
in

g 
P

ro
ba

bi
lit

y

PRA

●●

●●

(−0.01,10]
(10,90]
(90,100]
[0,10]
Altruist

Category
●
●
●
●
●
●

Altruist non−O
Altruist O
Overdemanded
Selfdemanded
Underdemanded
Unpaired

(c) Lower Wait-time Higher Friction

Figure D12: Robustness: Private versus Socially Optimal Rewards for Submission Types

Notes: Constructed as in Figure 7.



32

T
ab
le
D
7:

R
ob
u
st
n
es
s:

P
oi
n
ts

S
y
st
em

M
at

ch
 P

ro
ba

bi
lit

y
M

ar
gi

na
l P

ro
du

ct
 

P
oi

nt
s 

pe
r 

T
ra

ns
pl

an
ta

tio
n 

B
as

el
in

e
B

as
el

in
e

B
as

el
in

e

P
an

el
 A

: A
ltr

ui
st

ic
 D

on
or

s

N
on

-O
 D

on
or

0.
86

0.
85

0.
87

0.
84

0.
62

0.
82

0.
97

0.
74

0.
95

O
 D

on
or

0.
94

0.
93

0.
94

1.
86

1.
83

1.
76

1.
99

1.
98

1.
87

P
an

el
 B

: P
at

ie
nt

-D
on

or
 P

ai
rs

0.
27

0.
29

0.
28

0.
08

0.
03

0.
00

-0
.7

2
-0

.8
9

-1
.0

0

0.
29

0.
30

0.
28

0.
13

0.
10

0.
06

-0
.5

5
-0

.6
7

-0
.7

8

0.
81

0.
81

0.
82

0.
72

0.
72

0.
79

-0
.1

1
-0

.1
2

-0
.0

4

0.
28

0.
29

0.
27

0.
09

0.
08

0.
01

-0
.6

6
-0

.7
3

-0
.9

6

0.
85

0.
86

0.
87

0.
69

0.
68

0.
62

-0
.1

9
-0

.2
1

-0
.2

8

0.
84

0.
84

0.
86

1.
44

1.
40

1.
44

0.
72

0.
66

0.
68

P
an

el
 C

: U
np

ai
re

d 
P

at
ie

nt
s

U
np

ai
re

d 
P

at
ie

nt
s

0.
24

0.
23

0.
24

0.
07

-0
.0

3
0.

02
-0

.7
1

-1
.1

2
-0

.9
2

H
ig

he
r 

W
ai

tti
m

e
Lo

w
er

 F
ric

tio
n

Lo
w

er
 W

ai
tti

m
e

H
ig

he
r 

F
ric

tio
n

H
ig

he
r 

W
ai

tti
m

e
Lo

w
er

 F
ric

tio
n

Lo
w

er
 W

ai
tti

m
e

H
ig

he
r 

F
ric

tio
n

H
ig

he
r 

W
ai

tti
m

e
Lo

w
er

 F
ric

tio
n

Lo
w

er
 W

ai
tti

m
e

H
ig

he
r 

F
ric

tio
n

O
 P

at
ie

nt
,

N
on

-O
 D

on
or

O
 P

at
ie

nt
,

O
 D

on
or

,
P

R
A

 >
=

 9
1%

O
 P

at
ie

nt
,

O
 D

on
or

,
P

R
A

 <
 9

1%

N
on

-O
 P

at
ie

nt
,

O
 D

on
or

,
P

R
A

 >
=

 9
6%

N
on

-O
 P

at
ie

nt
,

N
on

-O
 D

on
or

,
P

R
A

 <
 9

6%

N
on

-O
 P

at
ie

nt
,

O
 D

on
or

,
P

R
A

 <
 9

6%

N
o
te
s
:
C
o
n
st
ru
ct
ed

a
s
in

T
a
b
le
C
5.



33

References

Anderson, Ross, Itai Ashlagi, David Gamarnik, and Alvin E Roth, �Finding long
chains in kidney exchange using the traveling salesman problem.,� Proceedings of the Na-
tional Academy of Sciences of the United States of America, jan 2015, 112 (3), 663�8.

Friedman, Jerome, Trevor Hastie, and Robert Tibshirani, The Elements of Statistical
Learning, Vol. 1, Springer series in statistics New York, 2001.

Johnson, Donald B, �E�cient algorithms for shortest paths in sparse networks,� Journal
of the ACM (JACM), 1977, 24 (1), 1�13.

Mas-Colell, Andreu, Michael Dennis Whinston, and Jerry R Green, Microeconomic
Theory, Oxford University Press, 1995.

Morris, Carl N, �Parametric empirical Bayes inference: theory and applications,� Journal
of the American Statistical Association, 1983, 78 (381), 47�55.

Robert, Christian and George Casella, �Monte Carlo Statistical Methods Springer-
Verlag,� New York, 2004.


	Proofs
	Data Appendix 
	Simulation Details
	Robustness analyses

