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Many end-stage renal disease sufferers who require a kidney transplant to prolong their lives have a relative or
friend who has volunteered to donate a kidney to them, but whose kidney is incompatible with the intended
recipient. This incompatibility can sometimes be overcome by exchanging a kidney with another incompati-
ble patient-donor pair. Such kidney exchanges have emerged as a standard mode of kidney transplantation
in the United States. The Alliance for Paired Donation (APD) developed and implemented nonsimultaneous
extended altruistic donor (NEAD) chains, an innovative technique that allows a previously binding constraint
(of simultaneity) to be relaxed; thus, it permits longer chains and better-optimized matching of potential donors
to patients, greatly increasing the number of possible transplants. Since 2006, the APD has saved more than 220
lives through its kidney exchange program, with more than 75 percent of these achieved through nonsimulta-
neous chains. Other kidney exchange programs have adopted the technology and methods pioneered by APD,
resulting in more than 1,000 lives already saved, with the promise of increasing impact in coming years. In
2013, the percentage of transplants from nonsimultaneous chains reached more than six percent of the number
of transplants from living donors. In this paper, we describe the long-term optimization and market design
research that supports this innovation. We also describe how a team of physicians and operations researchers
worked to overcome the skepticism and resistance of the medical community to the NEAD innovation.

Keywords : matching: transplantation; market design; optimization; design; integer programming.

This paper describes how the Alliance for Paired
Donation (APD) used operations research (OR)

and market design methodologies to make improved
matches between kidney disease sufferers and poten-
tial kidney donors. To date, the APD, a nonprofit
organization, has saved more than 220 lives through
its development and implementation of nonsimulta-
neous extended altruistic donor (NEAD) chains that
we describe next. In addition, other kidney trans-
plant institutions and kidney exchange programs have

adopted the APD methodology, saving more than
1,000 lives to date. In the future, we expect that thou-
sands of lives will be saved annually. The percentage
of transplants from nonsimultaneous chains reached
more than six percent of the number of transplants
from living donors in 2013. We estimate that as a
result of using these chains, the number of trans-
plants conducted through kidney exchange programs
has increased by more than 10 percent and the per-
centage of very highly sensitized patients transplanted

26

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

17
1.

64
.1

12
.3

3]
 o

n 
07

 J
ul

y 
20

17
, a

t 1
5:

17
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



Anderson et al.: Operations Research Changes the Way Kidneys Are Transplanted
Interfaces 45(1), pp. 26–42, © 2015 INFORMS 27

(i.e., those for whom it is most difficult to find a com-
patible kidney) has increased by more than 50 percent.

This project involved a blend of OR techniques,
including optimization algorithms for finding a large
number of matches between donors and recipients and
market design mechanisms to facilitate collaboration
across organizational boundaries by hospitals, insti-
tutions, and surgeons who otherwise compete in the
$50 billion end-stage renal disease (ESRD) industry.

Background
In the United States, about 100,000 sufferers of ESRD
are currently on the waiting list for a kidney transplant
from a deceased donor. Transplantation is the pre-
ferred treatment for this severe disease. Sadly, about
4,000 of the patients on the waiting list will die this
year before receiving a transplant, and another 2,500
will be removed from the queue as “too sick to trans-
plant.” In addition, about 5,000 patients will receive
transplants from living donors and 10,000 will receive
transplants from deceased donors. The problem is
growing worse, as the waiting list increases by about
7,000 patients per year, making ESRD one of the most
expensive problems in the U.S. healthcare system.

These long waiting times for transplants have two
dominant causes. The first is the shortage of kidneys
available for transplant—kidneys that are available
from either deceased donors or living persons who
are willing to donate one of their two healthy kid-
neys. The second cause is potential incompatibility
between living donors and their intended recipients.
The thrust of kidney exchange programs is to signif-
icantly increase the number of living-donor kidney
transplants by bringing together incompatible donors
and recipients and conducting exchanges so that each
recipient receives a compatible kidney. These pro-
grams essentially develop a marketplace for kidney
exchanges, taking into account that a monetary mar-
ket is forbidden by law. Specifically, kidney exchange
allows a potential living donor whose kidney is incom-
patible with the intended recipient to donate a kid-
ney to another patient so that the donor’s recipient
receives a compatible kidney from another donor. This
is done by exchange between two or more incompat-
ible patient-donor pairs; each donor gives a compati-
ble kidney to another donor’s intended recipient (see
Figure 1(a)). Rapaport (1986) first suggested the idea of

Donor 1
blood type A

Donor 2
blood type B

Recipient 1
blood type B

Recipient 2
blood type A

Figure 1(a): This diagram illustrates a two-way cyclic exchange between
two blood-type-incompatible recipient-donor pairs, Recipient 1-Donor 1
and Recipient 2-Donor 2.

swapping donors between incompatible pairs, and the
first such exchanges took place in Korea in the 1990s
(Park et al. 1999). The first exchange in the United
States occurred in 2000 at Rhode Island Hospital.

Originally, most kidney exchanges were conducted
through simple cyclic exchanges, as Figure 1(a) de-
picts. Because of fear of possible reneging, such
cyclic exchanges have been conducted simultaneously,
making the exchange process a significant logistical
challenge: four operating rooms and four surgical
teams are required for the two nephrectomies and
two transplants involved in the simplest exchange
between two patient-donor pairs. For these reasons,
cyclic exchanges with more than three patient-donor
pairs are rarely conducted. Another type of exchange
took the form of a chain. Chains using nondirected
donors (NDDs) (i.e., kidney donors who decide to
donate without having an intended recipient) were
also conducted simultaneously at first, thus involving
only two or three transplants at a time and ending
with a transplant to a patient on the waiting list (see
Figure 1(b)).

Contribution
The APD initially adopted design and optimization
techniques for identifying short cycles and chains.
It was, however, APD’s introduction of an inno-
vative and highly controversial approach based on
NEAD chains that significantly increased the number
of transplants that can be achieved through kidney
exchange.

The added value derived from using NEAD chains
is threefold. First, current clinical practice shows ample
empirical evidence, substantiated by conclusions
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Donor 1 
blood type A

Recipient 1
blood type B

Recipient 2
blood type A

Nondirected
donor

blood type B

Figure 1(b): This diagram illustrates a two-transplant chain involving
one nondirected donor, one blood-type-incompatible recipient-donor pair,
Recipient 1-Donor 1, and one recipient, Recipient 2, who has no living
donor to continue the chain.

drawn from mathematical models reflecting the com-
position of contemporary patient-donor pools (see
Figure 4), that when exchanges are conducted in an
optimal way, approximately 70 percent of transplants
are conducted via NEAD chains. Thus, NEAD chains
are responsible for the majority of successful kidney
transplants conducted via kidney exchange at both
APD and within other major exchange programs. By
allowing only short (at most three) chains, the number
of transplants would have been reduced by at least
12 percent, and more than 30 percent of the recip-
ients would have been transplanted after a longer
waiting period. The number of very highly sensitized
transplanted patients (patients who have many anti-
bodies and are thus not likely to accept a donor’s
kidney) would have been reduced by approximately
50 percent.

Second, unlike cyclic exchanges, chains can be con-
ducted nonsimultaneously, while assuring that each
patient in each patient-donor pair receives a kidney
before the donor of the same pair donates the kid-
ney. The relaxation of the simultaneity requirement
significantly reduces the logistical overhead, making
long chains possible and accomplishing many trans-
plants. The longest NEAD chain to date—by the
National Kidney Registry (NKR)—achieved 30 trans-
plants, and involved 60 people, 30 donors, and
30 patients (Sack 2012).

Finally, NEAD chains can provide transplants for
many hard-to-match patients. A patient receiving a
donor’s kidney needs to be both blood- and tissue-
type compatible (i.e., the patient does not have an
antibody that would lead to the rejection of the
donor’s kidney). Chains offer hope to highly sen-
sitized patients who are likely to be incompatible
with the people who wish to donate a kidney to
them. Highly sensitized patients typically wait unusu-
ally long periods before a compatible kidney from
a deceased donor becomes available, if one ever
does. For many such patients, although no cyclic
exchanges could be identified, chains involving these
patients and originating with NDDs were found and
implemented, providing their only kidney transplant
option.

Conducting kidney exchanges through cycles or
chains introduces the challenge of finding a maximal
set of compatible matches, a classical OR combinato-
rial optimization problem, which we solve using inte-
ger programming techniques and insights from the
theory of random graphs. Allowing chains to be long
significantly increases the size of the optimization
models and the resulting computational challenges.

Moreover, because kidney exchange is decentral-
ized (the United States has more than 200 transplant
centers and innumerable dialysis clinics), organizing
kidney exchange is both an optimization problem and
a serious market design and coordination problem.
A successful broadscale approach to designing kid-
ney exchange clearinghouses and protocols needs to
take into account the goals and interests of the hun-
dreds of existing institutions in the $50 billion-per-
year business of caring for ESRD patients, because
participating agents often have conflicting objectives.
Thus, market design issues are central to this work.

We describe both the optimization approach and
elements of the market design that the APD devel-
oped for conducting kidney exchange. In addition to
technical issues, we emphasize the cultural and polit-
ical obstacles to implementing long chains and our
work to overcome them. We survey the steps, begin-
ning in 2004, that led our team toward the APD’s cur-
rent successful practices. We detail its direct impacts
through the APD, describe how other organizations
have adopted nonsimultaneous chains, and provide
estimates of the overall impact of these innovations.
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Operations Research for Kidney
Exchange: Market Design and
Optimization

Early Experience: Exchanges with Short
Simultaneous Cycles and Chains
In 2000, Michael Rees, the founder-to-be of the APD,
and his father, Alan, wrote the first computer pro-
gram to heuristically identify all possible two-way
cyclic kidney exchanges within a pool of incompati-
ble pairs. This program applied a utility score to each
exchange and produced a rank-ordered list of all pos-
sible exchanges. In 2003, Michael Rees and Jonathan
Kopke (at the University of Cincinnati) modified the
program to be Web-based and track participating
patients and donors from registration through trans-
plantation. The Ohio Solid Organ Transplantation
Consortium (OSOTC) living-donor kidney exchange
program utilized this software from 2004 until 2006,
when the OSOTC was disbanded.

OR methods were first applied to kidney exchange
when Roth et al. (2004) proposed organizing kid-
ney exchange on a large scale, including integrat-
ing exchange cycles and chains. They proposed an
allocation mechanism that made it safe for partic-
ipating patients and their surgeons to reveal rele-
vant information (e.g., their medical data and that
of all their willing donors, and which donors in the
pool are acceptable to donate to them). That proposal
involved algorithms that could generate large cycles
and long chains. The mathematical treatment of those
algorithms dates back to the top-trading-cycle algo-
rithm introduced by Shapley and Scarf (1974), who
attributed it to David Gale. Roth (1982) established
its dominant strategy incentive properties (i.e., prop-
erties that allow participants to safely reveal their
true preferences) that would be relevant in the kid-
ney exchange context. Abdulkadiroğlu and Sönmez
(1999) adapted the algorithm to more general settings
by modeling the allocation of dormitory rooms in a
way that later provided a natural bridge to models
for allocating kidneys.

In 2004, however, the surgical culture and infrastruc-
ture permitted only pairwise simultaneous exchanges.
To avoid the possibility that one pair would give a kid-
ney and then not receive one (e.g., because of reneg-
ing), it was (and remains) the practice that all surgeries

in a cyclic exchange be conducted simultaneously.
So, even the simplest exchange between two patient-
donor pairs required four operating rooms and four
surgical teams for simultaneously conducting the two
nephrectomies and transplants.

Responding to this limitation, Roth et al. (2005a)
considered how to organize kidney exchange around
only pairwise exchanges. This constraint allows the
application of classic graph theory methods, includ-
ing Edmonds’ matching algorithm (Edmonds 1965)
and the Gallai-Edmonds decomposition (Gallai 1964).
It also requires that the sets of matchable nodes in
a graph constitute a matroid. Roth et al. (2005a)
were able to show how to achieve a maximal set of
kidney transplants in a way that continues to give
patients and surgeons incentives to reveal all rele-
vant information (e.g., the number of willing donors
associated with a patient in cases with more than
one such donor). In contrast to the simple OSOTC
rank-ordered program, the New England Program
for Kidney Exchange (NEPKE), established in 2005,
was the first multihospital kidney exchange program
to optimize pairwise kidney exchanges (Roth et al.
2005b). In collaborating with NEPKE and gaining
experience with pairwise exchanges, Saidman et al.
(2006) and Roth et al. (2007) showed that efficiency
gains could be achieved by incorporating chains (still
short ones) and larger cyclic exchanges that would
require only relatively modest additional surgical
infrastructures. Three-way cycles and short simulta-
neous chains quickly began to be part of regular kid-
ney exchange practice in almost all programs, includ-
ing those of the APD. Roth et al. (2007) estimate that
the potential gains from three-way exchanges result in
at least 20 percent more transplants; under different
assumptions in the evolution of the exchange pool,
Ashlagi et al. (2013) estimate that gains are at least 50
percent more when three-way chains are included.

These proposals were instrumental in stimulating
the founding of the APD in 2006 under the direction
of Michael Rees. The APD’s predecessor, the OSOTC,
identified all two-way cycles, greedily ranked them,
and thus did not find the largest number of two-
way cycles; in contrast, the APD adopted optimiza-
tion software, designed by Roth, Sönmez, and Ünver,
to maximize the weighted number of transplants in
existing pools. It uses weights to define and account
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for priorities between different matches. This algo-
rithm finds optimal solutions consisting of cycles and
chains whose lengths are bounded by three or four,
depending on the circumstances. The algorithm is
based on solving an integer program in which each
feasible cycle and chain is assigned a binary decision
variable. Until 2007, all surgeries in a cycle or chain
were implemented simultaneously, thus significantly
limiting the length of these cycles and chains. For
example, a three-way exchange required six operating
rooms and six surgical teams (for three nephrectomies
and three transplants).

Relaxing the Simultaneity Constraints and the
Benefit of Long Chains
In 2006, Roth, Sönmez, and Ünver, in conjunction with
Drs. Frank Delmonico and Susan Saidman, observed
that the growing number of altruistic NDDs would
allow the simultaneity constraint to be relaxed for
transplant chains initiated by NDDs (Roth et al. 2006).
When a chain is initiated by an NDD, it can be orga-
nized so that the NDD makes the initial donation and
no patient-donor pair has to donate a kidney before
receiving one. This reduces the cost of a broken link,
because no pair would be left without a kidney after
donating one. By reducing the cost of a broken link,
we begin to realize the potential benefits of chains in
which operations are conducted nonsimultaneously.
The benefit is that nonsimultaneous chains can be

MI
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Figure 2: The graph shows the first NEAD chain, as reported by Rees et al. (2009).

longer, because more operating rooms and surgical
teams can be assembled over a longer time frame.

Nevertheless, practitioners in the transplant com-
munity raised objections about the use of nonsimul-
taneous chains. They were concerned that a broken
chain or chains (e.g., because of reneging) would cause
patients and the public to lose trust in the kidney
exchange system. Dr. Rees disagreed and felt that the
utilitarian gains would outweigh the risk of equity
losses. Therefore, after careful planning to minimize
this danger, the APD implemented a NEAD chain and
began to carry out the first nonsimultaneous, long
chain of kidney transplants in July 2007. In this first
chain, short segments were identified and the indi-
cated transplants were carried out simultaneously. The
APD designated the last donor of each identified seg-
ment of the chain to be the bridge donor for future
segments of the chain, after the intended recipient had
already received a transplant. It trusted bridge donors
to “pay it forward” in the future to the next segment of
the chain when it was identified. Segments of the first
NEAD chain were identified dynamically as the pro-
cess unfolded, and transplants were sometimes sep-
arated by months and thousands of miles. By March
2008, this first NEAD chain included 10 transplants
and 11 donors, 10 of whom had donated kidneys to 10
patients they did not know. Rees et al. (2009) reported
it in the New England Journal of Medicine, making it
easier for others to adopt this innovation (see Figure 2).
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The end of the chain was the 11th donor, whose
blood type was AB and the last bridge donor at the
time Rees et al. (2009) was published. She eventu-
ally waited three years before she donated to con-
tinue the chain. AB is the least frequent blood type
in the population and most AB patients who join
kidney exchange are highly sensitized, because their
blood types are never incompatible with those of
any donor; thus, AB patients can only be incompati-
ble with their donors if their tissue types are incom-
patible. Exchange programs today seldom designate
an AB donor as a bridge donor to continue a chain
within the kidney exchange pool, but rather close the
chain with a donation of the AB donor’s kidney to a
patient on the (long) waiting list for deceased donors.
That initial chain was eventually extended to 16 trans-
plants, and only ended when the APD participated
with the United Network for Organ Sharing (UNOS)
in an exchange, and UNOS chose to end the chain
with a donation to someone on the deceased-donor
waiting list. Today, after the completion of many more
nonsimultaneous chains, the incidence of reneging by
bridge donors continues to be very low (about two
percent). Note that chains can break for reasons other
than a choice on the part of the bridge donor; for
example, the medical situation of the donor or the
intended recipient could change. In the latter case, the
chain can often be repaired by finding a new recipient
for the bridge donor.

Since 2007, several other kidney exchange match-
ing services have adopted NEAD chains for arrang-
ing kidney exchanges in the United States. Most
notably, the NKR built its matching service around
this approach. Of the more than 1,000 transplants that
the NKR has conducted, more than 67 percent of them
have used NEAD chains. Although long chains may
seem intuitively attractive, their advantages were not
clear initially. Long chains might not increase effi-
ciency if they simply identify transplants that could
otherwise have been done in multiple short cycles.
In addition, as we previously mention, many in the
transplant community continued to worry that non-
simultaneous chains were fraught with the danger of
eroding trust in the entire kidney exchange enterprise
if broken chains became common.

Allowing chains to be nonsimultaneous and thus
longer than three, meant optimizing over a huge solu-
tion space. For example, in a pool with 150 pairs,

but only one NDD, the number of chains bounded
by length three can reach up to a few thousand, and
could include more than one million chains if we per-
mit them to be of length six. We discuss further com-
putational issues and algorithms in the Algorithms,
Optimization, and Implementation section.

Simultaneous or Nonsimultaneous Chains?
Criticism and Objections
Whether to proceed with NEAD chains or con-
tinue with short simultaneous chains became a major
debate in the medical kidney transplant community in
2009. An influential team from Johns Hopkins Hospi-
tal argued that based on computer simulations, nonsi-
multaneous chains should not be conducted, because
even a modest risk of a broken chain implied that
more transplants would be accomplished via short
simultaneous chains (Gentry et al. 2009), which they
called domino-paired donation (DPD) chains. DPD
chains include up to two incompatible pairs and
end with a patient on the waiting list for deceased
donors. Because the waiting list always contains
many patients (today about 100,000), finding a com-
patible patient on the waiting list for the last kidney
in a chain is always possible; in addition, if this trans-
plant is done simultaneously with the others, a bridge
donor who might break the chain by failing to donate
at a later date becomes impossible.

We engaged in the debate and noted that the Hop-
kins team failed to capture some of the potential
for NEAD chains to accomplish many transplants,
because its model constrained NEAD chains to have
three or fewer transplants in each round of optimiza-
tion (Ashlagi et al. 2011a). We showed that the con-
clusions of the Hopkins teams were reversed when
long chain segments were allowed. Moreover, most
of the additional patients who received transplants
from long chains rather than shorter ones would be
very highly sensitized. This debate within the medical
academic community continued, as Gentry and Segev
(2011) and Ashlagi et al. (2011b) discuss, but did not
prevent the continued adoption of long chains by the
APD and a few other transplant networks. As addi-
tional favorable clinical experience and data accumu-
lated, the debate was settled in favor of NEAD chains.

A team from Carnegie Mellon University also
conducted simulations that led it to conclude that
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although NEAD chains result in more transplants
than DPDs, NEAD chain segments should be capped
at four transplants (Dickerson et al. 2012). The
national UNOS pilot program has adopted this con-
straint on chains.

As of this writing, the accumulated clinical suc-
cess of NEAD chains, including some very long ones,
has become so apparent that early opponents (e.g.,
Johns Hopkins Hospital) have now adopted them
(Rector and Cohn 2013), making exchanges based on
nonsimultaneous, potentially long chains a standard
practice.

The Power of Long Chains: Mystery Explained
We now explain what makes kidney exchanges so
potent based on nonsimultaneous chains , how this
realization came to be, and how it has changed the
practice of kidney exchange. The key reason that long
chains increase the number of transplants is the high
percentage of very highly sensitized patients in kid-
ney exchange pools. Patient sensitivity is measured by
the panel-reactive antibody (PRA), which is the likeli-
hood that the patient will be tissue-type incompatible
with a random donor. For example, if a patient has
a PRA of 99 percent, then 99 percent of the blood-
type-compatible potential donors for this patient will
not be tissue compatible. By simulating a pool using a
statistical process based on empirical medical charac-
teristics, less than 10 percent of the general population
patients are expected to have a PRA level of 80 or
more. This is the case for the pool of ESRD patients
on the waiting list for a deceased donor. However, in
kidney exchange pools, and in particular in the APD
pool, more than 40 percent of the patients have a PRA
of at least 80. In addition, more than 65 percent of
the APD patients with PRA levels of 80 to 100 have
a PRA greater than 95. Figure 3 plots the percentage
of patients who are registered in the APD pool and
have a PRA of at least 95. The percentages of patients
newly registered to the pool and with PRAs greater
than 95 in 2010, 2011, and 2012 were 33, 33, and 30,
respectively; therefore, both the stock of patients in
the pool and the flow of new patients are much more
highly sensitized than the general patient population.

This means that the directed graph depicting
the compatibilities between members of a kidney
exchange pool is very sparse. Patients in kidney

2.09% 2.56%
4.18%

5.81%

14.38%

95–96 96–97 97–98 98–99 99–100

PRA

Figure 3: The percentage of patients in the APD pool who have a panel-
reactive antibody (PRA) of at least 95 is heavily skewed toward the most
highly sensitized patients.

exchange pools have such high PRAs, in contrast
to the general patient population, for two primary
reasons. First, as kidney exchange grew, hospitals
became strategic players. Hospitals (or directors of
transplant centers) can choose from larger sets of pos-
sible actions than can individual surgeons or patients,
because hospitals see multiple patient-donor pairs.
Because many major transplant centers have acquired
experience with kidney exchange, hospitals often
match their easy-to-match pairs internally (Roth 2008,
Ashlagi et al. 2013), and only refer their difficult-to-
match pairs to the kidney exchange networks. As a
result, kidney exchange pools contain very large per-
centages of highly sensitized patients. Second, most
highly sensitized patients and hard-to-match pairs
naturally accumulate over time in the pool (up to
a steady state, because patients cannot indefinitely
remain in the pool).

Pools consisting primarily of highly sensitized
patients, coupled with the shortage of NDDs, lead to
the need for exchanges based on long chains. This is
because when we represent which donors can give
kidneys to which patients via a compatibility graph
(in which the nodes are incompatible patient-donor
pairs, and a directed edge goes from one pair to
another if the kidney from the donor in the first pair
is compatible with the patient in the second pair),
the resulting compatibility graphs become sparse; as
a result, exchanges that are based only on short cycles
and chains are substantially suboptimal. Mathemati-
cally, the benefit of long chains in such pools can be
illustrated by some classical facts from the theory of
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random graphs. In the sparse Erdos-Renyi random
graphs, the number of short cycles involving highly
sensitized patients is very small. At the same time,
there exists with significant probability a long chain
covering a substantial number of nodes in the graph.
Ashlagi et al. (2013) analyze a random graph with
a mixture of dense (low-PRA patients) and sparse
(high-PRA patients) parts. They show that in such
graphs, allowing for long chains amounts to an order-
of-magnitude increase in the number of patients par-
ticipating in the exchanges.

To further illustrate the typical properties of pools
of patients encountered in practice, consider a snap-
shot of APD data (see Figure 4). This figure describes
the compatibility graph induced by the subset of
patient-donor pairs such that all patients and all
donors have blood type A. In particular, no blood
type incompatibilities exist among these pairs. At the
moment, represented by this compatibility graph, 38
such pairs have some compatibilities among them-
selves (18 such pairs were not compatible as patients
or donors with any other of these pairs); each of the
38 pairs is represented by a node of the graph. An
arrow points from one node to another if the kidney
from the donor in the first pair is compatible with
the patient in the second pair. Of the 38 pairs, 30
contain patients with high PRAs, which we depict as
white nodes. We see that these nodes have few incom-
ing edges. The nodes containing the eight low-PRA
patients have substantially more incoming edges and
are shaded in the figure. The dashed edges are parts
of cycles. Note that no cycle contains only high-PRA
patients, and only one cycle includes one high-PRA
patient.
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Figure 4: (Color online) This compatibility graph is of the patient-donor pairs, each with blood type A, from APD
data. Most of these patients are highly sensitized; therefore, they cannot participate in cyclic exchanges, but can
be reached via chains.

NEAD chains have become the regular practice at
the APD, which now uses an optimization algorithm
in which the length of chains is unconstrained. This
is now also the practice at the NKR, the highest-
volume kidney exchange program today. In the NKR
and UNOS KPD: Other Kidney Exchange Programs sec-
tion, we review data from two other kidney exchange
programs.

Benefits

Results at the APD
Before describing the impact, we discuss how the typ-
ical matching process works at the APD. More than
80 transplant centers are currently registered with the
APD (centers do not commit to enroll all of their
pairs or accept matches). Each weekday after new
incompatible pairs are entered into the APD pool or
a potential match is abandoned (e.g., when a pair
does not accept a match offer), the APD conducts a
match run to find a maximum weighted number of
matches, allowing both cyclic and long nonsimulta-
neous chain exchanges. The solution is based on the
apparent compatibilities between patients and donors
in the pool. The APD pool contains approximately
200 patient-donor pairs at any given time. Finding
a solution typically takes three minutes or less; the
Algorithms, Optimization, and Implementation section
includes details. The solution is determined accord-
ing to apparent compatibilities based on the medical
information of patients and donors (blood tests must
still be done before the transplant takes place). After
the software finds an optimal solution, a central lab
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conducts crossmatch tests on the blood samples of the
patients and donors to determine whether each recip-
ient in the solution is tissue-type compatible with the
intended donor. The transplant center of each patient
who is part of the solution is then informed of the
details about the patient’s matched donor so that the
center can accept the donor. Centers and (or) patients
can refuse to accept offers. An exchange (chain or
cycle) proceeds to the transplantation stage if a blood-
test failure or donor rejection does not occur during
these stages.

Significant benefits accrue directly to the trans-
planted recipients. They are freed from being tied to
dialysis for many hours each week (e.g., three weekly
sessions of four hours each), regain their health and
ability to work, and have their lives extended. Finan-
cial benefits also accrue to the medical system and to
third-party payers. The dialysis treatments that most
ESRD patients use cost Medicare $87,272 per year per
patient (United States Renal Data System 2013) and
cost private insurers much more. Transplanting a sin-
gle kidney-failure patient, at an average yearly cost of
$32,922 (averaged over five years), rather than hav-
ing that patient remain on dialysis, saves Medicare
$271,750 over five years. Note the average survival
rate for a dialysis patient is about five years.

Since 2007, the APD has conducted more than
220 transplants through kidney exchange, and more
than 168 of these have used chains. As a result,
we can estimate the financial impact of these trans-
plants. If each transplant saves $271,750 over five
years, the transplants of the APD, which exceed 200,
have produced savings in excess of $54 million for the
U.S. healthcare system. In a more conservative anal-
ysis of the savings from a single living-donor kidney
transplant, which takes into account that transplant
patients live longer than dialysis patients and there-
fore incur medical costs over a longer period, Matas
and Schnitzler (2004) estimate the savings at $94,579,
and the quality-adjusted life years (QALYs) gained at
3.5. Adding the value of QALYs, a living-unrelated-
donor transplant saves $269,319, assuming society
values additional QALYs from transplantation at the
rate paid per QALY achieved by dialysis. Using this
analysis, 168-plus living-donor transplants (through
chains facilitated by APD) have saved $16 million and
produced a value to society of $45 million.

The analysis in Wolfe et al. (1999) shows that the
average patient who received a deceased-donor kid-
ney transplant lived 10 years longer than that patient
would have lived had he (she) stayed on dialysis.
Therefore, APD transplants have given these 168-
plus patients at least 1,600 extra years of life. These
numbers are conservative, because the average living-
donor kidney lasts twice as long as the average
deceased-donor kidney.

Impact at Other Transplant Networks in the
United States
In the United States, more than 2,600 kidney paired-
donation (KPD) transplants have been performed
since 2000 when the first two KPD transplants were
performed at Rhode Island Hospital, and more than
2,250 KPD transplants have been done since 2008.
To demonstrate the impact of NEAD chains, consider
that in 2006, when exchanges were still constrained to
be simultaneous, 74 KPD transplants and 68 nondi-
rected living-kidney donations were performed in the
United States. In 2012, more than 200 of the 528
paired-donation transplants performed in the United
States resulted from NEAD chains.

According to UNOS, the number of transplants from
kidney exchange in the United States has reached
2,658. We believe this number is a lower bound,
because many centers conduct internal exchanges,
which they might not report; in addition, the 2013
numbers are subject to change, because centers are
still reporting their fourth-quarter numbers. Figure 5
shows the progress by year.

NKR and UNOS KPD: Other Kidney
Exchange Programs
The NKR and UNOS KPD pilot programs both run
multihospital exchange programs in the United States.
The NKR, a private organization, was founded by
Garet Hil in 2007 to facilitate actively recruiting NDDs
and running NEAD chains. It is currently the highest-
volume clearinghouse in the United States and has
facilitated more than 1,000 transplants. UNOS is the
federal contractor responsible for administering the
waiting list for deceased-donor organs. Because it has
working relationships with every U.S. transplant cen-
ter, it is a natural candidate to organize a federally
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Figure 5: Since 2000, transplants through kidney exchange have increased.

sponsored kidney exchange that would unite all U.S.
transplant centers. In October 2010, it launched a pilot
KPD program, which has yet to become a major pro-
ducer of kidney exchange transplants; however, since
UNOS began to allow chains, it has been making
progress toward this objective. Through 2013, it had
conducted 79 transplants (52 of them in 2013). Since
the launch of the NKR and UNOS programs, more
than 1,600 pairs have enrolled in the NKR and more
than 1,000 pairs have enrolled in UNOS (the enroll-
ment rate was very low in the first years). The pools
of both programs seem to have stabilized to approx-
imately 220–250 pairs. Authors Ashlagi, Rees, and
Roth are presently advisors to UNOS and members of
the UNOS KPD workgroup. Ashlagi, Roth, and Rees
have advised the NKR, and Ashlagi and Roth collab-
orated with the NKR to develop and validate their
current optimization algorithm.

Chains play a significant role in both programs.
Approximately 88 percent of the transplants facili-
tated by the NKR have been achieved through chains
(176 chains overall). More than 28 percent of the trans-
planted patients had PRAs greater than 80 and more
than 15 percent had PRAs greater than 95; in the
past two years, this latter percentage increased to 20

14

48
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7 3 6 6 3 4 1 1 1 1

1 2 3 4 5 6 7 8 9 10 11 12 16 21 28 30
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r 
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Figure 6: (Color online) This graph shows the number and lengths of chains that the NKR has achieved.

percent. As of January 30, 2014, the NKR had con-
ducted 179 chains, which accomplished 823 trans-
plants, and 44 cyclic exchanges, which accomplished
103 transplants. More than one-fourth of these trans-
plants were accounted for by the 16 chains involving
10 or more transplants, while the 96 chains involving
three or fewer transplants accounted for only about
10 percent of these transplants. Therefore, although
the long chains are rare (fewer than 10 percent of the
chains), they account for a disproportionate share of
the transplants.

Figure 6 shows the lengths of all chains conducted
by the NKR. Note the long tail; most chains are short,
but the longest 2.3 percent of chains account for more
than 11 percent of all transplants. More than 13 per-
cent of all transplanted patients with PRAs greater
than or equal to 97 have been transplanted through
those chains. In addition, 73 percent of the trans-
planted patients with PRAs greater than or equal 97
were transplanted through chains or cycles that have
a length of at least four, while only 67 percent of all
transplanted patients have been transplanted through
chains and cycles with lengths of at least four.

The experience of the UNOS KPD pilot program
differs somewhat from that of the NKR. At first,
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UNOS searched for only two-way exchanges; how-
ever, in 2011, the UNOS algorithm was adapted to
find chains unrestricted by length. As a result of
match-offer refusals and crossmatch failures, UNOS
had a high failure rate after identifying matches,
but prior to performing transplants; therefore, since
October 2012, it has limited chain segments to four
and often nonsimultaneously conducts such chains.
About 15 percent of the transplants UNOS has facil-
itated have been achieved through two-way cycles,
40 percent through three-way cycles, and 45 per-
cent through chains; even with the restriction on
chain length, most UNOS transplants have come from
chains and three-way cycles.

UNOS and the NKR had different experiences in
executing their kidney exchange programs, leading
them to implement slightly different policies; however,
NEAD chains play a major role in successful trans-
plants in both programs. The NKR has been successful
in attracting NDDs. This success is largely because it
provides incentives to transplant centers to share the
NDDs who approach it; it guarantees a center that it
will end a chain with a patient within that center. Not
all chains need to be long when so many altruistic
donors exist. Most of the very short chains conducted
by the NKR are done because they include a patient
who is very highly sensitized, the quality of the match
is very high, or the NDD is an AB donor, in which case
is very unlikely to match an AB patient within a pair.

We cannot overemphasize the importance of match-
ing the most highly sensitized patients through long
chains, because many of these patients have little or
no prospect of receiving a deceased-donor kidney.
Data from the Organ Procurement and Transplanta-
tion Network for the United States show that the
median waiting time for patients with PRAs greater
than or equal to 80 was 13.5 years for candidates
listed in 1999–2000; the median time for such patients
who began waiting in 2003–2004 cannot be computed
yet because fewer than half of them have been trans-
planted. As we have seen, NEAD chains serve a dis-
proportionate share of very highly sensitized patients
(i.e., patients with PRAs greater than or equal to 95).

Finally, we note that the number of NDDs has
significantly increased since the advent of NEAD
chains—in part because of the added incentive of
being able to help more than one patient as a result of

one’s altruism, and perhaps also because of the pub-
licity that sometimes accompanies long chains.

Algorithms, Optimization, and
Implementation
The APD and other kidney exchange programs orga-
nize transplants by regularly searching the compati-
bility graph generated by the current pool of patients
and donors for the maximum weighted number of
transplants that can be achieved through cycles and
chains. It is convenient to think of the pool as a
compatibility network described by a directed graph
G4V 1E5. In this graph, each patient-donor pair and
each NDD is a node v ∈ V . There is an edge between
two nodes v1 and v2 if the donor of node v1 is com-
patible with the patient of node v2 (according to the
medical data). Edges are associated with weights to
capture some priority (i.e., importance, urgency) for
conducting the corresponding matches. At the present
time, weights are often assigned based on the sub-
jective judgments of a medical board, but efforts are
underway to make the choice of weights depend
more on well-defined objectives for the overall set
of matches. In addition to medical factors, a board
may consider other factors, including the geographic
residences of the parties and the length of time a
patient has been on the waiting list. Typically, higher-
sensitized patients are assigned higher weights.

The optimization problem considered prior to the
introduction of nonsimultaneous chains had the fol-
lowing form (the OSOTC program did not optimize
and the APD used optimization and unrestricted
length of chains and cycles from the outset):

Maximize weighted number of matched pairs1
s.t. each pair is matched at most once via a cycle

or chain3
cycle length at most 33
chain length at most 30

Existing pools typically contain about 200 pairs and
up to 10 NDDs; some NDDs are bridge donors and
some are altruistic donors. An altruistic donor initi-
ates a new chain.

At first, kidney exchange programs considered
algorithms that searched for an optimal solution,
allowing up to three-way cycles and chains, as we
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describe in the previous formulation. The problem is
solved using an integer programming technique by
introducing for each cycle a binary decision variable
with a length of at most three and each chain with a
length of at most three. This formulation works well
when optimizing over the pools observed in practice.

Abraham et al. (2007), and earlier Kevin Cheung
and Michel Goemans (personal comm.), have shown
that solving the optimization problem we describe
previously with bounded-chain or cycle lengths is an
NP-hard problem. In practice, however, computational
issues have not been a serious issue when both chains
and cycles are bounded by a short length. Abraham
et al. (2007) developed an algorithm based on column
generation to solve such problems for very large pools.
The APD briefly used their algorithm and UNOS now
uses an extended version of it. It allows chains with
segments with lengths of no more than three; UNOS
has changed its policy to incorporate these chains.

Allowing for longer chains makes the previous for-
mulation hard to solve in both theory and practice,
because the potential number of chains grows very
fast, as the allowable chain length grows; for example,
in a historical pool of 150 pairs, the number of chains
of length 6 beginning with an O donor easily reaches
over five million.

In The Recursive Algorithm section next, we describe
two algorithms that we developed to solve the opti-
mization problem when long chains are permitted.
These algorithms scale very well on the existing pools
and find optimal solutions in a short time in all
encountered instances. We use both algorithms to find
matches.

The Recursive Algorithm
We use this algorithm to solve an optimization prob-
lem using constraint generation without assigning a
variable for every chain, but instead introducing flow-
conservation constraints. In the graph G4V 1E5, we use
a binary decision variable ye that determines whether
edge e (from a donor to a compatible recipient) will
be chosen. Let in4v5 be the set of edges that point to
node v and let out4v5 be the set of outgoing edges
from node v. For each edge e, let we be the weight
associated with edge e. We further add an edge, with
zero weight, from every node corresponding to an
incompatible pair to every node corresponding to a

NDD. This is done so that every chain originating
from a NDD can be extended to a cycle beginning and
ending with a NDD; as a result, our model and algo-
rithm need to explicitly find only cycles (not chains).
Our algorithm uses the following formulation (see the
appendix for a formal formulation):
Recursive:

Maximize weighted flow1
s.t. Total flow out of a pair is at most the total flow

that goes into a pair3
Total flow out of an altruistic donor is at most 13
Total flow that goes into a pair is at most 13
Flow on each edge is binary0

This is an integer programming formulation, which
finds the largest disjoint cycle cover of a graph. As
such, this formulation ignores for now bounds on
the length of the cycles and chains. To incorporate a
bound on the length of the cycles (e.g., to be at most 3)
and also allow chains originating from NDDs to be
arbitrarily long, we run the algorithm recursively by
eliminating long cycles one at a time. Specifically, our
recursive algorithm works as follows: It first solves
the previous formulation . It then inspects the optimal
solution. If the optimal solution outputs a cycle C of
size more than 3, which does not include a NDD (and
thus is not a feasible cycle), we add a constraint to
resolve the recursive formulation with an additional
constraint that eliminates this cycle. This constraint
has the form in which the total flow in the edges of
the cycle is at most the size of the cycle minus one.

We then solve the integer programming problem
again with this additional constraint, and repeat
the procedure until we identify a solution without
cycles with length 4 or more. This recursive algo-
rithm works well in many instances (see The Prize-
Collecting Traveling-Salesman-Problem-Based Algorithm
section next); however, in many other instances, the
running time is too long (e.g., exceeds 20 minutes). To
solve the remaining instances, we use an alternative
integer programming formulation based on the prize-
collecting traveling-salesman problem (PC-TSP). Next,
we describe this formulation and the running times
corresponding to both formulations.

The Prize-Collecting Traveling-Salesman-Problem-
Based Algorithm
In the TSP, one is given a graph and must find a route
that visits each node exactly once at minimum cost. In
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the PC-TSP, the goal is to find a route in the directed
graph that visits each node at most once, while paying
some penalty for each node that is not visited. Qual-
itatively, the PC-TSP is similar to the optimization
problem we are facing; we want to find long paths in
a graph without visiting each node. In the appendix,
we present our solution, which is very similar to the
solution to the PC-TSP. As in the PC-TSP, the formu-
lation has an exponential number of constraints that
have a “cut” interpretation. The solution relaxes those
constraints, but more aggressively attempts to find
violating constraints by using a technique called cut-
ting planes; the appendix provides details.

Table 1 describes the running times of both algo-
rithms for what we call difficult instances—instances
involving at least 500 constraints in the recursive

Instance information Running time (secs)

NDDs Pairs Edges Recursive PC-TSP

3 202 41706 0018 00255
10 156 11109 40425 10069
6 263 81939 160186 110055
5 284 101126 280063 16003
6 324 131175 1430432
6 328 131711 1500877 27067
6 312 131045 1,200∗ 1,200∗

10 152 11125 100388 00245
3 269 21642 130896 00056
10 257 21461 160206 00113
7 255 21390 1607 00108
6 215 61145 440101 20237
10 255 21550 1030112 00136
1 310 41463 1770582 00151
11 257 21502 2010154 00154
6 261 81915 3400312 30829
10 256 21411 3470791 00119
6 330 131399 5220619 60507
10 256 21347 6830949 00121
7 291 31771 1,200∗ 00163
8 275 31158 1,200∗ 00306
4 289 31499 1,200∗ 00376
3 199 21581 1,200∗ 10943
7 198 41882 1,200∗ 80255
2 389 81346 1,200∗ 160076

Table 1: The table describes the performance of the recursive and PC-TSP
algorithms for difficult instances (i.e., instances that generated at least
500 violating constraints). Note. Instances for which the optimal solution
was not found within 20 minutes are indicated by ∗. In instances above
the midline, both algorithms have running times within the same order of
magnitude; for instances below the midline, the PC-TSP-based algorithm
was faster by at least an order of magnitude.

algorithm and analogous cut constraints in the PC-
TSP algorithm. We generated these instances while
running each algorithm on real data from the APD
and NKR programs.

Anderson et al. (2014) developed software, which
the APD is currently testing, based on currently run-
ning both algorithms described previously and gener-
ating the optimal solution produced by the algorithm
that finds this solution. Other exchange programs,
including those at Northwestern Medical Center,
Methodist Hospital in San Antonio, and Georgetown
Medical Center, presently use this software. This soft-
ware is also used to suggest kidney exchanges as a
result of merging the NKR, APD, and the Methodist
Specialty and Transplant Hospital pools; therefore, it
identifies matches in the largest combined pool in the
United States—more than 600 pairs.

Conclusions
Kidney exchange has become a standard part of trans-
plantation in the United States, and the innovative
ideas of many researchers and practitioners have
played an important role in this success. One distinct
innovation that has had a profound effect in increas-
ing the number of transplants has been the APD’s
introduction of long nonsimultaneous chains.

Since nonsimultaneous chains were introduced,
more than 75 percent of the 2,600 transplants have
been conducted through NEAD chains. The APD
was both the first to implement such chains and the
first to optimize matches that incorporated them; the
APD team also collaborated in assisting other cen-
ters and kidney exchange programs to adopt this
methodology. Over time, other clearinghouses have
also adopted NEAD chains; notably, the NKR, which
is presently the highest-volume clearinghouse for kid-
ney exchange, has facilitated more than 85 percent
of its transplants through nonsimultaneous chains.
Early opponents of long nonsimultaneous chains have
adopted them, and no longer question their effective-
ness. Furthermore, early ethical concerns for choosing
to give a NDD kidney to a patient other than the first
patient on the deceased-donor waiting list have been
overridden by the profound increase in the number
of transplants resulting from NEAD chains.

The very highly sensitized patients would seem to
benefit most from the use of long chains, because
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such chains are often the only way these patients can
receive a transplant. The nature of exchange is that
it benefits all parties, and the benefits flow not only
to all participants in kidney exchange, but also to
patients who do not have a donor and are waiting
for a deceased-donor kidney. Some of those patients
benefit directly when they receive the last-donor
kidney from a long chain; however, even patients
who will eventually receive a deceased-donor kidney
benefit from kidney exchange, because each trans-
plant accomplished through kidney exchange poten-
tially relieves the recipient waiting for a deceased-
donor kidney from having to wait as long as would
be necessary if no kidney exchange existed. Kidney
exchange delivers living-donor kidneys to patients
who are on the waiting list for deceased-donor kid-
neys; therefore, it shortens the wait for those who
have no other option.

Important design issues remain to be solved if kid-
ney exchange is to continue to grow. One important
issue is to provide more incentives for transplant cen-
ters to fully participate (i.e., offer kidney exchange
to their easy-to-match pairs and to those who are
difficult to match). Ashlagi and Roth (2014) explore
how a bonus mechanism, similar to the spirit of a
frequent-flyer program, could be developed to pro-
vide appropriate incentives for centers to enroll their
easy-to-match pairs. Incentives for centers to enter
their NDDs are being implemented in the NKR and
at the APD (a chain terminates with a patient who is
associated with a center that entered a NDD). Most
chains today end with patients on the deceased-donor
waiting list.

Another important design issue concerns the finan-
cial arrangements involving hospitals that participate
in kidney exchange; because each hospital has a dif-
ferent cost, these differences can present obstacles
when hospitals are exchanging kidneys. One direction
we are pursuing is to establish a standard acquisi-
tion charge for obtaining a kidney for transplant (Rees
et al. 2012).

Market design draws on both optimization and
game theory to address the operational aspects that
constrain exchange and the incentive constraints that
may also have to be satisfied. In the case of kidney
exchange, the operational constraints involve assem-
bling the resources to coordinate and conduct com-
plicated surgical procedures across many hospitals.

The incentive constraints entail assembling the med-
ical information from patients, surgeons, and hospi-
tals, and ensuring that the information they reveal
(e.g., the number and characteristics of their willing
donors) is protected. These constraints also entail the
incentives provided to hospitals for enrolling both
their hard-to-match and easy-to-match patients and
donors. The task of solving these problems is evolv-
ing as logistical capabilities improve and as the med-
ical and economic environments change. For now,
however, kidney exchange has made possible sev-
eral thousand life-saving and life-enhancing surgeries,
yielding millions of dollars in savings and thousands
of additional years of life.

In closing, we note that when operations research
began to emerge as a distinct discipline in the years
following World War II, it was closely linked to eco-
nomics; however, those links grew more tenuous over
time. The development of kidney exchange and the
field of market design more generally illustrate how
close those links can still be, as Roth (2002) discusses.
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Appendix

The Recursive Formulation
The following is a formulation used in the recursive
algorithm:

Recursive:
Maximize

∑

weye1

s0t0
∑

e∈out4v5

ye ≤
∑

e∈ in4v5

ye for every pair v3

∑

e∈out4v5

ye ≤ 1 for every altruistic donor v3

∑

e∈ in4v5

ye ≤ 13

ye ∈ 801190

Note that the recursive formulation does not restrict
cycles to be short. After solving the algorithm, if the solu-
tion finds a cycle of length C that is too long, the following
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constraint to rule out that long cycle is added before resolv-
ing the problem:

∑

e∈C

ye ≤ �C� − 10

The Prize-Collecting Traveling-Salesman-Problem-
Based Algorithm
We first present the algorithm for unbounded chain length,
and then describe modifications to solve for any bounded
chain length. To write the formulation, we need some nota-
tions. For each cycle C of length at most k, we introduce
a binary variable zC , which indicates whether we are using
the cycle C. Each cycle C is also associated with a weight
wC , which is the sum of weights in all edges in the cycle.
We use flow binary variables ye for each edge e, as in the
recursive algorithm, to indicate if we use the edge e. We
define decision variables f i

v and f o
v to be the flow in and

out of node v respectively. We define N and P to be the set
of NDDs and pairs in the graph, respectively. Define Ck4v5
to be all the cycles of length at most k that include node v.
We can now write the formulation as follows:

max
{

∑

e

weye +
∑

C

wCzC

}

1

s0t0
∑

e∈ in4v5

ye = f i
v1 v ∈ V 1 (1)

∑

e∈out4v5

ye = f o
v 1 v ∈ V 1 (2)

f o
v +

∑

C ∈Ck4v5

zC ≤ f i
v +

∑

C ∈Ck4v5

zC ≤ 11 v ∈ P1 (3)

f o
v ≤ 11 v ∈N (4)
∑

e∈out4S5

ye ≥ f i
v1 S ⊆ P1 v ∈ S1 (5)

ye ∈ 801191 e ∈ E1 zC ∈ 801191 C ∈Ck4v50

Constraints (3) make two statements: first, the amount of
flow out of pair v is at most the amount of flow that goes
into pair v; second, the sum of the amount of flow that goes
into pair v and the number of cycles to which that pair v is
assigned is at most 1. Constraints (4) say that the amount
of flow leaving each NDD is at most 1.

Constraints (5) are very similar to the cutset inequali-
ties for the TSP, as adapted to the PC-TSP (Goemans 2009).
Essentially, they work as follows. Suppose a chain is reach-
ing some node v, and as a result, f i

v equals 1. Now suppose
that we divide the graph into two pieces, such that the half
containing v, which we denote as S, does not contain any
of the NDD nodes from N . Because each chain begins at
some NDD (and thus not in S), in order for the chain to
reach v ∈ S, it must use an edge that does not begin in S
and ends in S. Thus, the constraint requires that whenever
there is flow into v, for every way that v can be cut off from
the NDDs, there is at least this much flow over the cut.

As in the recursive algorithm, there are exponentially
many constraints of type (5); therefore, we can use the same

recursive heuristic as in the recursive algorithm. Instead,
although we relax the constraints (5), we use an efficient
algorithm to identify several violating constraints and add
them to the formulation sooner than in the recursive algo-
rithm. Identifying these constraints is known as the sepa-
ration problem in optimization. The separation problem for
constraints (5) can be solved by solving O4P5 network-flow
problems (Anderson et al. 2014).

When chains are required to be bounded by length, we
slightly modify the formulation as follows. For each NDD
n and each edge e, we introduce auxiliary variables yn

e and
f i1n
v 1 f o1n

v indicating flow that must begin at node n. We then
add a few categories of constraints. First, we enforce that
for each edge e, the flow on ye must come from exactly one
of the yn

e . Second, we define the same relationship between
f i1n
v , f o1n

v , and yn
e as in constraints (1) and (2) from the PC-

TSP formulation. Third, we require that for each NDD n
and each vertex v, we have f o1n

v ≤ f i1n
v ≤ 1. Finally, we add

the maximum chain-length constraint, saying that for each
NDD n, we use a total number of edges yn

e that is at most
the maximum chain length.
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