

Silicon Devices at the "End of Scaling" – Opportunities and Challenges

H.-S. Philip Wong Professor of Electrical Engineering Stanford University, Stanford, California, U.S.A. hspwong@stanford.edu

http://www.stanford.edu/~hspwong

Center for Integrated Systems

2004.10.05

Elements of an Electronic System

- Logic
 - execution units, bus, drivers, glue logic
- Memory
 - memory hierarchy cache, data bank, NVRAM, storage
- Communication
 - on-chip, chip-to-chip, board-to-board...
- User Interface
 - sensors, input devices, output devices

What is Classical Scaling?

- Scaling is the synchronous reduction, year on year, of technology dimensions governing the performance of silicon technology. Scaling;
 - Improves device performance at ever lower power per function.
 - Enables increased chip functionality through added density.
 - Improves business financials through die size reduction.
- Why would the end of classical scaling be a highly disruptive event?
 - Scaling and progress in silicon technology have been synonymous for decades.

Some Things do not Scale Exactly...

		Source: IB	Μ
Substrate:	$\alpha * N_A$		
Diffusion:	x_d/α		
Gate width:	L/α	Power Density:	~Constant
Wire width:	W/α	Power/ckt:	~1 /α²
Oxide:	t_{ox}/α	Higher Speed:	~α
Voltage:	V/α	Higher Density:	$\sim \alpha^2$
SCALING:		RESULTS:	

- •unacceptable gate leakage/reliability
- •additional performance at higher voltages
- •What is the consequence of this deviation?
 - •a dramatic rise in power density

Active vs. Passive Power

Power components:

- Active power
- Passive power
 - Gate leakage
 - Sub-threshold leakage (sourcedrain leakage)

Gate dielectric approaching a fundamental limit (a few atomic layers)

Source: IBM

Power is Limiting Microprocessor Frequencies

Server microprocessors cannot simultaneously utilize all their transistors due to power limitations

- Moore's law is continuing with respect to transistor density, although at a reduced pace
- Workload demands are highly variable
- New methods to utilize silicon density scaling will be developed to accommodate diverse workloads while managing power constraints

Key Challenges

- Power / performance improvement and optimization
- Variability
- Integration
 - Device, circuit, system

Let's start with logic devices

Single Gate Non-classical CMOS

Device	Transport- enhanced Devices	Ultra-thin Body		Source/Drain Engineered Devices	
	Strained Si, Ge, SiGe buried oxide	BOX	FD Si film S D Ground BOX (<20nm) Plane Bulk wafer	Bias silicide nFET pFET Silicon Schottky barrier isolation	S D Non-overlapped region
Concept	Strained Si, Ge, SiGe, SiCGe or still other semiconductor; on bulk or SOI	Fully depleted SOI with body thinner than 10 nm	Ultra-thin channel and localized ultra- thin BOX	Schottky source/drain	Non- overlapped SD extensions on bulk, SOI, or DG devices
Application/ Driver	HP CMOS	HP, LOP, and LSTP CMOS	HP, LOP, and LSTP CMOS	HP CMOS	HP, LOP, and LSTP CMOS

Source: ITRS, J. Hutchby

International Technology Roadmap for Semiconductors

Multiple Gate Non-classical CMOS

Device	Multiple Gate FET				
	N-Gate (N>2) FET		Double-gate FET		
		Gate Source Drain	SOURCE DRAIN DRAIN DRAIN B+ B+ B+ B+ B+ B+ B+ B+ B+ B+	Profession Restored	Gate Gate Drain
Concept	Tied gates (number of channels >2)	Tied gates, side-wall conduction	Tied gates planar conduction	Independently switched gates, planar conduction	Vertical conduction
Application/Driver	HP, LOP, and LSTP CMOS	HP, LOP, and LSTP CMOS	HP, LOP, and LSTP CMOS	LOP and LSTP CMOS	HP, LOP, and LSTP CMOS

Source: ITRS, J. Hutchby

International Technology Roadmap for Semiconductors

Transport Enhanced Devices

- Wafer-scale strained Si
 - Strained Si on relaxed SiGe buffer on bulk Si
 - Strained Si on relaxed SiGe buffer on insulator
 - Strained Si directly on insulator
- Local strain
 - Dielectric films
 - Isolation (STI), device size dependent structures
 - SiGe in recessed source/drain
- Crystal orientation and current flow direction
- Other materials
 - Bulk Ge
 - Ge on insulator
 - Strained Ge

A
[秦]
25.38
1000

Strained Silicon

Relaxed SiGe Strained Si/SiGe Bulk MOSFET

Strained Si

K. Rim et al., *Symp. VLSI Tech.*, p. 59, 2001.K. Rim et al., *Symp. VLSI Tech.*, p. 98, 2002.

B. Lee et al., *IEDM* 2002

K. Rim et al., *IEDM*, 2003.

2004.10.05

Strain-Dependence of Mobility

K. Rim et al., *IEDM*, 2003.

 Mobility enhancements consistent with amount of strain even for strained silicon on insulator

15	HS. Philip Wong		2004.10.05	Department of Electrical Engineering
----	-----------------	--	------------	--------------------------------------

Short Channel Strained Silicon FETs 1E-6 1E-6 Str. Si/SiGe (13% [Ge]) **Key challenges:** Control 1E-7 1E-7 maintain performance 1E-8 1E-(Mth/A) ^{1E-9} (mµ/A) ^{1E-8} enhancement at short channels under high field transport 1E-9 1E-10 Str. Si/SiGe (28% [Ge]) ۰ material defect reduction Control 1E-11 1E-10 600.0µ 800.0µ 400.0µ 200.0µ 400.0µ 600.0µ I_{_n} (A/μm) I_{_0} (A/μm) 1.2 V_{GS}= 1.2, 1.0, 0.8... V V_{cs}=-1.2, -1.0, -0.8... V K. Rim et al., Symp. VLSI Tech., p. 98, 2002. 1.0 l_D (mA/μm) 0.8 0.6 0.4 0.2 0.0 -1.0 -0.5 0.0 0.0 0.5 1.0 K. Rim et al., IEDM, 2003. $V_{DS}(V)$ $V_{DS}(V)$

Uniaxial Strain vs Biaxial Strain

Department of Electrical Engineering

A	
41	
19 A A	
Sec. 1	

Strained Si + High-k

Mobility at		Substrate		
E _{eff} MV/	= 1.4 ′cm	CZ Si Strained S		
ec.	SiO ₂	SiO ₂ /CZ	SiO ₂ /SS	
Diel		173	271	
ite I	HfO ₂	HfO ₂ /CZ	HfO ₂ /SS	
Ga		134	218	

K. Rim et al., Symp. VLSI Tech., p. 12, 2002.

Surface Orientation & Current Flow Direction

Hybrid Orientation Technology (HOT)

pFET Performance Enhancement for HOT

	l _{on}	ا _{dlin}
l _{off} =100nA/μm	+33%	+45%
l _{off} =10nA/μm	+44%	+58%

M. Yang et al., IEDM 2003

Germanium FET

H. Shang et al., *IEDM*, p. 441, 2002. H. Shang et al., *IEEE EDL*, p. 135, 2004.

High Mobility Ge PMOSFETs with ZrO₂ Gate Dielectric

HR-XTEM

- 1st demo of metal gate and hi- κ on Ge MOSFETs
- EOT upto 0.5 nm demonstrated
- 3× mobility vs. Hi-k Si *p*-MOSFETs
- 400°C maximum temperature process
- Work on VLSI CMOS structures in progress

Chui, Kim, McIntyre, Saraswat, IEDM 2002

2004.10.05

Nanoscale Si FET (Gate Length = 6 - 8 nm)

Key Issues for Ultra-Thin Body FETs

From Bulk to Double-Gate FET

• M. leong et al., MRS Spring Meeting, 2003.

• M. leong et al., *IEDM*, p. 441, 2001.

• M. leong, H.-S. P. Wong et al., S/SPAD, p. 147, 2000.

• H.-S. P. Wong, D. Frank, P. Solomon, IEDM, p. 407, 1998.

Double-Gate FET Fabrication

Horizontal channel:

- Bury back-gate under single crystal channel
 - wafer bonding
 - selective epitaxial Si growth
- Back-gate not easily accessible
- Self-aligned gates required

Vertical channel:

- Lithography and patterning 3-4x more stringent (5-10 nm required)
 - e-beam litho
 - sidewall techniques
- Gates accessible from the side

H.-S. P. Wong, D. Frank, Y. Taur, J. Stork, IEDM, p. 747, 1994.

H.-S. P. Wong, D. Frank, P. Solomon, C. Wann, J. Welser, *IEEE Proceedings*, p. 537, April, 1999.

Triple-Gate FET

2004.10.05

Gate Voltage (V)

5

Multiple Fins W_{fin} Oxide hard mask: 100nm Optical or e-beam Removal of dummy Si0.6Ge0.4 : 400nm Optical or e-beam lithography pitch and Si-fin etch Spacer-defined fins Wfin, Litho lithography pitch $W_{fin,\;Spacer}$ Fin pitch Source Drain Nitride : 50nm Spacer Resis Spacer Oxide : 4nm Si-fin height : 50nm (T_{si}) SiFin SiFin Source Gate Drain Spacer lithography Conventional lithography PSG spacer Planarized Gate Source Photo Resist gate FinFET Source ALC: NOT THE R. L. 6 fins Source Gate Drain Drain Drain S₂ Source S Source Photo Resist Data :23 Apr 2001 Firme :1:32 Signal A - Interns EHT = 10.00 W/ WD = 8 mm Mag = 8.87 K X H **Conventional MOSFET** Y. Choi et al., IEDM, p. 421, 2001.

Department of Electrical Engineering

Multiple Fins: Triple-gate

R. Chau et al., SSDM, 2002.

1.10.05

Multiple Channels

Can be vertical and horizontal

Double-Gate FET – Outstanding Issues

Technology Features Should be Additive

• New materials and new device structures

- (a) Ultra-thin body FET
- (b) Double- (or Multi-) gate FET
- (c) Strained Si (bulk, on insulator)
- (d) Ge (bulk, on insulator)
- (e) High-k gate dielectrics
- (f) Metal gates
- (g) Crystal orientation

J. Kedzierski et al., *IEDM*, paper 18.4, 2003.

NiSi Gate Si Fin $T_{si} = 25nm$ BOX

J. Kedzierski et al., IEDM, p. 247, 2002.

Demonstrated: (a)+(c), (a)+(d), (a)+(e), (a)+(f) (b)+(a) (b)+(f), (b)+(g), (c)+(e), (c)+(d) (d)+(e), (d)+(f), (d)+(e)+(f) (e)+(f) (g)

K. Rim et al., Symp. VLSI Tech., p. 12, 2002.

1000
22.9

Time Horizon

g

Research Directions

Red Zone topics

- Transport enhanced FETs: fundamental physics (Ge, III-V)
- Novel memory technologies device and fabrication

Between Red Zone and Blue Sky

- S < kT/q device
- Carbon nanotubes, semiconductor nanowires: FET and other device applications
- Nano, Now!
 - Nanotechnology for manufacturing of devices already known today
 - Device application of templated assembly (e.g. di-block co-polymer)
- 3D integration, large area electronics, focusing on devices

Blue Sky

- Nanodevice array logic, functional logic array
- Re-configurable logic circuits, devices, fabrication
- Bio-scaffolding, bio-assembly

Questions? Please contact:

H.-S. Philip Wong Professor of Electrical Engineering Stanford University, Stanford, California, U.S.A. hspwong@stanford.edu

http://www.stanford.edu/~hspwong

Center for Integrated Systems

2004.10.05

Department of Electrical Engineering