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Abstract

As multi-hospital kidney exchange has grown, the set of players has grown from

patients and surgeons to include hospitals. Hospitals can choose to enroll only their

hard-to-match patient-donor pairs, while conducting easily-arranged exchanges in-

ternally. This behavior has already been observed.

We show that as the population of hospitals and patients grows the cost of mak-

ing it individually rational for hospitals to participate fully becomes low in almost

every large exchange pool (although the worst-case cost is very high), while the cost

of failing to guarantee individual rationality is high, in lost transplants. We identify a

mechanism that gives hospitals incentives to reveal all patient-donor pairs. We ob-

serve that if such a mechanism were to be implemented and hospitals enrolled all

their pairs, the resulting patient pools would allow efficient matchings that could be

implemented with two and three way exchanges.

1 Introduction

A marketplace is similar to a public good: it provides opportunities to every potential

trader. As the market becomes larger the trades it offers become more numerous and

varied. However when it is costly to bring goods to market, and when some goods are

easier to trade than others, a kind of free riding can occur. Traders may be tempted
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ory seminar. We also thank the editor and three anonymous referees for helpful comments
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to bring only their hard to trade goods to market, and to trade their easy to trade goods

elsewhere (e.g. nearer home). When this leads to loss of efficiency, the task of the market

designer is to make the marketplace attractive enough for even the easy to trade goods.1

We are today seeing this in kidney exchange, in a way that allows the free riding and

the consequent loss of efficiency to be clearly understood. When kidney exchange was

just beginning, most exchanges were conducted in single hospitals, or in closely con-

nected networks of hospitals like the fourteen New England transplant centers orga-

nized by the New England Program for Kidney Exchange (Roth et al. (2005a)). But today

exchanges often involve multiple hospitals that may have relatively little repeated inter-

action outside of kidney exchange. The present paper establishes a theoretical frame-

work to study the kinds of problems that have developed as the United States moves

towards nationally organized exchange, as it has begun to do since the passage of facil-

itating legislation in 2007.2

We study the growing problem of giving hospitals incentives to participate fully, to

achieve the gains that kidney exchange on a large scale makes possible. We characterize

the efficient exchanges that would arise in large markets if hospitals participated fully,

and how this efficiency can be lost if hospitals withhold easy to match pairs. Our re-

sults suggest that, if care is taken in how kidney exchange mechanisms are organized,

the problems of participation may be less troubling in large exchange programs than

they are starting to be in multi-hospital exchanges as presently organized. We propose

a “bonus mechanism,” similar in spirit to frequent flyer programs, and show that it pro-

vides incentives for hospitals to enroll their easy as well as their hard to match patient-

donor pairs.

1This was the case in the labor market for gastroenterologists. What had been a national marketplace

collapsed into a set of small local marketplaces in which gastroenterology fellowship positions were in-

creasingly filled by local candidates, often from the same hospital (see Niederle and Roth (2003)). To

repair this market and re-establish a national marketplace it was necessary to make changes in the mar-

ket rules; see Mckinney et al. (2005), Niederle and Roth (2005), Niederle et al. (2006), and Niederle et al.

(2008). While the efficiency losses could not be quantified in those markets, one of the contributions of

the present paper is that we can show the size of the efficiency losses from withholding easy transactions

in the markets we consider here. (Related issues arose in the market for college football championship

games, in which a variety of market designs were deployed to create a thicker market; see Roth and Xing

(1994) and Fréchette et al. (2007).)
2110th Congress, Public Law 110–144, Charlie W. Norwood Living Organ Donation Act, Dec. 21, 2007.
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1.1 Background

Kidney transplantation is the treatment of choice for end stage renal disease, but there

are many more people in need of kidneys than there are kidneys available. Kidneys

for transplantation can come from deceased donors, or from live donors (since healthy

people have two kidneys and can remain healthy with one). However not everyone who

is healthy enough to donate a kidney and wishes to do so can donate a kidney to his or

her intended recipient, since a successful transplant requires that donor and recipient

be compatible, in blood and tissue types. This raises the possibility of kidney exchange,

in which two or more incompatible patient-donor pairs exchange kidneys, with each

patient in the exchange receiving a compatible kidney from another patient’s donor.3

Note that it is illegal for organs for transplantation to be bought or sold in the United

States and throughout much of the world (see Roth (2007) and Leider and Roth (2010)).

Kidney exchange thus represents an attempt to organize a barter economy on a large

scale, with the aid of a computer-assisted clearinghouse.4

The first kidney exchange in the United States was carried out in 2000 at the Rhode

Island Hospital, between two of the hospital’s own incompatible patient-donor pairs.5

Roth et al. (2004) made an initial proposal for organizing kidney exchange on a large

scale, which included the ability to integrate cycles and chains, and considered the in-

centives that well designed allocation mechanisms would give to participating patients

and their surgeons to reveal relevant information about patients. The surgical infras-

tructure available in 2004 meant that only pairwise exchanges (between exactly two in-

compatible patient donor pairs) could initially be considered, and Roth et al. (2005b)

proposed a mechanism for accomplishing this, again paying close attention to the in-

centives for patients and their surgeons to participate straightforwardly. As kidney ex-

changes organized around these principles gained experience, Saidman et al. (2006)

and Roth et al. (2007) showed that efficiency gains could be achieved by incorporat-

3In addition to such cyclic exchanges, chains are also possible, which involve not only incompatible

patient donor pairs, and begin with a deceased donor or an undirected donor (one without a particular

intended recipient), and end with a patient with high priority on the deceased donor waiting list, or with

a donor who will donate at a future time.
4Recall that Jevons (1876) proposed that precisely the difficulties of organizing barter economies–in

particular, the difficulty of satisfying the “double coincidence” of wants involved in simultaneous ex-

change without money–had led to the invention of money.
5For an account of this and other early events in kidney exchange see Roth

(2010), “The first kidney exchange in the U.S., and other accounts of early progress,”

http://marketdesigner.blogspot.com/2010/04/first-kidney-exchange-in-us-and-other.html
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ing chains and larger exchanges that required only relatively modest additional surgical

infrastructure, and today there is growing use of larger exchanges and longer chains,

particularly following the publication of Rees et al. (2009).

Roth et al. (2005a) describe the formation of the New England Program for Kidney

Exchange (NEPKE) under the direction of Dr. Frank Delmonico, which initially orga-

nized the fourteen transplant centers in New England. Thoese proposals were also in-

strumental in helping organize the Alliance for Paired Donation (APD) under the direc-

tion of Dr Mike Rees.6 In 2010 a National Kidney Paired Donation Pilot Program orga-

nized by the United Network for Organ Sharing (UNOS) became operational, still on a

very small scale.7

Kidney exchange is growing fast, but it is still accomplishes well under a thousand

transplants a year.8 54 hospitals participate (actively) in the privately organized National

Kidney Registry (NKR) and for example and 49 hospitals participate in APD. In the last

year, the number of incompatible pairs that join these programs is between 30-40 pairs

per month (these numbers are growing). 20% of the centers provide more than 50% of

the pairs and are roughly the same size. These large centers currently enter just a few

pairs every month.

During the initial startup period, attention to the incentives of patients and their

surgeons to reveal information was important. But as infrastructure has developed,

the information contained in blood tests has come to be conducted and reported in

a more standard manner (sometimes at a centralized testing facility), reducing some of

the choice about what information to report, with what accuracy. So some strategic is-

sues have become less important over time (and indeed current practice does not deal

with the provision of information that derives from blood tests as an incentive issue).

However, as kidney exchange has become more widespread, and as multi-hospital

exchange consortia have been formed and a national exchange is being explored, the

“players” are not just (and perhaps not even) patients and their surgeons, but hospi-

tals (or directors of transplant centers). And as kidney exchange is practiced on a wider

6Today, in addition to those two large kidney exchange clearinghouses, kidney exchange is practiced by

a growing number of hospitals and formal and informal consortia (see Roth (2008)). Computer scientists

have become involved, and an algorithm of Abraham, Blum, and Sandholm (2007) designed to handle

large populations is used in the national pilot program.
7The national pilot program ran two initial pilot matches in October and December of 2010. Under its

initial guidelines, only exchanges were considered, not chains. In December 2011 NEPKE formally ceased

operation to merge its efforts with the national pilot program.
8Massie et al. (2013) report that 93 kidney exchange transplants were conducted in 2006, and between

500 and 600 in each of 2010 and 2011.
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scale, a new phenomenon has emerged. Free riding has become possible, with hospitals

having the option of participating in one or more kidney exchange networks but also of

withholding some of their patient-donor pairs, or some of their non-directed donors,

and enrolling those of their patient-donor pairs who are hardest to match, while con-

ducting more easily arranged exchanges internally. Some of this behavior is already

observable.

The present paper considers the ‘kidney exchange game’ with hospitals as the play-

ers, to clarify the issues currently facing hospitals in existing multi-hospital exchange

consortia, and those that would face hospitals in a large-scale national kidney exchange

program.9

While we concentrate on the incentives created by the matching algorithms, the fact

that presently used algorithms do not make it individually rational for hospitals to fully

participate in kidney exchange is not the only reason that hospitals withhold patients.

Other reasons include lack of standardization in compatibility tests, and bureaucratic

and other difficulties in registering pairs to the various kidney exchange systems. For

example, not all hospitals collect all the medical data that some programs require. Fi-

nancing is another obstacle; for example hospitals may have difficulty recovering the

costs of testing a donor who will eventually donate to a patient at another hospital (Rees

et al. (2012)).

1.2 Free riding

Hospitals participate in a multi-center exchange by reporting a list of incompatible patient-

donor pairs to a central clearinghouse, and a matching mechanism chooses which ex-

changes to carry out. At the same time, some hospitals conduct exchanges only inter-

nally among their own patients, and even hospitals participating in multi-center ex-

change programs may conduct some internal exchanges, and may participate in more

9One referee asks why, if hospital participation is a problem, kidney exchange cannot be designed

without hospitals, with patients registering directly (or through dialysis centers). A second referee pro-

poses that the problem of hospital participation could be ”simply” solved by legislation requiring hospi-

tals to participate. It seems to us that these suggestions make more sense in the abstract than in connec-

tion with practical market design. It is difficult to pass legislation mandating how hospitals treat patients,

since hospitals need to exercise a good deal of discretion about individual cases. And patients in need of

transplants presently get most of their advice from surgeons associated with hospitals, and it would be

difficult and not obviously desirable to bypass this process. And each transplant adds revenues to hospi-

tals, and subtracts it from dialysis centers, so it is far from clear that dialysis centers are natural partners

for promoting kidney exchange.
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than one exchange program.

Centralized kidney exchange programs substantially increase the number of matches

found and also the chance for highly sensitized patients to be matched compared to de-

centralized matching within individual hospitals. The efficiency gains from centraliza-

tion grow as the number of (moderate sized) hospitals increases. 10

However when kidney exchange clearinghouses try to maximize the (weighted) num-

ber of transplants without attention to whether those transplants are internal to a hos-

pital, it may not be individually rational for a hospital to contribute those pairs it can

match internally (cf. Roth 2008).11 For example, consider a hospital a with two pairs, a1

and a2, that it can match internally. Suppose it enters those two pairs in a centralized

exchange. It may be that the weighted number of transplants is maximized by includ-

ing a1 in an exchange but not a2, in which case only one of hospital a’s patients will be

transplanted, when it could have performed two transplants on its own.

This is becoming a first-order problem, as membership in a kidney exchange net-

work does not mean that a hospital does not also do some internal exchanges. 12 Mike

Rees, the director of the APD, writes (personal communication):

“...competing matches at home centers is becoming a real problem. Un-

less it is mandated, I’m not sure we will be able to create a national system.

I think we need to model this concept to convince people of the value of

playing together”.

This paper attempts to understand the problem raised by the APD director. We will

see that when the number of hospitals and incompatible pairs is small, it may be costly

(in terms of lost transplants) for a centralized clearinghouse to guarantee hospitals indi-

vidual rationality, compared to how many transplants could be accomplished if all pairs

were submitted to a centralized exchange despite no guarantee of individual rationality.

However in large markets we will show that this cost becomes very low. In the market

we study, the number of hospitals grows large and each hospital satisfies a regularity

10See Toulis and Parkes (2011) who quantify the benefit from a centralized clearinghouse for organizing

2-way exchange.
11Some weighted matching algorithms currently in use put some weight on internal exchanges, but

this does not solve the problem, since it neither guarantees a hospital the exchanges it could conduct

internally, nor does it guarantee that the pairs that could be internally exchanged will be used efficiently

if submitted to the central clearinghouse.
12The national pilot program has to date completed very few transplants, in part because of this prob-

lem.
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assumption, which implicitly requires that its number of patient-donor pairs is not “too

big”, yet not zero. In particular we show that there is an individually rational allocation

that is almost efficient. We further begin to explore incentive compatible mechanisms

for achieving full participation by hospitals as efficiently as possible; We introduce an

(almost) efficient mechanism under which full participation (not withholding pairs) is

an approximated Bayes-Nash equilibrium under a slightly stronger regularity assump-

tion.

1.3 Related literature

Roth et al. (2007) studied efficiency in large markets without considering incentives or

directly modeling tissue-type incompatibilities. They showed that exchanges of size

more than 4 are not needed for efficiency. In this paper, we model tissue-type incom-

patibilities using a random graph framework (and show that even 4-way exchanges are

not needed for efficiency) but more importantly, we study the hospitals’ incentives.

In unpublished notes from 2007, Roth, Sönmez and Ünver introduced the problem of

withholding internal matches by hospitals and showed that there is no efficient strat-

egyproof mechanism for kidney exchange.13 Our work extends that negative result for

small markets to show that efficient mechanisms can’t even be individually rational, but

more importantly we provide positive results in large random markets.

Toulis and Parkes (2011) also adopt a random graph model to study mechanisms

for kidney exchange, and provide useful quantitative welfare results. Their results are

close to ours, but with a very different model of how the market grows large. While we

model a growing number of “small” hospitals, they let a fixed number of hospitals each

become very large. We further discuss the differences throughout the paper. In another

paper, Ashlagi et al. (2014) also analyze hospitals’ incentives but worst case rather than

in a Bayesian (random graph) environment. Finally, Ünver (2010) analyzes an efficient

algorithm for a dynamic environment in which full participation is assumed.

13This result appears in the survey by Sönmez and Ünver (2013).
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2 Kidney exchange and individual rationality

2.1 Exchange pools

An exchange pool consists of a set of patient-donor pairs. A patient p and a donor d are

compatible if patient p can receive the kidney of donor d and incompatible otherwise.

It is assumed that every pair in the pool is incompatible.14 Thus a pair is a tuple v = (p, d)

in which donor d is willing to donate his kidney to patient p but p and d are incompatible.

We assume for simplicity that each donor and each patient belong to a single pair.

An exchange pool V induces a compatibility graph D(V ) = D(V,E(V )) which cap-

tures the compatibilities between donors and patients as follows: the set of nodes is V ,

and for every pair of nodes u, v ∈ V , (u, v) is an edge in the graph if and only if the donor

of node u is compatible with the patient of node v. We will use the terms nodes and

pairs interchangeably.15

An exchange can now be described through a cycle in the graph. Thus an exchange
in V is a cycle in D(V ), i.e. a list v1, v2, . . . , vk for some k ≥ 2 such that for every i, 1 ≤
i < k, (vi, vi+1) ∈ E(V ) and (vk, v1) ∈ E(V ). The size of an exchange is the number of

nodes in the cycle. An allocation in V is a set of distinct exchanges in D(V ) such that

each node belongs to at most one exchange. Since in practice the size of an exchange

is limited (mostly due to logistical constraints), we assume there is an exogenous maxi-

mum size limit k > 0 for any exchange. Thus if k = 3 only exchanges of size 2 and 3 can

be conducted.16

Let M be an allocation in V . We say that node v is matched by M if there exists an

exchange in M that includes v. For any set of nodes V ′ ⊆ V let M(V ′) be the set of all

nodes in V ′ that are matched (or “covered”) by M .

We will be interested in finding efficient allocations, that have as many transplants as

possible. Two types of efficiency will be considered. M is called k-efficient if it matches

14Pairs that are compatible would presently go directly to transplantation and not join the exchange

pool (but see e.g. Roth et al. (2005a) and Sönmez and Ünver (2014) on the advantages of changing this

policy).
15In practice, a patient may have more than one incompatible donor. In this case the model can be

naturally extended by adding outgoing edges from the patient’s node to pairs such that at least one of her

incompatible donors is compatible with the patient at that node.
16In the APD and NEPKE kwas originally set to 2, was increased to 3, and now optimization is conducted

over even larger exchanges and chains, and the pilot national program considers exchanges up to size 3.

Exchanges are generally conducted simultaneously, so an exchange of size k requires 2k operating rooms

and surgical teams for the k nephrectomies (kidney removals) and k transplants.
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the maximum number of transplants possible for exchanges of size no more than k, i.e.

there exists no other allocation M ′ consisting of exchanges of size no more than k such

that |M ′(V )| > |M(V )|.17 M is called k-maximal if there exists no such allocation M ′

such that M ′(V ) ) M(V ). A matching will be called efficient (or maximal) if it is k-

efficient (or k-maximal) for unbounded k, i.e. for no limit on how many transplants can

be included in an exchange. Note that every k-efficient allocation is also k-maximal.

The converse is not true. However for k = 2, both types of efficiency coincide, since the

collection of sets of simultaneously matched nodes in allocations forms a matroid (see

Edmonds (1971)).

A Kidney Exchange Program (or simply a Kidney Exchange) consists of a set of n

hospitals Hn = {h1, . . . , hn} and a set of incompatible pairs Vh for each hospital h ∈ Hn.

We let VHn = ∪h∈HnVh. The compatibility graph induced by VHn is called the underlying
graph. We will take the hospitals (e.g. the director of transplantation at each hospital) as

the active decision makers in the Kidney Exchange, whose choices are which incompat-

ible pairs to reveal to the Exchange. We will approximate the preferences of hospitals as

being concerned only with their own patients. Mostly we will assume hospitals are con-

cerned only with the number of their patients who receive transplants, although we do

not rule out hospitals having preferences over which of their patients are transplanted.

An exchange that matches only pairs from the same hospital is called internal. Hos-

pital h can match a set of pairs Bh ⊆ Vh internally if there exists an allocation in Vh such

that all nodes in Bh are matched.

2.2 Participation constraints: individual rationality for hospitals

The kidney exchange setting invites discussions of various types of individual rational-

ity (IR). In this paper an allocation is not individually rational if some hospital can inter-

nally match more pairs than the number of its pairs matched in the allocation. Formally,

an allocation M in VHn is not individually rational if there exists a hospital h and an al-

location Mh in Vh such that |M(Vh)| < |Mh(Vh)|.
To illustrate this, consider the compatibility graph in Figure 1, where nodes a1 and

a2 belong to hospital a and b1 and b2 belong to hospital b. The only individually rational

allocation is the one that matches a1 and a2.

Remark: Throughout this paper, undirected edges represent two directed edges, one in

each direction.
17In graph theory a 2-efficient allocation is referred to as a maximum matching.
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Figure 1: No 3-efficient allocation is individually rational.

Other formulations of individual rationality may sometimes be appropriate, such as

requiring not merely that a hospital be allocated the same number of transplants it can

achieve on its own, but that it be guaranteed a set of transplants that includes all the

individuals it could match on its own. It is worth mentioning that all our positive results

hold even with this stronger individual rationality.

In the next section we study worst case efficiency loss from choosing IR allocations.

3 IR and efficiency: worst case results for compatibility

graphs

By choosing the individually rational allocation in Figure 1 we obtain 2 transplants whereas

the efficient allocation provides 3. The next result, proved in the Appendix, shows that a

maximum individually rational allocation can be very costly in the worst case.18

Theorem 3.1. Let k ≥ 3. In every compatibility graph the size of a k-maximal allocation

is at least 1
k−1

times the size of a k-efficient allocation. This bound is tight: there exists a

compatibility graph such that no k-maximal allocation which is also individually ratio-

nal matches more than 1
k−1

of the number of nodes matched by a k-efficient allocation.19

Thus there is a very high potential cost of individual rationality, but it gives a worst-

case result. However, it appears that the expected efficiency loss from requiring individ-

ual rationality can be very small. Indeed our simulations show that if all incompatible
pairs are in the same exchange pool, the average number of patients who do not get

18Note that in every compatibility graph one can find a k-maximal allocation that is also individually

rational: first choose a k-efficient allocation in Vh for every hospital h, and then repeatedly search for

an allocation that increases the total number of matched pairs without unmatching any pair that was

previously matched (although possibly rematching such pairs using different edges).
19If hospitals can conduct only 2-way exchanges, then there is always a 2-efficient allocation that is

individually rational since every 2–maximal allocation is 2-efficient.
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a kidney due to requiring IR is less than 1 (see Table 1). But as we shall see in Section

8 the cost of failing to guarantee individual rationality could be large if that causes hos-

pitals to match their own internal pairs. In Section 9 we explain how we conduct the

simulations and provide further simulation results.

No. of hospitals 2 4 6 8 10 12 14 16

IR,k=3 6.91 17.02 27.31 39.35 51.72 63.44 75.89 88.08

Efficient,k=3 7.07 17.42 27.92 40.04 52.44 64.19 76.72 88.81

Table 1: Number of transplants achieved using maximum size individually rational al-

locations vs. using efficient (and not necessarily individually rational) allocations. Each

hospital has on average 10 pairs.

In the next sections we will prove that the efficiency loss from choosing an IR alloca-

tion of maximum size is small in large compatibility graphs, supporting the simulation

results.

4 Random exchange pools

To discuss the Bayesian setting it is useful to consider random compatibility graphs.

Each person in the population has one of 4 blood types A,B, AB. and O, according to

whether her blood contains the proteins A, B, both A and B, or neither. The probability

that a random person’s blood type is X is given by µX > 0. We will assume that µO >

µA > µB > µAB (as in the U.S. population).20 For any two blood types X and Y a donor

of blood type Y and a patient with blood type X are blood type compatible if X includes

whatever blood proteins A and B are contained in Y.21

A patient-donor pair has pair type (or just type, whenever it is clear from the context)

X-Y if the patient has blood type X and the donor has blood type Y. The set of pair types

will be denoted by P . For a donor and a patient to be compatible they need to be both

20In practice µO = 0.48, µA = 0.34, µB = 0.14 and µAB = 0.04.
21Thus type O patients can receive kidneys only from type O donors, while type O donors can give

kidneys to patients of any blood type. Note that since only incompatible pairs are present in the kidney

exchange pool, donors of blood type O will be underrepresented, since most such donors will be com-

patible with their intended recipients; the only incompatible pairs with an O donor will be tissue-type

incompatible. (Roth et al. (2005a) showed that a significant increase in the number of kidney exchanges

could be achieved by allowing compatible pairs to participate, but this has not become common prac-

tice.)
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blood type compatible and tissue-type compatible. To test tissue type compatibility a

crossmatch test is performed. Each patient has a level of percentage reactive antibodies

(PRA) which determines the likelihood that the patient will be compatible with a ran-

dom donor. The lower the PRA of a patient, the more likely the patient is compatible

with a random donor. For simplicity we assume that there exist two levels of PRA, γL
and γH(γL < γH); the probability that a patient p with PRA γ and a donor are tissue type

incompatible is given by γ. Furthermore, the probability that a random patient has PRA

γL is given by υ > 0. Let γ̄ denote the expected PRA level of a random patient, that is

γ̄ = υγL + (1− υ)γH .22

Definition 4.1 (Random Compatibility Graph). A random (directed) compatibility graph
of order m, denoted D(m), consists of m incompatible patient-donor pairs and generated

as follows:

Nodes: A patient p and a potential donor d are generated using the blood type and PRA

distribution and (p, d) forms a new node if and only if they are incompatible with

each other.

Edges: Between every two pairs v1 and v2, a directed edge is generated if the donor of v1

is compatible with the patient of v2.

We will often denote a random compatibility graph by D(Hn), thus D(Hn) = D(m)

where m is the total number of pairs in all hospitals belonging to Hn. We also denote by

µX-Y the posterior probability that an incompatible pair (p, d) is of type X-Y.

We will derive results for large random compatibility graphs (with many hospitals)

and use results and methods from random graph theory. We adopt the following for-

malism from this literature: if the probability that a given propertyQ is satisfied in a ran-

dom graph G tends to 1 when m tends to∞, we say that Q holds in almost every (large)
G.

The relative number of pairs of various types will be useful in studying large compat-

ibility graphs.

Lemma 4.2. In almost every large D(m):

1. For all X∈ {A,B,AB} the number of O-X pairs is larger than the number of X-O pairs.

22Our results hold for any number of different PRA levels as long the probabilities for compatibility are

constant.
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2. For all X ∈ {A,B} the number of X-AB pairs is larger than the number of AB-X pairs.

3. The absolute difference between the number of A-B pairs and B-A pairs is o(m). Con-

sequently this difference is smaller than the number of pairs of any other pair type.23

Toulis and Parkes (2011) prove a similar lemma and use the blood type and tissue

type distributions characterize the size of each set of pairs in the graph.

Lemma 4.2 whose proof appears in the appendix, motivates the following partition

of patient-donor pair types P (see also Roth et al. (2007) and Ünver (2010)): Let

O = {A-O,B-O,AB-O,AB-A,AB-B}

be the set of overdemanded types.

Let

U = {O-A,O-B,O-AB,A-AB,B-AB}

be the set of underdemanded types.

Let

S = {O-O,A-A,B-B,AB-AB}

be the set of selfdemanded types, and finally let

mathcalR be the set of reciprocally demanded types which consists of types A-B and

B-A.

Intuitively, an overdemanded pair is offering a kidney in greater demand than the

one they are seeking. For example a patient whose blood type is A and a donor whose

blood type is O form an overdemanded pair. Underdemanded types have the reverse

property: they are seeking a kidney that is in greater demand than the one they are

offering in exchange. A donor and patient in a pair with a selfdemanded type have the

same blood type.

The following notations will be useful in latter sections and proofs.. For any type

t ∈ P and set of pairs S we denote by τ(S, t) the set of pairs with type t in S and for a set

of types T ⊆ P let τ(S, T ) = ∪t∈T τ(S, t) and let µT =
∑

t∈T µt. For any set of pairs V let

MV
T be a (random) allocation in the graph induced by the set of pairs V that maximizes

the number of matched with type belonging to T .

23Terasaki et al. (1998) claim that the frequency of A-B pairs (0.05) is larger than B-A pairs (0.03) but they

do not give any data or other explanation to support their claim. Our result just asserts that the absolute

difference is “small”.
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In the next section we study efficiency in large random compatibility graphs. We let

γL and γH (the probability of tissue type incompatibility for patients with low or high

PRA) be non-decreasing functions of m, with the important special case in which both

are constants.

5 Efficient allocations in large random compatibility graphs

We construct here an efficient allocation in a large random compatibility graph. We

make the following assumptions which are compatible with blood type frequencies and

with observed tissue-type sensitivity frequencies. Zenios et al. (2001) reported that for

non-related blood type donors and recipients γ̄ = 0.11.

Assumption A [Non-highly-sensitized patients] γ̄ < 1
2

.24

Assumption B [Blood type frequencies] µO < 1.5µA.25

Proposition 5.1. Almost every large D(m) has an efficient allocation that requires ex-

changes of no more than size 3 with the following properties:

1. Every selfdemanded pair X-X is matched in a 2-way or a 3-way exchange with other

selfdemanded pairs (no more than one 3-way exchange is needed, in the case of an

odd number of X-X pairs).

2. Either every B-A pair is matched in a 2-way exchange with an A-B pair or every A-B

pair is matched in a two way exchange with a B-A pair.

3. Let X,Y ∈ {A,B} and X 6= Y. If there are more Y-X than X-Y then every Y-X pair that

is not matched to an X-Y pair is matched in a 3-way exchange with an O-Y pair and

an X-O pair.

4. Every AB-O pair is matched in a 3-way exchange with an O-A pair and an A-AB pair.

24This assumption is also used for avoiding case-by-case analysis; one can provide similar results for the

opposite inequality. However the limit results we obtain here for large compatibility graphs are less of a

good approximation to the situation facing very high PRA patients in the finite graphs we see in practical

applications than they are for the situation facing the large majority of patients who are not extremely

highly sensitized. We will return to this, and the open questions it raises, in the conclusion.
25We will use this assumption to construct the efficient allocation. However even if this assumption

does not hold, using a similar method of proof one can construct a very similar allocation. The details of

the efficient allocation would slightly change, but not our results about individually rational allocations.
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5. Every overdemanded pair X-Y that is not matched as above is matched to an under-

demanded Y-X pair.

The structure of the efficient allocation described in the proposition is given Figure

2. The proof of the proposition is deferred to the Appendix.

Figure 2: The structure of an efficient allocation in the graph D(m) (excluding all self-

demanded pairs). The shaded region is the set of overdemanded pairs, none of which

remain unmatched after an efficient matching. All B-A pairs are matched to A-B (as-

suming there are more B-A than A-B), the remainder of the A-B pairs (VA-B) are matched

in 3-way exchanges using O-A’s and B-O’s. AB-O are matched in 3-ways each using two

overdemanded pairs, and every other overdemanded pair is matched to a correspond-

ing underdemanded pair.

Roth et al. (2007) showed that exchanges of size at most 4 are sufficient for efficiency

and assumed compatibilities are determined merely by blood types. Interestingly they

used the 4-way exchanges (AB-O,O-A,A-B, B-AB) whenever there were many more A-B

pairs than B-A pairs. Our random model assures that this difference is small enough to

avoid the need for such 4-way exchanges (note from figure 2 that such a 4-way exchange

becomes inefficient, since it uses an AB-O pair that could instead have been used in a

3-way exchange and an A-B pair that could have been used in either a 2-way or a 3-

way exchange, for a total of more than 4 transplants.). Toulis and Parkes (2011) prove a

similar result to ours.

Similarly to Proposition 5.1 one can show that the size of a 2-efficient allocations

is at most µAB-Om + o(m) smaller than the size of an efficient allocation.26 One possibly

26In particular AB-O pairs can be matched to O-AB pairs using 2-way allocations rather than being

matched in a 3-way as described in Proposition 5.1 and the 3-way exchanges that use A-B pairs (or B-A

pairs) can be ignored.
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undesirable feature of the efficient allocation is that underdemanded pairs of type O-AB

will all be left unmatched. While it is inevitable that many underdemanded pairs will

be left unmatched, there is sometimes discomfort in medical settings having a priori

identifiable pairs seemingly singled out. A natural outcome would be that hospitals

would seek to match such pairs internally, a point to which we will return later, when

we observe that precisely these internal matches account for most of the efficiency cost

of individual rationality.

Until this point nothing has been said about individual rationality in the Bayesian

setting. In the next section we study the efficiency cost of requiring an allocation to be

individually rational in large exchange pools.

6 Individual rationality is not very costly in large random

compatibility graphs

One way in which individual rationality might conflict with efficiency is if hospitals’ in-

ternal exchanges make inefficient use of over-demanded pairs, e.g. if an overdemanded

A-O pair were matched internally in a 2-way exchange with a B-A or an A-A or an AB-A

pair, in each case resulting in two transplants instead of four. In Section 3 we proved

tight worst case bounds on the efficiency loss from having to honor hospitals’ internal

exchanges to guarantee individual rationality. We derive here a much smaller upper

bound on this loss for large random compatibility graphs.

One way to bound the efficiency loss is by attempting to construct an efficient allo-

cation as in Proposition 5.1, that matches the pairs each hospital can internally match.

Unfortunately such an allocation is not always feasible.

Consider for example the following two unbalanced 3-way exchanges (B-O,O-A,A-B)

and (A-O,O-B,B-A). Too many 3-way internal exchanges of the second type, for example,

as well as other internal exchanges that include O-B pairs but not B-O pairs, could lead

to a situation in which, to satisfy individual rationality more O-B pairs would poten-

tially need to be matched than the total number of B-O pairs. This can harm efficiency

since as Theorem 5.1 suggests more transplants are obtained by choosing the two 2-way

exchanges rather than the 3-way exchange in Figure 3.

Individual rationality, however, does not require the clearinghouse to match a spe-

cific maximum set of pairs that each hospital can internally match, but only to guar-

antee to match at least the number of pairs each hospital can internally match. For

example if a hospital has an internal unbalanced exchange A-O,O-B,B-A and an inter-
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nally unmatched O-A pair, then to satisfy individual rationality it is sufficient to match

the A-O,B-A and O-A pairs.

Figure 3: A 3-way (internal) exchange that matches an O-B pair for which there may not

be a corresponding B-O pair.

As the above discussion suggests, individually rational allocations may contain (many)

more underdemanded pairs of a specific type than its reciprocally overdemanded type.

However if each hospital is not “too big”, this is very unlikely. We will use the following

definition which implicitly bounds the size of a hospital by not letting it match internally

too many underdemanded pairs.

We say that a size c of a hospital is regular if in a random internal allocation that max-

imizes the number of matched underdemanded pairs and any underdemanded type

X-Y the expected number of X-Y matched pairs is less than the expected number of

overdemanded Y-X pairs in its pool.

A formal definition is given in Appendix 10.4. We further motivate this definition.

Note that if each hospital is large enough, it can internally match with high probability

the same set of pairs that are matched in the efficient allocation described in Proposi-

tion 5.1 and illustrated in Figure 2 (this can be shown using the Erdos-Renyi theorem

(see Theorem 10.1) and using the fact that both the probability for each edge is a con-

stant). Therefore, if hospitals were large enough, centralized kidney exchange would

not yield more matches than a decentralized system. And in fact American transplant

centers have grown in numbers more than in size. Today there are over 200 centers that

perform kidney transplants, and the largest do fewer transplants they they did when

there were only a handful of centers (see Massie et al. 2013, who compile data from 207

American transplant centers).

Using simulations with distributions from clinical data (see Ashlagi et al. (2011a,b))

we find that hospitals of size up to at least c = 70 are regular.27

27In practice hospitals indeed withhold, but in a given month no hospital has ever enrolled more than
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This allows us to state our first main result.

Theorem 6.1. Suppose every hospital size is regular and bounded by some c̄ > 0 and let

ε > 0. In almost every large graph D(Hn) there exists an individually rational allocation

using exchanges of size at most 3, which is at most µAB-Om + εµA-Bm smaller than the

efficient allocation, where m is the number of pairs in the graph.

As suggested in the theorem (and as shown in the proof) most of the efficiency loss

comes from matching of (otherwise unmatched) underdemanded O-AB pairs, in 2-way

exchanges to AB-O pairs. This means that the efficiency loss is only about 1%, which

is the (simulated) frequency of the AB-O pairs. Note also that, as remarked earlier, it is

hard to regret this small decrease in the total number of matched pairs, since no O-AB

pairs would have been matched had the goal been to maximizes the number of trans-

plants.2829

Theorem 6.1 is a limit theorem, but Table 1 showed simulation results that demon-

strate that the cost of individual rationality is very low even for sizes of exchange pools

observed in present-day clinical settings.

The proof is deferred to the appendix. The key step is to match for each hospital

as many underdemanded pairs it can internally match (since these are the pairs that

compete to be matched). In particular we show that with high probability there exists

a satisfiable set of underdemanded pairs which can be matched, where a satisfiable set

is a set in which (i) for each hospital, the set contains at least the number of underde-

manded pairs the hospital can internally match, and (ii) for each underdemanded type

X-Y the number of pairs in the set is the same number as the total number of overde-

manded Y-X pairs in the entire pool.

Remarks:

1. Toulis and Parkes (2011) provide an algorithm that finds an efficient individually

rational allocation. However, there is a major difference in their model; in contrast

to our regularity assumption they assume each hospital is large enough so that

it contains an efficient allocation with the structure provided in Figure 5, as they

10 pairs to either the National Kidney Registry or the Alliance for Paired Donation.
28We conjecture that the requirement that every hospital size be regular can be relaxed (to a weaker

definition of regular) or eliminated entirely.
29 The allocation constructed in the proof can fail to be individually rational with low probability. How-

ever, using similar ideas as in the proof of Proposition 5.1 one can construct in every graph an individually

rational allocation and show that in almost every graph the construction will be within the indicated effi-

ciency bound.
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term a canonical allocation. Note that in order for a hospital to contain a canon-

ical allocation it cannot be regular by definition (recall that our simulations pro-

vide regularity is only violated for hospitals of size more than 70, much larger than

hospitals enroll in a ‘reasonable” time period). Also, (Ashlagi and Roth (2012)) ob-

served that there are many very highly sensitized patients, making it very unlikely

that hospitals contain a canonical internal allocation.

Finally, as we mentioned, if every hospital has an internal allocation with a canon-

ical structure there is almost no need for a centralized mechanism.

2. The proof of Theorem 6.1 is by construction and thus defines an algorithm that

finds an individually rational allocation (in almost every large graph). Interest-

ingly, our algorithm runs in polynomial time. The algorithm first finds within each

hospital internal allocations, a step that runs in linear time (in the number of hos-

pitals) since each hospital is of a constant size. This step identifies the set of pairs

S that will be matched in the final allocation.

In the second step we identify an allocation that matches all pairs in S, and even

when using only 2-way exchanges in this step we achieve the same bound for the

efficiency loss. As our proof shows in almost every large graph such an allocation

exists. Using this fact, our final step runs in polynomial time; it is equivalent to the

following simplified problem: we are given a graph, a set of nodes S in the graph

that can be matched in a maximum matching, and the task is to find a maximum

matching that indeed matches all nodes in S. Since finding a maximum matching

in a graph can be done using linear programming in polynomial time, one can add

a linear constraint so that each node in S is indeed matched.3031

7 Kidney exchange mechanisms

We have seen that a mechanism that is individually rational for hospitals need not be

costly in terms of lost transplants, and individual rationality can be seen as a necessary

condition for full participation in a world in which a hospital can withdraw participation

after seeing the allocation proposed by the centralized mechanism. But a mechanism

30If the second step uses also 3-way exchanges, finding a maximum allocation is well-known to be an

NP-hard problem as Abraham et al. (2007) showed.
31There is also a computational difference with the algorithm Toulis and Parkes (2011) provide - their

algorithm selects an efficient allocation repeatedly from the compatibility graph until they find one that

is individually rational, which is computationally inefficient.
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that makes it individually rational for hospitals to participate may still not be sufficient

to elicit full participation if it does not also make it a dominant strategy, or a Bayesian

equilibrium, for hospitals to reveal all their patient-donor pairs. We next begin the ex-

ploration of the incentive properties of exchange mechanisms, starting (as in the case

of individual rationality) with some negative worst-case results.

A kidney exchange mechanism,ϕ, maps a profile of incompatible pairsV = (V1, V2, . . . , Vn)

to an allocation, denoted by ϕ((Vh)h∈Hn). A mechanism ϕ is IR if for every profile V , ϕ(V )

is IR. Efficient and maximal mechanisms are defined similarly.

Every kidney exchange mechanism ϕ induces a game of incomplete information

Γ(ϕ) in which the players are the hospitals. The type of each hospital h is its set of in-

compatible pairs. The realized type will be denoted by Vh and at this point we assume

no prior over the set of types. At strategy σh hospital h reports a subset of its incompat-

ible pairs σh(Vh). For any strategy profile σ let σ(V ) = (σ1(V1), . . . , σn(Vn)) be the profile

of subsets of pairs each hospital submits under σ given V . Therefore, for any profile

V = (V1, . . . , Vn), at strategy profile σ mechanism ϕ chooses the allocation ϕ(σ(V )).

A kidney exchange mechanism does not necessarily match all pairs inVHn = ∪h∈HnVh,

either because it didn’t match all reported pairs or because hospitals did not report all

pairs. Therefore we assume that each hospital also chooses an allocation in the set of

its pairs that are not matched by the mechanism. Formally, let ϕ be a kidney exchange

mechanism and let σ be a strategy profile and Vh be the type of each hospital. After the

mechanism choosesϕ(σ(V )), hfinds an allocation in Vh\ϕ(σ(V ))(Vh), whereϕ(σ(V ))(Vh)

is the set of all pairs in Vh that are matched by the allocation ϕ(σ(V )). In particular ev-

ery hospital h ∈ Hn has an allocation function ϕh that maps any set of pairs Xh to an

allocation ϕh(Xh).

Since each hospital wishes to maximizes the number of its own matched pairs, the

utility of hospital h, uh, at profile V and strategy profile σ, is defined by the number of

pairs in Vh who are matched by the centralized match, plus the number of its remaining

pairs that h can match using internal exchanges:

uh(σh(Vh), σ−h(V−h)) = |ϕ(σ(V ))(Vh)|+ |ϕh(Vh \ ϕ(σ(V ))(Vh))(Vh)|. (1)

In the next section we study incentives of hospitals in the games induced by kidney

exchange mechanisms.
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8 Incentives

Loosely speaking, most of the kidney exchange mechanisms presently employed choose

an efficient allocation in the (reported) exchange pool.32 As already emphasized, maxi-

mizing the number (or the weighted number) of transplants in the pool of patient-donor

pairs reported by hospitals is not the same as maximizing the number of transplants in

the whole pool, unless the whole pool is reported. We next consider the tensions be-

tween achieving efficiency, and making reporting of the whole pool a dominant strategy

for each hospital.

8.1 Strategyproofness–negative results for compatibility graphs

Section 3 showed that for any largest feasible exchange size k > 2, no individually ra-

tional mechanism can be efficient, and obtained discouraging worst case bounds (al-

though efficiency can be achieved for k = 2). Here we show that for k ≥ 2, no mecha-

nism that always produces a k-maximal allocation (even if not efficient) can be individ-

ually rational and strategyproof, again with discouraging worst case bounds.

A mechanism ϕ is strategyproof if it makes it a dominant strategy for every hospital

to report all of its incompatible pairs in the game Γ(ϕ); Formally, ϕ is strategyproof if

for every hospital h, every Vh, every strategy σ′h, and every V−h

uh(ϕ(Vh, V−h)) ≥ uh(ϕ(σ′h(Vh), V−h)). (2)

In unpublished notes from 2007, Roth, Sönmez and Ünver showed that (even for a

maximum exchange size k = 2):

Proposition 8.1 (Roth, Sönmez and Ünver). No IR mechanism is both maximal and

strategyproof.

Strategyproof mechanisms do exist, e.g. a mechanism that chooses allocations that

maximize the number of matched nodes using only internal exchanges. By allowing

randomization between allocations (in particular allowing inefficient allocations to be

chosen with positive probability) one can hope to obtain outcomes that are “close” to

efficient in expectation. Unfortunately, building on the proof of Proposition 8.1, both

32The mechanisms often maximize a weighted sum of transplants rather than a simple sum, to imple-

ment priorities, such as for children and for how difficult it is to match a patient (due to high PRA levels).
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deterministic and randomized mechanisms are not close to being efficient (again even

for k = 2):33

Proposition 8.2. For k ≥ 2 (i) no IR strategyproof mechanism can always guarantee more

than 1
2

of the efficient allocation, and (ii) no IR strategyproof (in expectation) randomized

mechanism can always guarantee more than 7
8

of the efficient allocation.

Ashlagi et al. (2014) study dominant strategy mechanisms for k = 2 and provide a

strategyproof (in expectation) randomized mechanism which guarantees 0.5 of the 2-

efficient allocation.34 But it remains an open question whether the bounds established

in this section can be achieved.

Strategyproofness is independent of any probability distribution of the underlying

compatibility graphs. As in the case for individual rationality, using information about

the (approximate) distribution of compatibility graphs might be useful for finding mech-

anisms that can achieve (almost) efficient allocations as Bayesian equilibria.35 We pro-

ceed by studying the Bayesian setting in a large random kidney exchange program, in

the spirit of recent advances in the study of two sided matching in large markets (cf.

Immorlica and Mahdian (2005) , Kojima and Pathak (2009), Kojima et al. (2013), and

Ashlagi et al. (2010)).

8.2 The Bayesian setting

To study hospitals’ incentives in a given mechanism we consider a Bayesian game in

which hospitals strategically report a subset of their set of incompatible pairs, and the

mechanism chooses an allocation. Thus a kidney exchange game is now a Bayesian

game Γ(ϕ) = (H, (Th)h∈H , (uh)h∈H) where H is the set of hospitals, uh is the utility func-

tion for hospital h, and Th is the set of possible private types for each hospital, drawn

independently from a known distribution. The type for each hospital is the subgraph in-

duced by its pairs in the random compatibility graph. In particular the random compat-

ibility graph is drawn and then the nodes of the graph are partitioned randomly among

the hospitals. The set of feasible partitions are determined by the possible hospitals’

sizes.
33Strategyproofness in the randomized case means that, for any reports of other hospitals, no hospital

h is better off in expectation reporting anything other than its type Vh.
34The model in Ashlagi et al. (2014) does not allow hospitals to choose an internal allocation after the

mechanism has chosen an allocation. However their algorithm works in our model.
35An efficiency approximation gap between the Bayesian approach and prior free approach has been

shown for example by Babaioff et al. (2010) in an online supply problem.
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The expected utility for hospital h at strategy profile σ given Vh is

EV−h [uh(σh(Vh), σ−h(V−h))], (3)

where the utility function uh is defined as in Equation (1). In words the hospitals wishes

to maximize the expected of number of its own matched pairs either by the mechanism

or by itself. Let σ be a strategy profile and let ε > 0. Strategy σh is an ε-best response

against σ−h if for every σ′h and every Vh

EV−h [u(σh(Vh), σ−h(V−h))] ≥ EV−h [u(σ′h(Vh), σ−h(V−h))]− ε. (4)

σ is an ε-Bayes Nash equilibrium if for every hospital h, σh is an ε best response against

σ−h. For ε = 0, σ is the standard Bayes Nash equilibrium.

A particular strategy of interest is the truth-telling strategy: a hospital always re-

ports its entire set of incompatible pairs. To analyze mechanisms for large random ex-

change pools, it will be useful to consider a sequence of random kidney exchange games

(Γ1(ϕ),Γ2(ϕ), . . .), where Γn(ϕ) = (Hn, (Th)h∈Hn , (uh)h∈Hn) denotes a random kidney ex-

change game with |Hn| = n hospitals.

8.2.1 Towards a new mechanism

A stylized version of status quo kidney exchange mechanisms is to choose (randomly)

an efficient allocation. We observed that such a mechanism can violate individual ra-

tionality. Moreover, it is often the case that a hospital will benefit (non-negligibly) from

withholding pairs. For example, if a hospital has two pairs, A-O and O-A it and can

internally match, it is better off withholding them, since only a fraction of the underde-

manded O-A pairs in the pool will will be matched.

We simulated such a (status quo) mechanism and examined two types of behavior

for hospitals: truth-telling, in which a hospital reports all its incompatible pairs, and a

naive strategy called withhold internal matches, in which a hospital withholds a maxi-

mum set of pairs it can match internally. As Figure 4 shows, withholding provides more

transplants on average than truth-telling for an arbitrary hospital given that all other

hospitals are truth-telling. The benefit from withholding becomes even larger when all

other hospitals also withhold internal matches.

If all hospitals use the withhold internal matches strategy under the status quo mech-

anism, the total number of transplants achieved (by the mechanism and the internal

matches) results in more than 12% efficiency loss as shown in Table 2. See Section 9 for

further simulations.
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Figure 4: Withholding internal matches vs. reporting truthfully in the status quo mech-

anism (k=3). Hospitals have on average 10 pairs.

No. of hospitals Reporting truthfully Withholding

10 52.44 44.79

12 64.19 55.26

14 76.72 66.18

16 88.81 76.89

Table 2: Number of transplants achieved in the status quo (random efficient) mecha-

nism under two different strategies: (i) each hospital withholds an efficient internal al-

location and (ii) each hospital reports truthfully. Each hospital has on average 10 pairs.

k is set to 3.

The underdemanded pairs are the ones that “compete” to be matched, an attempt

to solve this problem is by guaranteeing each hospital to match at least as many under-

demanded pairs it can internally match (and randomly choose maximum allocations

under this constraint). Unfortunately, hospitals will often still benefit from withhold-

ing. To see this, suppose all hospitals but a report truthfully and suppose a has the com-

patibility graph in Figure 5. Using the fact that any O-A pair in the graph is likely to be

chosen with probability p < 1
2

, one can show that withholding only the overdemanded

A-O pair a1 makes a strictly better off, since it can then match one O-A pair internally

if either of them is not matched by the mechanism. That is, hospitals will sometimes

have an incentive to hold in reserve their overdemanded pairs to be matched ex-post to

underdemanded pairs left unmatched by the centralized mechanism.
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Figure 5: Hospital a has one overdemanded A-O pair and two O-A pairs and it can inter-

nally match either one.

8.2.2 A new mechanism

One way to prevent hospitals from withholding overdemanded pairs is to give priority to

underdemanded pairs from hospitals that contribute overdemanded pairs that could be

part of internal matches. To do this we propose an “underdemanded lottery” that will

determine which underdemanded pairs will be matched. We first give a sketch of the

lottery for a setting with only A-O and O-A pairs and illustrate it with a simple example.

The underdemanded lottery consists of the following two main steps that output a

set of O-A pairs S, which contains the same number of O-A pairs as there are reported

A-O pairs:

1. For each hospital select randomly a maximum set of O-A pairs it can internally

match and add them to S.

2. Consider a bin which contains for each hospital the same number of balls as the

number of its reported underdemanded O-A pairs. Until S reaches the target size36,

iteratively draw balls without replacement, and after each draw if the ball belongs

to hospital h, add one of h’s O-A pairs that has not yet been chosen (if any still exist)

to S .

Note that in the beginning of the second step each hospital begins with the same

number of balls as its O-A pairs even if some of its O-A pairs have already been chosen

in the first step.

Example 1. Consider a hospital h that has 3 pairs a1, a2 and a3 and its compatibility

graph can internally match a1 to a2 and to a3 as in Figure 6a. For simplicity assume that

no other two pairs belong to the same hospital. We show the O-A pairs are chosen by

36One should think of this size as the number of reported A-O pairs.
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the underdemanded lottery, reporting a1 (Figure 6a) results in a higher utility for h than

withholding a1 (Figure 6b).37 In the former case the lottery will select three O-A pairs (to

be matched to the A-O pairs) and in the latter case the lottery will select two O-A pairs.

If h withholds a1, the underdemanded lottery will choose randomly without replace-

ment two O-A pairs (in order to match them to the two A-O) pairs. In this case the prob-

ability that none of a’s O-A pairs will be chosen is (4
2)

(6
2)

= 12
30

; the probability that one of its

O-A pairs will be chosen is 2
6
· 4

5
+ 4

6
· 2

5
= 16

30
(choosing one of a2 or a3 in the first or second

round of the second step of the lottery), and the probability that both of its O-A pairs will

be chosen is 2
6
· 15 = 2

30
. Since h can internally match a1 to one of its O-A pairs if it hasn’t

been selected by the lottery, its expected utility (expected total number of transplants) is

2 · 12
30

+ 3 · 16
30

+ 2 · 2
30

= 2 8
15

.

(a) Hospital a reports a1. (b) Hospital a withholds a1.

Figure 6: Hospital a has one overdemanded pair, a1, and two underdemanded pairs, a2

and a3, and can match internally a1 to a2 and to a3.

If h reports a1, either a2 or a3 are chosen in the first step of the lottery, say a2. The

probability that a3 will not be chosen in the second step of the lottery is 4
6
· 3

5
= 12

30
, and

therefore the probability that a3 will be chosen in that step is 18
30

. Therefore a’s expected

utility in this case is 2 · 12
30

+ 3 · 18
30

= 2 9
15

. Note the incentive to report a1: it is that, after

a2 is chosen, the probability that a3 will also be chosen is the same as the probability that

either one of a2 or a3 would have been chosen if a1 had not been reported.

In this section we present a mechanism for kidney exchange that uses this kind of lot-

tery to make truth-telling an approximate Bayes-Nash equilibrium, assuming that hos-

pitals satisfy a stronger regularity condition. This stronger regularity condition, which

now deals with each underdemanded type and its reciprocal overdemanded type sep-

arately, will allow us to separate the reporting problem for each type of overdemanded

37An implicit assumption in this example is that there exists a perfect matching between the A-O pairs

and the chosen O-A pairs.
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pair. This will allow a mechanism in which there is no incentive to withhold an overde-

manded pair of some type in order to influence the match probability of an underde-

manded pair that is not of its reciprocal type.

We say that a size c > 0 of a hospital is strongly regular if for every underdemanded

type X-Y, the expected maximum number of X-Y pairs it can be internally match is less

than the expected number of overdemanded Y-X pairs in its pool.

A formal definition is given in Appendix 10.6. Using simulations we find that hospi-

tals of size up to at least c = 30 are strongly regular.

Throughout this section we assume hospitals’ sizes are strongly regular and bounded.

The mechanism we introduce provides an allocation that uses only 2-way exchanges

with similar properties to the one constructed in the proof of Theorem 6.1. The follow-

ing is a high level description of the new mechanism:

1. Find a maximum allocation in the graph induced by all self demanded pairs.

2. Find a maximum allocation in the graph induced by all A-B and B-A pairs.

3. Choose which undermanded X-Y pairs to match, and match them to overdemanded

Y-X pairs.

The missing key part is how to choose the underdemanded pairs that will be matched

in part 3. We will use a lottery like the one described in the example, called the underde-

manded lottery, to determine for each underdemanded type X-Y∈ U a set of X-Y pairs,

denoted by Sh(X-Y), that will be matched for each hospital h (ideally we want to match

all overdemanded pairs, so the total number of X-Y pairs that will be matched equals

the total number of Y-X pairs in the pool).

We now formally describe the underdemanded lottery for a given underdemanded

type X-Y∈ U . For each h, Sh(X-Y) will be initialized to be a set of X-Y pairs with maximum

cardinality that h can match internally, and the lottery will output for each hospital a set

of pairs that are chosen to be matched. We need the following notation: let MV
T be

the set of allocations in V that maximize the number of matched pairs in V whose type

belongs to T (whenever T = {t} singleton we will just writeMV
t ).

Underdemanded lottery

1. Input: a set of hospitals Hn, a profile of subsets of pairs (B1, . . . , Bn), an underde-

manded type X-Y, and an integer 0 < θ < |τ(BHn ,X-Y)| which is interpreted as the
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number of X-Y pairs that we want to choose in total.38

2. Initialization: For each hospital h let Qh(X-Y) = |τ(Bh,X-Y)| and let Sh(X-Y) be an

arbitrary maximum set of X-Y pairs h can internally match in Bh.39

3. Main Step: Let J be a bin containing Qh(X-Y) balls for each hospital h. As long as∑
h∈Hn |Sh(X-Y)| < θ:

(a) Choose uniformly at random a ball from J without replacement. If the ball be-

longs to hospital h, then add an arbitrary X-Y pair to Sh(X-Y) fromBh \Sh(X-Y)

if such exists.

In Example 1, Sa(O-A) is initialized to be either {a2} or {a3}, say Sa(O-A) = {a2}.
However, two balls are initially placed in the bin J for hospital a, and if either one of

them is drawn, a3 is added to Sa(O-A). Therefore, the fact that the hospital can inter-

nally match one of its underdemanded pairs increases the probability that another of

its underdemanded pairs of the same type will be matched.

We are now ready to state the mechanism formally. For simplicity of exposition we

assume throughout this section that n is even. All results hold when n is odd (see also

Footnote 41 below).

The Bonus Mechanism

1. Input: a set of hospitalsHn = {1, . . . , n} and a profile of incompatible pairs (B1, B2, . . . , Bn),

each of a strongly regular size.

2. Step 1 [Match selfdemanded pairs]: find a maximum allocation, MS in the graph

induced by all selfdemanded pairs BHn .

3. Step 2 [Match A-B and B-A pairs]: for each hospital h choose randomly an allo-

cation Mh ∈ MR
Bh .40 Find a maximum allocation,MR in the graph induced by

A-B and B-A pairs among those that maximize the number of matched pairs in

∪h∈Hnτ(Mh(Bh),R).

38The parameter θ is not set here to be the number of Y-X pairs in BHn since as we shall see later, the

mechanism will apply the lottery twice, each time with a different set of n
2 hospitals and θ will be the

number of Y-X pairs in the set of other n
2 hospitals. This will be further discussed below.

39Formally Sh(X-Y) = τ(MBh

X-Y(Bh),X-Y) for some MBh

X-Y ∈M
Bh

X-Y.
40Recall thatR = {A-B,B-A}.
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4. Step 3 [Match overdemanded and underdemanded pairs]: Partition the set of hos-

pitals into two sets H1
n = {1, . . . , n

2
} and H2

n = {n
2

+ 1, . . . , n}. For each underde-

manded type X-Y∈ U and for each j = 1, 2:41

(3a) Set θj(Y-X) = |τ(BH
n3−j

,Y-X)| to be the number of Y-X pairs in the set B3−j
Hn

.

Then, using the underdemanded lottery procedure with the inputs (Bh)h∈H
nj

,

θj(Y-X) and X-Y, construct a subset Sh(X-Y) one for each hospital in h ∈ Hj
n.

(3b) Find a maximum allocation M j
X-Y in the subgraph induced by the sets of pairs

∪h∈Hj
n
Sh(X-Y) and τ(BH3−j

n
,Y-X).42

5. Step 4 [Output]: Let MU = ∪j=1,2 ∪X-Y∈U M
j
X-Y. Output MS ∪MR ∪MU .

We can now state our second main result.

Theorem 8.3. Let Hn be a set of hospitals. If every hospital size is strongly regular, the

truth-telling strategy profile is an ε(n)-Bayes-Nash equilibrium in the game induced by

the Bonus mechanism, where ε(n) = o(1). Furthermore for any ε > 0, the efficiency loss

under the truth-telling strategy profile in almost everyD(Hn) is at most µAB-Om+εµA−Bm,

where m is the number of pairs in the pool.

We conjecture that, here too, the strong regularity assumption can be relaxed and

even entirely eliminated. In the next section we provide simulations that demonstrate

the effectiveness of our mechanism.

Remarks:

1. Toulis and Parkes (2011) show a similar result only under their assumption that

each hospital has a canonical structure (see the first remark at the end of Section

6. Another important difference is that they do not allow hospitals to withhold a

single pair (only internal allocations). As Example 1 illustrates, a hospital will have

an incentive to withhold only an overdemanded pair (and these pairs are exactly

the ones we wish to incentive hospitals to report).

41 In order to choose the sets of underdemanded pairs of each type that will be matched we partition

the set of hospitals into sets, each with n
2 hospitals (if n is odd, one set will have one more hospital than the

other); For each set in the partition we will match the overdemanded pairs of the hospitals in one set to

the chosen underdemanded pairs of the hospitals in the other set in order to avoid lack of independence

( see also the proof of Theorem 6.1.)
42The size of | ∪h∈Hj

n
Sh(X-Y)| will equal |τ(BH3−j

n
,Y-X)| with high probability and therefore the maxi-

mum allocation in this subgraph will match with high probability all pairs in ∪h∈Hj
n
Sh(X-Y).
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2. The Bonus algorithm can be adapted so that in each step it allows the output al-

location to use only 2-way exchanges and Theorem 8.3 will still hold (the internal

allocations in the algorithm still use 2 and 3-way exchanges). This implies that

with the adaptation, the Bonus algorithm runs in polynomial time (assuming it

indeed finds an allocation with the desired properties which we show to exist in

almost every graph). The arguments are similar to the arguments for the complex-

ity of the construction of an almost efficient individually rational allocation (see

the second remark in Section 6).

3. When the compatibility graph is not too large, there is often the knowledge about

which pairs are “hard” and which pairs are “easy” to match (see e.g. Ashlagi et al.

(2012)). The idea of the underdemanded lottery, which is the key part in our mech-

anism, can be adapted so that hospitals will indeed be incentivize to enroll their

easy to match pairs.

9 Simulations

Simulations are useful to evaluate whether the conclusions of limit theorems apply even

in relatively small finite settings. We first explain the Monte-Carlo simulations we have

conducted. To generate incompatible pairs we follow our definition of a random com-

patibility graph, which is also consistent with the method used in Saidman et al. (2006).

First we create a patient and donor with blood-types drawn from the national distri-

butions as reported by Roth et al. (2007). Each patient is also assigned a percentage

reactive antibody (PRA) level also drawn from a distribution as described in Roth et al.

(2007). The patient PRA is interpreted as the probability of a positive crossmatch (tis-

sue type incompatibility) with a random donor. If the generated pair is compatible, i.e. if

they are both blood type compatible and have a negative crossmatch, they are discarded

(this captures the fact that compatible pairs go directly to transplantation). Otherwise

the population generation continues until each hospital accumulates a certain number

of incompatible pairs. In all simulations we have bounded the number of pairs in total

by 180 per iteration (thus for some scenarios there are fewer hospitals than others).43

For each random population we ran 500 trials.

43In practice the current popular exchange programs receive fewer than 50 pairs per period. When

allowing 3-way exchanges, finding an allocation that maximizes the number of matches is an NP hard

problem (see Abraham et al. (2007) and Biro et al. (2009)). The compatibility graph is generally sparse

enough however that the problem is tractable in reasonably sized populations.
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The next figure provides, for various average-sized hospitals, the gain from withhold-

ing under a current status-quo like mechanism that randomly chooses an allocation

that maximizes the number of transplants.

Figure 7: Withholding internal matches vs. reporting truthfully in the status quo mech-

anism (k=3).

We also simulated the gains from withholding under the Bonus mechanism. Figure

8 provide the results for the gains when hospitals average 10 incompatible pairs. Notice

that hospitals never gain from withholding. We obtained very similar results for differ-

ent averaged sized hospitals.

Figure 8: Withholding vs not withholding under the Bonus mechanism. Each hospital

has an average of 10 pairs.

To further test the Bonus mechanism we let the average size of hospitals vary. Fig-

ure 9 shows for different average-sized hospitals withholding is not beneficial under the
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Bonus mechanism. These results not only support Theorem 8.3 but also our conjecture

that the theorem holds also without the the strong regularity assumption.

Figure 9: Withholding vs not withholding under the Bonus mechanism.

We further simulated the efficiency gains under the Bonus mechanism, comparing

to a status-quo like mechanism assuming that in the Bonus mechanism hospitals re-

port truthfully and under the status-quo like mechanism hospitals withhold an internal

maximum allocation. Figure 10a and Figure 10b provide the percentage of number of

lost matches and the percentage of lost high PRA (highly sensitized) matches.

(a) Percentage of lost matches (b) Percentage of lost highly sensitized matches

Figure 10: Ratio between the number of matches achieved under an “efficient” mecha-

nism to the number of matches achieved under the Bonus mechanism.

Finally, we compared the number of matches obtained under the Bonus mechanism

to the number of transplants obtained under a mechanism that randomly chooses the
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maximum number of matches assuming that under both mechanisms hospitals report

truthfully. The results are give in Figure 11. the results also support our conjecture that

even with “larger sized” hospitals, i.e. without the regularity assumption, there is an

individually rational allocation that is almost efficient.

Figure 11: The cost from using IR and not an efficient mechanism assuming hospitals

fully participate.

10 Conclusions and open questions

There are a number of ways in which barter may be inefficient. Jevons (1876) famously

pointed to the double coincidences needed to make pairwise exchanges (a difficulty

that is only partially eased by allowing larger exchanges, and further relieved when chains

are possible). A second difficulty is that profitable but inefficient transactions may take

place that prevent efficient ones from occurring (cf. Roth and Postlewaite (1977))44 A

44Roth and Postlewaite look at the model proposed by Shapley and Scarf (1974) in which traders each

have only a single indivisible good, and observe that there are inefficient transactions of this sort in the

core of the game, which are not supported by any market-clearing prices. Consider three traders {1,2,3},
with endowments w=(w1, w2, w3) and preferences such that each trader can get his first choice via a three

way exchange that yields the allocation x = (w3, w1, w2). There can nevertheless be a profitable two-way

exchange, that yields e.g. y=(w2,w1,w3) via a trade between 1 and 2, that gives 1 his second choice and

2 his first choice. This is in the core of the game when the initial endowments are w, but not after the

trade has taken place and the (new) endowment is y (since, from y, 1 and 3 could trade w2 and w3).

Kidneys of course cannot be re-exchanged after being transplanted. But a centralized clearinghouse can

take account of the potential trade between 1 and 2 and make it rational for them to enter the centralized

mechanism, knowing that it will produce an allocation x that must be at least as good for them as y (cf.

Roth (1982)).
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well designed centralized clearinghouse can address not only the first problem (by mak-

ing a thick market) but also the second, by guaranteeing hospitals that they will not suf-

fer by foregoing potentially inefficient internal exchanges and instead reporting all their

patient-donor pairs.

The problem of inefficient exchanges has come to the fore as kidney exchange in

the United States has grown from being carried out rarely in only a few hospitals, to

being carried out regularly in a variety of kidney exchange networks of hospitals, and

is presently being explored at the national level. The National Kidney Paired Donation

Pilot Program was approved by the OPTN/UNOS Board of Directors in June 2008, and

ran its first two match runs in October and December 2010, with 43 patient-donor pairs

in October and 62 in December, registered by kidney exchange consortia representing

77 transplant programs. For the purposes of the present paper it is notable that only a

small fraction of the patient-donor pairs registered in the participating hospitals were

enrolled in the national pilot program.45 So the problem of full participation by hos-

pitals is both real and timely. It has also begun to be observed in the active kidney ex-

change networks that are fully operational.

One way to solve this problem is by forcing hospitals to disclose all their pairs and

thus having incompatible living donors be a national resource as happens with cadaver

organs. This will be very difficult with private hospitals who act independently from one

another. 46

The present paper observes that one contributory cause of the lack of full partici-

pation is that the matching algorithms currently employed in practice do not make it

individually rational for hospitals to always contribute all their patient-donor pairs. We

show that, in worst cases, this could be very costly, but we prove that in large markets it

is possible to redesign the matching mechanisms to guarantee individually rational al-

locations to hospitals, at very modest cost in terms of “lost” transplants. Note that these

“lost” transplants are not really lost if instead hospitals would have withheld patient-

donor pairs; on the contrary, we show that individually rational allocations produce a

big gain in transplants compared to having hospitals withhold pairs.

45We hasten to note that there are many reasons other than the incentive problems discussed here

that contribute to this initial very low participation rate. These include the new bureaucratic pro-

cedures for enrolling patients, the novelty and lack of track record of the national program, the de-

sire to start small and see what happens, the exclusion of chains and nondirected donors, etc. See

http://optn.transplant.hrsa.gov/resources/KPDPP.asp
46Even if such a law exists, hospitals can still enroll all their pairs while specifying that only the internal

matches are acceptable by for example specifying the acceptable travel distance for pairs involved in

internal matches to be 0.
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To obtain analytical results about large markets we approximate them as large ran-

dom graphs whose properties we can study with limit theorems based on the classical

results of Erdos and Renyi. But we also show by simulation with clinically relevant dis-

tributions of patients and donors that these main results apply on the scale of exchange

we are presently seeing. The fast convergence we see in simulations suggests that these

limit theorems from random graph theory may have much wider application than if

convergence were slow.

The highly interconnected compatibility graphs that we see in the limit theorems do

not approximate well the much sparser compatibility graphs we see in practice, which

contain many very highly sensitized patients. One of several causes of the high percent-

age of highly sensitized patients is the that many transplant centers are withholding

their easy-to-match patient-donor pairs, and only enrolling their hard-to-match pairs.

This raises a number of open questions that are likely to arise in practice regarding this

most vulnerable class of patients.

The first of these questions is how to model the situation facing highly sensitized

patients, who will be only sparsely connected in the compatibility graph, because they

may be compatible with a very small number of donors, even in a large graph of finite

size. This is closely related to the second question, which is how to effectively integrate

nondirected donors and chains with the cyclic exchanges that have been used initially

in the national pilot program and that are the subject of the present paper. In addition

to cycles of length k, there has been growing use of various kinds of chains in kidney

exchange, and it remains an open question how the relative importance of chains and

cyclic exchanges will change as the size of the pool (and the number of non-directed

donors) grow large. It seems likely that, even in large markets, chains will be especially

helpful to the most highly sensitized patients (Ashlagi et al. (2012)). A related question is

how the composition of the patient pool changes dynamically, as easier to match pairs

are matched and removed. Like the withholding of easy to match pairs studied here,

this will also impact the composition of kidney exchange pairs in ways that make the

compatibility graphs relatively sparse.

A fourth open question is under what conditions individually rational and incentive

compatible mechanisms exist that are as efficient as we have shown them to be un-

der regularity conditions on the size of hospitals. We conjecture that these regularity

conditions can be relaxed. In any case, such mechanisms could be useful in eliciting

full participation in a full scale national exchange, as it appears from simulations that

hospitals are in fact of regular size (although the largest hospitals may not be strongly
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regular). However, our results suggest that the benefits of a national exchange could

also be realized if there was sufficient regulatory power to require transplant centers to

either participate fully or not at all, since that would reduce the strategy space so that

individual rationality would be the primary consideration.47

The final open question we raise here is how these strategic concerns would be dif-

ferent in a world in which the players are not only hospitals and a (single) centralized

exchange, but in which there are multiple kidney exchange networks, some with strate-

gic concerns of their own. This is, of course, the situation that is currently in place.

In conclusion, as kidney exchange has grown, the strategy sets, the strategic players,

and hence the incentive constraints have changed. The new incentive issues, concern-

ing full participation by hospitals, arise out of the growth of kidney exchange, and are

potential obstacles to further growth. These are problems shared with barter exchange

generally, and by marketplaces with money as long as there are both easy and hard to

trade goods (such as the markets for gastroenterologists mentioned in the introduc-

tion). However the results of this paper strongly suggest that these new barriers can also

be overcome.
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Tuomas Sandholm, M. Utku Ünver, and Robert A. Montgomery. A non-simultaneous

extended altruistic donor chain. New England Journal of Medicine, 360:1096–1101,

2009.

Michael A. Rees, Mark A. Schnitzler, Edward Zavala, James A. Cutler, Alvin E. Roth,

Frank D. Irwin, Stephen W. Crawford, and Alan B. Leichtman. Call to develop a stan-

dard acquisition charge model for kidney paired donation. American Journal of Trans-

plantation, 12:1392–1397, 2012.

Alvin E. Roth. Incentive compatibility in a market with indivisble goods. Economics

Letters, 9:127–132, 1982.

Alvin E. Roth. Repugnance as a constraint on markets. Journal of Economic Perspectives,

21:37–58, 2007.

Alvin E. Roth. What have we learned from market design? Economic Journal, 118:285–

310, 2008.

38



Alvin E. Roth and Andrew Postlewaite. Weak versus strong dominantion in a market

with indivisble goods. Journal of Mathematical Economics, 4:131–137, 1977.

Alvin E. Roth and Xiaolin Xing. Jumping the gun: Imperfections and institutions related

to the timing of market transactions. American Economic Review, 84:992–1044, 1994.

Alvin E. Roth, Tayfun Sönmez, and M. Utku Ünver. Kidney exchange. Quarterly Journal
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Appendix A

10.1 Preliminaries

We briefly describe here some results that will provide intuition and be building blocks

in our proofs. A random graph G(m, p) is a graph with m nodes and between each two

different nodes an undirected edge exists with probability p (p is a non-increasing func-

tion of m). A bipartite random graph G(m,m, p) consists of two disjoint sets of nodes

V and W , each of size m, and an undirected edge between any two nodes v ∈ V and

w ∈ W exists with probability p (no two nodes within the same set V or W have an edge

between them). It will be useful to think of an undirected edge as two directed edges,

one in each direction.

Throughout the paper by saying just a “random graph” we will not refer to a specific

type, but a graph that is generated by any of the graph generating processes defined in

this paper (e.g., D(m), G(m, p), and G(m,m, p)).

For any graph theoretic property Q there is a probability that a random graph G sat-

isfies Q, denoted by Pr (G |= Q).

A matching in an undirected graph is a set of edges for which no two edges have a

node in common. A matching is nearly perfect if it matches (contains) all but at most

one nodes in the graph, and perfect if it matches all nodes.

Erdos and Renyi provided a threshold function f(m) = lnm
m

such that for p(m) >>

f(m) a perfect matching exist inG(m, p(m)). We state here a corollary of their result (see

e.g. Janson et al. (2000)):

Theorem 10.1 (Erdos-Renyi Theorem). Let Q be the property that there exists a nearly

perfect matching. For any constant p.

1. Pr (G(m, p) |= Q) = 1− o(1). 48, 49

48 For any two functions f and g we write f = o(g) if the limit of the ratio f(n)
g(n) tends to zero when n

tends to infinity.
49The Erdos-Renyi theorem showed stronger results, which asserts that r(m) = lnm

m is a threshold func-
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2. Pr (G(m,m, p) |= Q) = 1− o(1).

Remark on the convergence rate: The probability of a perfect matching in G(m, p) and

G(m,m, p) converges to 1 at an exponential rate for any constant p. More precisely, as

shown in Janson et al. (2000),

Pr (G(m,m, p) |= Q) = 1−O(me−mp) = 1− o(2−mp),

and clearly a perfect matching in G(m, p) exists with at least the same convergence rate.

From now on, whenever we write 1−o(1) it can be replaced with a rate of 1−o(2−αmp) for

some constant α, where α will the linear coefficient of the least probable pairs of blood

types in the compatibility graph. So the convergence rate in all our large graph results is

exponential.

10.2 Proof of Theorem 3.1

Let V be a set of nodes and let M be a k-efficient allocation and M ′ be a k-maximal in-

dividually rational allocation in V . Since M ′ is k-maximal, every exchange in M must

intersect an exchange in M ′ (otherwise a disjoint exchange could be added to M ′, con-

tradicting maximality). Fix an exchange c with size 2 ≤ l ≤ k in M ′. The maximum

number of nodes that might be covered by M and not M ′ would be achieved if for each

such exchange c, M contains l − 1 exchanges each of size k, which each intersect ex-

actly one node of c (and M ′). (Note that if all l nodes of c were in such exchanges then

M ′ wouldn’t be maximal.) For each such exchange c, M matches (l − 1)k nodes and M ′

matches l nodes, so the ratio is l/(l − 1)k, which is minimized at 1/(k − 1) when l = k,

giving the desired bound.

To see that the bound is tight, observe that the construction used to find the bound

achieves it: fix some hospital a with k vertices, and suppose that a has a single internal

exchange consisting of all of its pairs (see Figure 12 for an illustration for k = 3). The

bound 1
k−1

is obtained by letting the k-efficient allocation in the underlying graph con-

sists of exactly k − 1 exchanges each of size k, at which a single pair of a is part of each

such exchange. That is, the efficient allocation matches all but one of hospital a’s pairs,

each in exchanges of size k with k − 1 pairs from other hospitals. �

tion for the existence of a perfect matching; that is, if p = p(m) is such that r(m) = o(p(m)) then the

probability a nearly perfect matching exists converges to 1, and if p(m) = o(r(m)), the probability a nearly

perfect matching exists converges to 0.
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Figure 12: Worst case efficiency loss from choosing an individually rational allocation

(k = 3).

10.2.1 Proof of Lemma 4.2

For each pair type X-Y let ZX-Y(m) be the random variable that indicates the number of

X-Y pairs in D(m).

Claim 10.2. Let 0 < δ < 1 and D(m) be a random compatibility graph and consider the

following event:

Bδ(m) = {∀X-Y ∈ P , (1− δ)µX-Ym < ZX-Y(m) < (1 + δ)µX-Ym}. (5)

Then Pr [Bδ(m)] = 1− o(m−1).

Proof. Let D(m) be a random compatibility graph and let δ > 0. By Heoffding’s bound

(see e.g. e.g. Alon and Spencer (2008)) for every type X-Y

Pr [ZX-Y(m) /∈ ((1− δ)mµX-Y, (1 + δ)mµX-Y)] < e
−mµX-Yδ

2

4 + e
−mµX-Yδ

2

2 = o(m−1).

Therefore

Pr [Bδ(m)] = 1− Pr [for some X-Y ∈ P : ZX-Y(m) /∈ ((1− δ)mµX-Y, (1 + δ)mµX-Y)] ≥

1−
∑

X-Y∈P

Pr [ZX-Y(m) /∈ ((1− δ)mµX-Y, (1 + δ)mµX-Y)] = 1− o(m−1),

where the last inequality follows since there are a finite number of pair types.

Claim 10.3. Let 0 < δ < 1
2

and let D(m) be a random compatibility graph and consider

the following event:

Sδ(m) = {|ZA-B(m)− ZB-A(m)| < m
1
2

+δ}. (6)

Then Pr [Sδ(m)] = 1− o(m−1).
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Proof. By Hoeffding’s bound

Pr
(
ZA-B(m) ≥ E[ZA-B(m)] +m

1
2

+δ
)
≤ e−

m2δ

2 .

Applying the same argument for B-A pairs we obtain the result.

Proof of Lemma 4.2: Let Sδ(m) andBδ(m) be as in Claims 10.3 and 10.2. By these claims

we obtain that the probability that either Sδ(m) or Bδ(m) do not hold is o(m−1). �

10.2.2 Bounded directed random graphs - definitions and Erdos-Renyi extensions

In a random compatibility graph the number of pairs of each type is not fixed. We will

need Erdos-Renyi type results for random graphs in which the number of nodes as well

as the number of edges are random.

We start by defining a vector that will represent bounds on the number of nodes of

each pair type in a given subset of the compatibility graphs. For example, to represent

the subgraph induced by all A-O pairs and all O-A pairs, by Lemma 4.2 and the event

Bδ(m) we can use the vector ((1 − δ)µA-O, (1 + δ)µA-O, (1 − δ)µO-A, (1 + δ)µO-A) for some

δ < 1; in particular this vector is a tuple of coefficients for bounding from below and

above the number of A-O pairs and the number of O-A pairs in this subgraph.

For any r > 0 a quasi-ordered vector is a vector ᾱr = (α0,1, α0,2, α1,1, α1,2, . . . , αr−1,1,

αr−1,2) where αj,1 ≤ αj,2 for all 0 ≤ j < r, and α0,1 ≤ α1,1 ≤ . . . ≤, αr−1,1.50

The vector ᾱr is called feasible if at most one pair type could have zero number of

nodes, that is α0,2 > 0 and for every j ≥ 1, αj,1 > 0. Let ᾱr be a feasible vector. We

say that a tuple of r sets of nodes (W0, . . . ,Wr−1) are (ᾱr,m)-feasible if for each 0 ≤ j <

r the interval [αj,1m,αj,2m] contains at least one integer and if the sizes of these sets

are drawn from some distribution over all possible r-tuples of integers that belong to

[α0,1m,α0,2m]×· · ·× [αr−1,1m,αr−1,2m]. Note that for every sufficient largem, the interval

[αj,1m,αj,2m] contains at least one integer if an only if αj,1 < αj,2 or αj,1 = αj,2 is an

integer.

Definition 10.4 (Bounded Directed Random Graphs). A graph is called a bounded di-
rected random graph, denoted by D(ᾱ1,m, p), if it is generated as follows. A (ᾱ1,m)-

feasible set of nodes is generated and between each two nodes v, w a directed edge is gen-

erated from v to w with probability at least p.51

50The vector is called quasi-ordered since only the lower bounds are ordered.
51Note that for α0,1 = α0,2 = 1 the number of nodes is m.
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A graph is called a r-bounded directed random graph, denoted by D(ᾱr,m, p), if it is

generated as follows: first r ≥ 2 distinct sets of nodes W0,W1, . . . ,Wr−1 which are (ᾱr,m)-

feasible are generated. Then for each i = 0, 1, . . . , r−1, and for each two nodes v ∈ Wi, w ∈
Wi+1 (i is taken modulo r) a directed edge is generated from v tow with probability at least

p.

The definition of a bipartite graph can naturally be extended to a r-partite graph

which contains r sets of nodes each of size exactly m and edges are generated as in Def-

inition 10.4. Whenever there is no confusion we will refer also to a r-bounded directed

random graph by a r-partite graph. Note that in any r-partite graph only exchanges of

size k = qr for positive integers q are feasible. (When r = 1 we think about subgraphs in-

duced by selfdemanded pairs of some given type. When r = 2 we think about subgraphs

with potential 2-way exchanges such as O-A,A-O, and when r = 3 we think about sub-

graphs with potential 3-way exchanges such as AB-O,O-A,A-AB).

Lemma 10.5. Let 0 < p < 1.

1. For any feasible vector ᾱ1, almost every large D(ᾱ1,m, p) has a nearly perfect allo-

cation using exchanges of size 2 (i.e. an allocation that matches all nodes but at

most one), and a perfect allocation for any k ≥ 3 (i.e. an allocation that matches all

nodes).

2. Let ᾱr be a feasible vector with r > 1. Almost every large D(ᾱr,m, p) contains a

perfect allocation, i.e. an allocation that matches all nodes in some set Wi. Conse-

quently, if j′ ≤ r − 1 is the least index for which αj′,2 < αj′+1,1, then every perfect

allocation matches all nodes in some set Wi for some i ≤ j′.

Proof. Observe that is sufficient to prove the lemma for exact p since by increasing p for

some edges can only increase the probability for the existence of a (nearly) perfect allo-

cation. Throughout the proof we denote by 1r the positive vector with 2r 1’s (1, 1, . . . , 1).

We begin with the first part. Denote by Q the nearly perfect allocation property. Fix

some feasible vector ᾱ1. The proof for both k = 2 and k ≥ 3 will follow from applying

the Erdos-Renyi Theorem to non-directed random graphs.

First consider k = 2. Let pm be the probability that a nearly perfect allocation exists

in the non-directed random graph G(m, p2) (recall that this graph has exactly m nodes

and each edge is generated with probability p2). That is

pm = Pr
[
G(m, p2) |= Q

]
.
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Consider the graph D(11,m, p). Since a cycle of length 2 has probability p2

Pr [D(11,m, p) |= Q] = pm.

Let m(ᾱ1) be such that [α0,1m,α1,1m] contains an integer for every m ≥ m(ᾱ1). We define

a sequence (xm)m≥m(ᾱ1) by choosing arbitrarily the integer

xm ∈ arg min
x∈N∩[α0,1m,α1,1m]

Pr [D(11, x, p) |= Q] . (7)

Note that the minimum is attained at some value since it is taken over a finite set that

includes an integer. Therefore

Pr [D(ᾱ1,m, p) |= Q] ≥ Pr [D(11, xm, p) |= Q] = pxm .

By the Erdos-Renyi Theorem since p is a constant, pxm → 1 as m → ∞ completing the

proof for k = 2.

We proceed with k ≥ 3. If m is even, a perfect allocation exists using only 2-way

exchanges with probability 1 − o(1). If m is odd we pick arbitrarily m − 1 nodes. In

the graph induced by these nodes we find a perfect allocation, say M , using 2-way ex-

changes (again, this can be found with probability 1 − o(1)). Given that such M exists,

it is sufficient to find a couple of nodes v, w that are matched to each other in M so that

the single unmatched node can form a 3-way exchange with v and w. Such two nodes v

and w cannot be found with probability at most (1− p2)
m
2 , completing the first part.

We sketch the second part of the proof which follows by applying multiple times the

Erdos-Renyi Theorem. We sketch the proof for r = 3 (the proof for r > 3 is similar).

Consider the 3-partite graph with realized sets of nodes W0,W1,W2 and assume w.l.o.g

that W0 is the smallest of those sets. Consider the directed graph induced by the nodes

in W0 and W1. By the Erdos-Renyi Theorem, with high probability there exist a disjoint

set of edges Ē that covers all nodes in W0 (since one can change every edge to a non-

directed one and apply directly the theorem for non-directed bipartite graphs).

We next construct a bipartite directed graph Ḡ as follows. Let W0 be the set of nodes

on one side and W2 the set of nodes on the other side. We construct the set of edges

as follows. For any edge e = (w0, w1) ∈ Ē where w0 ∈ W0 and w1 ∈ W1 and any edge

(w1, w2) where w2 ∈ W2 in the original graph, we construct an edge between w0 and w2

in Ḡ. In addition for any two nodes w2 ∈ W2 and w0 ∈ W0 an edge exists Ḡ if and only it

exist in in the original graph. By Erdos-Renyi Theorem there exists a perfect allocation Ḡ

(this is just a 2-bipartite directed random graph). Finally observe that by construction, a

perfect allocation in Ḡ implies the existence of a perfect allocation in the original graph,

which completes the proof.
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10.3 Proof of Proposition 5.1

The proof is by construction. Let D(m) be a random compatibility graph. We need to

show that an allocation with the properties described in the proposition exists in D(m)

with probability 1− o(1). Let δ be a constant such that 0 < δ < min{1−2.5γ̄
1+2.5γ̄

, 0.01, γ̄
100
}.

LetBδ(m) andSδ(m) be the events defined in (5) and (6) respectively. Since Pr [Bδ(m)] =

1− o(m−1) we will assume throughout the proof that the events Bδ(m) and Sδ(m) occur

(we will the probability that either one of these events does not occur towards non-

existence of a desired allocation). Let V be the set of realized pairs in D(m). While we

assume that the type of pair is realized we assume that the edges are yet to be realized.

Claim 10.6. 1. With probability 1 − o(1) there exists a perfect allocation using only 2-

way or 3-way exchanges in the subgraph induced by only selfdemanded pairs.

2. With probability 1 − o(1) there exists a perfect allocation in the subgraph induced

by only A-B and B-A pairs. In particular either all A-B pairs or all B-A pairs are

matched under such an allocation.

Proof. Since Bδ(m) occurs, for every selfdemanded type X-X the subgraph induced by

only X-X pairs is a bounded directed graph,D(((1− δ)µX-X, (1 + δ)µX-X),m, γH). Therefore

the first part follows by the first part of Lemma 10.5.

Similarly the graph induced by only A-B and B-A pairs is a 2-bounded directed graph,

D(((1− δ)µA-B, (1 + δ)µA-B, (1− δ)µB-A, (1 + δ)µB-A),m, γH). Hence the second part follows

by the second part of Lemma 10.5.

Let M1 be an allocation in V that satisfies both parts of Claim 10.6. We will assume

that such M1 exists, and count the low probability it doesn’t towards failure of the de-

sired allocation to exist. Further assume thatM1 matches all B-A pairs, and in particular

ZA-B(m) ≥ ZB-A(m) (the proof proceeds similarly if all B-A pairs are matched).

Let V ′ be the set of pairs that are not matched byM1 in V . In particular V ′ contains all

overdemanded pairs, underdemanded pairs and the A-B pairs that are not matched by

M1. The next Claim shows that all A-B pairs that are not matched byM1 can be matched

as in the hypothesis. Recall that for a set of pairs S and type t, τ(S, t) denotes the set of

pairs in S whose type is t.

Claim 10.7. With probability 1 − o(1) there exists a perfect allocation in the subgraph

induced by the sets of pairs τ(V ′,A-B), τ(V ′,B-O) and τ(V ′,O-A), which matches all pairs

in τ(V ′,A-B).
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Proof. Let ᾱ3 = (0, 2δµA−B, (1 − δ)µB-O, (1 + δ)µB-O, (1 − δ)µO-A, (1 + δ)µO-A). Since both

Bδ(m) andSδ(m) occur the subgraph induced by the pairs in the statement is a 3-bounded

directed random graphD(ᾱ3,m, γH), and the result follows by the second part of Lemma

10.5.

Let M2 be a perfect allocation as in Claim 10.7 (again assuming it exists). By Lemma

4.2 the size of of this allocation is o(m).

As the hypothesis suggests we wish to match every AB-O pair in a 3-way exchange

using one O-A pair and one A-AB pair (see Figure 3). Furthermore we need to match

every other overdemanded pair X-Y in a 2-way to a Y-X pair. Although we have already

used some O-A pairs in M2, the following claim shows that there are sufficiently many

O-A pairs that are not matched by M2 that can be used in order to match all A-O and

AB-O pairs as we have just described. Similarly there are sufficiently many A-AB pairs

to match all AB-A and AB-O pairs.

Claim 10.8. 1. ZO-A(m) ≥ (1 + δ)m(µA-O + µAB-O) + λm for some λ > 0.

2. ZA-AB(m) ≥ (1 + δ)m(µAB-A + µAB-O).

Proof. Let 1
ρ

be the probability that an random patient and a random donor are incom-

patible.52 since Bδ(m) occurs

ZO-A(m) ≥ µO-A(1− δ)m = ρµOµA(1− δ)m > ρµOγ̄(µA + µAB)(1 + δ)m,

where the last inequality follows since µAB < µA, and δ < 1−2.5γ̄
1+2.5γ̄

< 1−2γ̄
1+2γ̄

, completing the

first part. to see that the second part follows note that

ZA-AB(m) ≥ µA-AB(1− δ)m = ρµAµAB(1− δ)m > ρµABγ̄(µO + µA)(1 + δ)m,

where the last inequality follows because µO + µA < 2.5µA (see Assumption B and Foot-

note 21) and δ < 1−2.5γ̄
(1+2.5γ̄)

.

Let M ′ = M1 ∪M2 and let V
′′

be the set of all pairs that are not matched by M ′. Con-

sider the subgraph induced by the sets of pairs τ(V ′,AB-O), τ(V ′,O-A) and τ(V ′,A-AB).

Observe that this graph is a 3-bounded directed random graph; indeed by Claim 10.8

there exist constants c1 and c2 such that the number of pairs in in τ(V ′,A-AB) and τ(V ′,AB-O)

is at least c1m and c2m. Therefore by Lemma 10.5 with high probability there exists a per-

fect allocation that will match all AB-O pairs will be matched.

52Thus if Y and X are blood types such that a donor of blood type Y is blood type compatible with a

patient of blood type X then µX-Y = ρµXµYγ̄ and otherwise µX-Y = ρµXµY.
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To complete the construction it remains to show that for every overdemanded type

X-Y except AB-O the graph induced by all X-Y and Y-X pairs that are not yet matched

contains a perfect allocation exchanges of size 2. This follows from similar arguments

as above.

It remains to show that one cannot obtain more transplants by allowing exchanges

of size more than 3. Let e be an exchange of any size and let τ(e,X-Y) be the set of pairs

in e whose type is X-Y. It is enough to show that∑
t∈U

τ(e, t)| ≤ 2|τ(e,AB-O)|+
∑

t∈O\{AB-O}

|τ(e, t)| (8)

We say that a pair v helps pair y if the there is either a directed edge from v to w or there

is a directed path v, z1, z2, . . . , zr, w where each zi, i ≥ r is a selfdemanded pair. Observe

that every underdemanded O-X pair must be helped by some overdemanded Y-O pair.

Similarly any underdemanded pair X-AB must help an overdemanded pair AB-Y pair.

Finally since an O-X underdemanded pair can help an underdemanded pair Y-AB but

not vice versa, we obtain the bound. �

10.4 Individual Rationality and the Proof of Theorem 6.1:

Before we prove Theorem 6.1 we need some preliminaries. First, it will be useful to write

Claims 10.2 and 10.3 with respect to D(Hn) rather than D(m). We will need to rewrite

the events (5) and (6) accordingly.

Lemma 10.9. Let 0 < δ < 1
2

and let Hn = {1, . . . , n}. Moreover let χHn be a random

variable which denotes the size of all hospitals, that is χHn =
∑

h∈Hn |Vh|. Consider the

events

Wδ(Hn) = {∀X-Y ∈ P , (1− δ)µ X-YχHn < |τ(VHn ,X-Y)| < (1 + δ)µX-YχHn}, (9)

and

Sδ(Hn) = {||τ(VHn ,A-B)| − |τ(VHn ,B-A)|| = o(n)}. (10)

If every hospital h ∈ Hn is of a positive and bounded size then

Pr [Wδ(Hn), Sδ(Hn)] = 1− o(1). (11)
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Definition 10.10 (Regularity). We say that c > 0 is a regular size if for every underde-

manded type X-Y∈ U

EV [

∫
|τ(MV

U (V ),X-Y)|dF (V )|#V = c] < µY-Xc, (12)

where F (V ) is any distribution over all allocations that maximize the number of matched

underdemanded pairs in a given set of pairs V .

10.4.1 Proof of Theorem 6.1:

Let D(Hn) be a random compatibility graph with the set of hospitals Hn. We will prove

the theorem for the case in which each hospital has the same regular size c ≤ c̄. The

proof for the general case is similar (using the fact that the size of each hospital is bounded).

Let RHS(12) and LHS(12) be the the right hand side and left hand side of inequal-

ity (12) respectively (see Definition 10.11). Fix δ > 0 such that δ < min(RHS(12) −
LHS(12), 0.01, γ̄

100
).

We assume that both eventsWδ(Hn) andSδ(Hn) as defined in (9) and (10) respectively

occur with low probability and count towards failure for the existence of an allocation

with the properties described in the theorem.

The next lemma is a key step. Before we proceed we some definitions first. For ev-

ery h ∈ Hn let Vh be the set of pairs of hospital h. For a hospital h ∈ Hn and a set of

pairs S ⊆ VHn denote by α(S, h) = Vh ∩ S the set of pairs in S belonging to h. Note that

τ(MVh
U (Vh),U) is a maximum set of underdemanded pairs h can internally match. We

let UHn = τ(VHn ,U) and OHn = τ(VHn ,O) be the set of all underdemanded and overde-

manded pairs in Hn respectively.

Definition 10.11. A set of underdemanded pairs S ⊆ τ(VHn ,U) is called a satisfiable set
if

1. |α(S, h)| ≥ |τ(MVh
U (Vh),U)| for all h ∈ Hn.

2. |τ(S,X-Y)| = |τ(VHn ,Y-X)| for all X-Y∈ U .

Note that the first part can be thought of as individual rationality with respect to

underdemanded pairs.53

53Even if a hospital can internally match more pairs using fewer underdemanded pairs, it is reasonable

to consider this condition since pairs of other types will be “easy” to match as suggested by Proposition

5.1.
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Lemma 10.12 (underdemanded rationality lemma). Suppose every hospital size is regu-

lar and bounded by some c̄ > 0. With probability 1 − o(1), there exists a satisfiable set Sn
in D(Hn) and a perfect allocation in the bipartite subgraph induced by Sn and τ(VHn ,O).

Proof. One way to construct a satisfiable set Sn would be to first (i) choose randomly

for each hospital a maximum set of underdemanded pairs it can internally match (by

regularity and law of large numbers this will satisfy the first property of Definition 10.11),

and (ii) add arbitrary pairs of each underdemanded type so that the second property of

Definition 10.11 is satisfied.

Suppose Sn is constructed as above. We want to show that with high probability for

each underdemanded type X-Y∈ U a perfect allocation exists in the subgraph induced

by τ(Sn,X-Y) and the overdemanded pairs in τ(VHn ,Y-X). Unfortunately Lemma 10.5

cannot be directly applied since these graphs are not 2-bounded directed random graph

due to lack of independence of each edge in the graph (recall that we already have partial

information on internal edges after phase (i) of the process above). Although it is true

that with high probability such a perfect allocation exists we use a slightly more subtle

construction for a satisfiable set.

Instead we will partition the set of hospitals into two sets H1
n and H2

n each with n
2

hospitals, and find a satisfiable set Sn such that (i) the number of underdemanded pairs

of each type X-Y inSn belonging toH1
n (H2

n) equals the number of overdemanded pairs Y-

X belonging to H2
n (H1

n). Then we will match overdemanded pairs of type Y-X H1
n (H2

n) to

X-Y underdemanded pairs in Sn belonging to H2
n (H1

n), using the observation that these

subgraphs are 2-uniform directed random graphs.

For every hospital h ∈ Hn, letMh be a random allocation that maximizes the number

of underdemanded pairs in the subgraph induced by its set of pairs Vh. For simplicity

we will assume throughout the proof that n is even. We partition the set of hospitals into

two sets H1
n = {1, . . . , n

2
} and H2

n = {n
2

+ 1, . . . , n}. Define for each j = 1, 2

Sjn = ∪h∈Hj
n
τ(Mh(Vh),U). (13)

and let S = S1
n ∪ S2

n. By construction S satisfies the first property in Definition 10.11.

Consider the following events for j = 1, 2:

Qj
n = {∀X-Y ∈ U , |τ(Sjn,X-Y)| < (1− δ)µY-X

n

2
c}.

By the regularity assumption and the law of large numbers Pr[Qj
n] = 1 − o(1) for both

j = 1, 2, and therefore Pr[Q1
n, Q

2
n] = 1− o(1).
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Consider the eventsWδ(H
j
n) for each j = 1, 2, whereWδ(H

j
n) is defined as in (9). Since

the size of eachHj
n is n

2
, from Lemma 10.9 and the fact that there are only two sets in the

partition with probability 1− o(1) both Wδ(H
1
n) and Wδ(H

2
n) occur.

Therefore with probability 1− o(1) for each j = 1, 2

|τ(Sjn,X-Y)| < |τ(VH3−j
n
,Y-X)|. (14)

Finally for each j = 1, 2 we add to Sjn arbitrary underdemanded pairs belonging to Hj
n

such that (14) becomes an equality for every X-Y∈ U ; Observe that this is feasible by

applying Lemma 4.2 for n
2

hospitals. By construction Sn = S1
n ∪ S2

n is a satisfiable set.

Let X-Y∈ U be an arbitrary type and consider the subgraph induced by the sets of

pairs τ(S1
n,X-Y) and τ(VH2

n
,X-Y). Note that this is 2-bounded directed random graph (the

realization of each edge is independent of the internal allocations Mh for each h since

all potential edges in this graph are not internal). Therefore there is perfect matching

in this graph with probability 1 − o(1). Similarly, a perfect allocation exists with high

probability in the graph induced by the sets of pairs τ(S2
n,X-Y) and τ(VH1

n
,X-Y). Finally

since there are a finite number of types the proof follows.

We continue with the proof of the theorem. Let M1 be a perfect allocation as in

Lemma 10.12. We assume that suchM1 exists, again assuming that with the failure prob-

ability no allocation with the desired properties exists.

So far M1 matches twice the number of overdemanded pairs in the graph, including

for each hospital h the number of underdemanded pairs each h can internally match. As

in the proof of Proposition 5.1 there exists a perfect allocation in the subgraph induced

by all selfdemanded pairs with probability 1− o(1), say M2.

Finally we will show that there exists a perfect allocation in the subgraph induced by

all A-B and B-A pairs which matches for each hospital at least the same number of A-B

and B-A pairs it can internally match.

For each hospital there exist probabilities εA-B > 0 and εB-A > 0 not depending on n

for not matching all their A-B and B-A pairs respectively. Therefore there exists ε > 0 not

depending on n such that with probability 1− o(1) the number of A-B pairs that cannot

be internally matched is at least εn and the expected number of B-A pairs that cannot

be internally matched is at least εn, i.e linear in n.

However by Lemma 4.2 the difference between the number of A-B and B-A pairs is

sublinear with high probability, that is, with probability 1− o(1)

||τ(VHn ,A-B)| − |τ(VHn ,B-A)|| = o(n). (15)
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Suppose that |τ(VHn ,A-B)| > |τ(VHn ,B-A)| (the proof proceeds similarly if the con-

verse inequality holds). By (15), with probability 1 − o(1) there exists W ⊆ τ(VHn ,A-B)

such that (i) |W | = |τ(VHn ,B-A)| and (ii) for each hospital h, W contains at least the

number of A-B pairs it can internally match.

Using similar arguments as in the proof of Lemma 10.12 there exists with high prob-

ability a perfect allocation in the graph induced by the sets of pairs W and τ(VHn ,B-A),

say M3.

It remains to bound the efficiency loss, which will follow from Proposition 5.1. We

consider an efficient allocation M ′ as in Proposition 5.1 and let M = M1 ∪M2 ∪M3. In

both M and M ′ all selfdemanded pairs are matched. M matches each AB-O pair in a

2-way exchange to an O-AB pair rather than carrying out a 3-way exchange as in M ′.

In both allocations M and M ′ after excluding all exchanges in which an AB-O pairs is

part of, all overdemanded pairs are matched and the same number of underdemanded

pairs are matched. Finally by (15) M leaves o(n) A-B or B-A pairs unmatched matched

whereas M ′ matches all A-B and B-A pairs. �

10.5 Proofs of Propositions 8.1-8.2

We begin with proving Proposition 8.1. Consider a setting with two hospitalsH2 = {a, b}
such that Va = {a1, a2, a3, a4} and Vb = {b1, b2, b3}. Further assume the compatibility

graph induced by VH2 is given in Figure 13.

Figure 13

Note that every maximal allocation leaves exactly one node unmatched. Suppose ϕ

is both maximal and IR. We show that if a and b submit Va and Vb respectively, at least

one hospital strictly benefits from withholding a subset of its nodes. Let v ∈ VH2 be

unmatched in ϕ(Va, Vb). If v ∈ Va then ua(ϕ(Va, Vb)) = 3. However, by withholding a1

and a2, a’s utility is 4 since the maximal allocation in V \ {a1, a2}matches both a3 and a4,
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and a can match both a1 and a2 via an internal exchange. If v ∈ Vb then by a symmetric

argument hospital b would benefit by withholding b2 and b3. �

We continue with the proof for the first part of Proposition 8.2. Consider the same

setting as in the proof of Proposition 8.1 (see Figure 13) and suppose ϕ is an IR strate-

gyproof mechanism which always guarantees more than 1/2 of the efficient allocation.

Note that either ua(ϕ(Va, Vb)) ≤ 3 or ub(ϕ(Va, Vb)) ≤ 2. Suppose ua(ϕ(Va, Vb)) ≤ 3. As in

the proof of Proposition 8.1, in order for it not to be beneficial for a to withhold a1 and

a2, the mechanism cannot match all pairs in {a3, a4} ∪ Vb. Thus ϕ can choose at most a

single exchange of size 2 in {a3, a4} ∪ Vb, which is only half of the maximum (efficient)

number, and not more, as required by assumption. The case in which ub(ϕ(Va, Vb)) ≤ 2

is similar. �

The proof of the second part of Proposition 8.2 is similar: Consider again the same

setting as in the proof of Proposition 8.1 (see Figure 13) and assume there exists a ran-

domized IR strategyproof mechanism ϕ that guarantees more than 7/8 of the efficient

allocation in every possible V . Any allocation leaves at least one node unmatched.

Therefore eitherE[ua(ϕ(Va, Vb))] ≤ 3.5 orE[ub(ϕ(Va, Vb))] ≤ 2.5. SupposeE[ua(ϕ(Va, Vb))] ≤
3.5. We argue that under the mechanism ϕ, hospital a benefits from withholding a1 and

a2. Since ϕ guarantees more than 7/8 of the efficient allocation in {a3, a4, b1, b2, b3}, ϕwill

choose the allocation containing exchanges a3, b2 and b3, a4 with probability more than

3/4. Therefore a’s expected utility from reserving 2 transplants to do internally will be

2 + c for some c > 1.5. A similar argument holds if E[ub(ϕ(Va, Vb))] ≤ 2.5 �

10.6 Proof of Theorem 8.3:

We first provide a formal definition for a strongly regular size.

Definition 10.13. We say that c > 0 is a strongly regular size if for every underdemanded

type X-Y∈ U
EV [#τ(MV

X-Y(V ),X-Y)|#V = c] < µY-Xc, (16)

where MV
X-Y is an arbitrary allocation inMV

X-Y.

Let Hn be a set of bounded and strongly regular sized hospitals and let H1
n and H2

n

be as in the theorem, i.e. a partition of Hn to two sets of hospitals each of size n
2

. For

simplicity we will assume that all hospitals have the same size c > 0.54 Fix some hospital

54Again, since all hospitals are of bounded size a similar proof follows (one needs ca neglect sizes appear

a finite number of times).
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h̄ ∈ Hn and fix Vh̄ to be the set of pairs (type) of hospital h̄. Without loss of generality

assume that h̄ ∈ H1
n. We assume that all hospitals but h̄ report truthfully their set of

incompatible pairs.

Denote by ϕ the Bonus mechanism. We need to show that for any subset of pairs

Bh̄ ⊆ Vh̄
EV−h [u(ϕ(Vh̄, V−h)] ≥ EV−h [u(ϕ(Bh̄, V−h)]− o(1). (17)

Let RHS(16) and LHS(16) be the the right hand side and left hand side of inequal-

ity (16) respectively (see Definition 10.13). Fix δ > 0 such that δ < min(RHS(16) −
LHS(16), 0.01). We assume that the events Wδ(H

1
n), Wδ(H

2
n), Wδ(Hn) and Sδ(Hn) as de-

fined in (9) and (10) occur and as usual count the low probability they don’t towards

failure of the existence of an allocation as constructed in the Bonus mechanism.55

The following claim will imply that the strategic problem of each hospital roughly

comes down to to maximizing its expected number of matched underdemanded pairs.

Claim 10.14. If h̄ reports truthfully Vh̄, all its non-underdemanded pairs that can be in-

ternally matched will be matched by ϕ with probability 1− o(1).

Proof. We fist claim that in Step 1, the mechanism ϕ will find a perfect allocation in

the graph induced by the set of selfdemanded pairs with probability 1− o(1). By the first

part of Lemma 10.5 and its proof, in almost every subgraph induced by all selfdemanded

pairs except pairs of h̄ there exists a perfect allocation M using 2-way exchanges and at

most one 3-way exchange. Let v be a selfdemanded pair belonging to h̄. Using a similar

argument to the proof of part 1 of Lemma 10.5, with high probability v can form a 3-way

exchange with one of the 2-way exchanges in M . Since h̄ is bounded by a constant size

repeating this argument for each node of h̄ proves the claim.

Similarly, as well as using the same arguments as in the proof of Theorem 6.1 to

match A-B and B-A pairs, we obtain in Step 2 of the Bonus mechanism, with proba-

bility 1 − o(1) a perfect allocation will be found in the graph induced by A-B and B-A

pairs that matches all A-B and B-A that can be internally matched. Finally similarly to

Lemma 10.12 all overdemanded pairs will be matched in Step 3 (to underdemanded

pairs) with probability 1−o(1). Since there are only 3 steps and they are all independent

of one another the result follows.
55Note that the internal graph of hospital h̄ is not a random variable since it is fixed. However, Lemma

10.9 still holds since the size of h̄ is bounded and does not affect the number of pairs in the limit. We skip

here the formal details.
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For any Bh̄ ⊆ Vh̄ and any underdemanded type X-Y ∈ U . Denote by ψX-Y(Bh̄) the

expected number of X-Y pairs in Vh̄ that will be matched when h̄ reports Bh̄ (both by the

mechanism ϕ and, in the second stage, by h̄).

Fix an arbitrary subset Bh̄ ⊆ Vh̄ and an arbitrary underdemanded type X-Y∈ U . To

see that (17) holds, by Claim 10.14 it is sufficient to show that

ψX-Y(Bh̄) ≤ ψX-Y(Vh̄) + o(1). (18)

The following lemma allow us to assume that all X-Y pairs belonging to h̄ that are

chosen in the underdemanded lottery will be matched:

Claim 10.15. All X-Y pairs chosen by the underdemanded lottery will be matched by ϕ

with probability 1− o(1), regardless of whether Bh̄ or Vh̄ are reported.

Proof. Suppose h̄ reports Bh̄ (since Bh̄ is arbitrary all arguments in the proof hold also

if h̄ reports Vh̄). Recall that Sh(X-Y) is the set of X-Y pairs belonging to h that are chosen

in the underdemanded lottery, and recall that θj(Y-X) = |τ(BH3−j
n
,Y-X)| for each j = 1, 2

(see Step (3a) in the Bonus mechanism).

By our assumption every hospital is strongly regular (see Definition 10.11). There-

fore, by the law of large numbers and since h̄ is of bounded size, with probability 1−o(1)

for each j = 1, 2 ∑
h∈Hj

n

|Sh(X-Y)| < θj(Y-X).56

Therefore with high probability the underdemanded lottery will enter the Main Step

of the underdemanded lottery.57.

SinceWδ(H
1
n) andWδ(H

2
n) occur θj(Y-X) < |τ(BH3−j

n
,X-Y)| and θ3−j(Y-X) < |τ(BH3−j

n
,X-Y)|

for each j = 1, 2. Hence, for each j = 1, 2 the size of∪h∈Hj
n
Sh(X-Y) at the end of the under-

demanded lottery is the same size as the number of reported Y-X pairs by all hospitals

in H3−j
n .

In particular each of the two subgraphs containing X-Y and Y-X pairs considered in

step (3b) of the bonus mechanism is a 2-bounded directed random graph (here we used

that nodes on each side of a graph cannot belong to the same hospital and therefore we

still have independence of each edge). Therefore, by Lemma 10.5 both these subgraphs

contain a perfect allocation with probability 1− o(1) and by construction all X-Y pairs in

these graph will be matched with probability 1− o(1).

56We don’t know if |Bh̄| is a strongly regular size, but since it is only one bounded hospital the inquality

holds.
57Again, we neglect formalizing that hospital h̄’s set is fixed and not a random variable
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From this point on we will assume that all X-Y pairs chosen by the underdemanded

lottery all end up matched (again counting the failure probability towards failing to

match all underdemanded pairs of hospital h̄ that are chosen in the underdemanded

lottery).

By the Main Step of the underdemanded lottery, adding imaginary X-Y pairs to Bh̄

(i.e. not from Vh̄ \ Bh̄) can only increase ψX-Y(Bh̄). We will add g new X-Y pairs to the set

Bh̄ assuming that each of these new pairs cannot be internally matched by h̄, where

g = |τ(Vh̄,X-Y)| − |τ(Bh̄,X-Y)|.

Note that g ≥ 0, and with a slight abuse of notation we refer from now on to Bh̄ as the

extended set containing the imaginary pairs. We need to show that (18) holds.

Let q and q̃ be the number of X-Y pairs h̄ can match internally in Vh̄ and Bh̄ respec-

tively. Observe that q̃ ≤ q ≤ |τ(Vh̄,X-Y)|. We will assume that q < |τ(Vh̄,X-Y)|, otherwise

(18) is satisfied since all pairs in τ(Vh̄,X-Y) will be matched by ϕ.

Consider the Main Step in the under demanded lottery; When h̄ reports Vh̄, each ball

in J belonging to h̄ is drawn with some identical probability p > 0. Similarly when h̄

reports Bh̄ each ball in J belonging to h̄ is drawn with some identical probability p̃ > 0.

Since the number of X-Y pairs and Y-X belonging to h̄ is bounded and the total number

of X-Y and Y-X pairs in the pool approaches infinity

p̃ = p+ o(1). (19)

We set z = |τ(Vh̄,X-Y)| and consider the case that h̄ reports Vh̄. In the initialization

step of the underdemanded lottery, Sh̄(X-Y) is initialized to contain exactly q X-Y pairs

of h̄, and in the Main step of the lottery, for each one of h̄’s that is drawn, an additional

X-Y pair belonging to h̄ is added to Sh̄(X-Y) as long as there are remaining X-Y pairs in

Vh̄. Therefore since h̄ has at most z − q additional X-Y pairs (to the initial q ones)

ψX-Y(Vh̄) = q +

z−q−1∑
j=1

j

(
z

j

)
pj(1− p)z−j + (z − q)

z∑
j=z−q

(
z

j

)
pj(1− p)z−j. (20)

Consider now the case that h̄ reportsBh̄. Again, the initialized set Sh̄(X-Y) contains q̃ X-Y

pairs, and for each of h̄’s balls that is drawn in the Main Step, an additional X-Y pair is

added to Sh̄(X-Y) (as long as it has such remaining in Bh̄). Recall that we assumed that

all pairs Sh̄(X-Y) at the end of the lottery will be matched by the mechanism ϕ.

Since h̄ hasn’t reported all its pairs, it can still use pairs in Vh̄ \ Bh̄ in exchanges

to match X-Y pairs in τ(Vh̄,X-Y) \ Sh̄(X-Y). By definition of q and the initialization of
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Sh̄(X-Y), h̄ cannot match more than an additional q − q̃ X-Y pairs that the mechanism

hasn’t matched. Therefore

ψX-Y(Bh̄) ≤ q̃+

z−q̃−1∑
j=1

min(j+q−q̃, z−q̃)
(
z

j

)
p̃j(1−p̃)z−j+(z−q̃)

z∑
j=z−q̃

(
z

j

)
p̃j(1−p̃)z−j, (21)

where the second term on the right hand side follows since if j balls are drawn from J ,

h̄ can match at most an additional q − q̃ X-Y pairs, and altogether not more than z − q̃
additional X-Y pairs to the first q̃ pairs.

Since z, p and q̃ are all bounded, by (19) we can replace p̃with p in the right hand side

of (21) and add o(1). Therefore

ψX-Y(Bh̄) ≤ q̃+

z−q̃−1∑
j=1

(
z

j

)
pj(1−p)z−j min(j+q−q̃, z−q̃)+(z−q̃)

z∑
j=z−q̃

(
z

j

)
pj(1−p)z−j+o(1).

(22)

Since z − q̃ ≥ z − q

ψX-Y(Bh̄) ≤ q̃ +

z−q−1∑
j=1

(
z

j

)
pj(1− p)z−j(j + q − q̃) + (z − q̃)

z∑
j=z−q

(
z

j

)
pj(1− p)z−j + o(1) =

q̃+

z−q−1∑
j=1

j

(
z

j

)
pj(1−p)z−j+(q−q̃)

z−q−1∑
j=1

(
z

j

)
pj(1−p)z−j+(z−q+q−q̃)

z∑
j=z−q

(
z

j

)
pj(1−p)z−j+o(1) ≤

ψX-Y(Vh̄) + o(1),

where the last inequality follows by (20) and since (q − q̃)
∑z

j=1

(
z
j

)
pj(1 − p)z−j ≤ q − q̃.

We have shown that inequality (18) is satisfied.

To see that the bound on the efficiency loss holds under the truth-telling strategy

profile, note that the allocation constructed by ϕ has the same size/properties as the

one constructed in the proof of Theorem 6.1, implying the result. �
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