
APPPHYS383 Tuesday 2 February 2010

Background material on tensor products and partial traces
(from AP225, 10/21 and 10/23 class notes)

Density matrix representation of mixed quantum states
Generally speaking, valid density operators must be Hermitian and have the property

Tr   1.

Here Tr denotes the ‘trace’ operation

Tr ∑
k

〈k | |k ,

where |k  is any orthonormal basis for the Hilbert space – the numerical result is independent of choice of basis.
In particular, since  is Hermitian we can chose to take the trace in its own eigenbasis, which makes it clear that

Tr ∑
i

i
,

where i
 are the eigenvalues of . Note that if  happens to be available in matrix form, we can further make use of

the fact that the sum of the eigenvalues of a matrix is equal to the sum of its diagonal elements.
We can easily derive some of the important properties of the eigenvalues and trace of a density operator in the

case where it happens to represent a given mixed ensemble,

 ∑
k

pk|k 〈k | ∑
k

pkPk.

(Note however that the properties must hold for density matrices of arbitrary ‘origin.’) Here Pk is the projector onto
|k , which itself is a normalized pure state that occurs in the ensemble with relative probability pk. For any
arbitrary normalized state |  in the entire Hilbert space,

〈 | |  ∑
k

pk〈 |Pk | .

Since all of the pk and 〈 |Pk |  must be between 0 and 1, it follows that

0 ≤ 〈 | |  ≤ 1

for absolutely any (normalized) choice of the state | . This includes, in particular, the eigenstates of , for which
we have the deduction

 |j    j|j ,

〈 j | |j    j,

0 ≤  j ≤ 1.

If we furthermore consider the trace for a density matrix representing a mixed ensemble,

Tr   ∑
k

〈k ||k  ∑
k

〈k | ∑
j

pj|j 〈j | |k 

∑
k

∑
j

pj 〈k |j 〈 j |k 

∑
k

∑
j

pj 〈j |k 〈k |j 

∑
j

pj 〈j | ∑
k

|k 〈k | | j  ∑
j

pj 〈j |j  ∑
j

pj  1.

Density operators can represent either pure states,

  | 〈 |,

or mixed states

 ∑
i

pi|i 〈 i |

where there is more than one pi  0. Note that in the former (pure state) case  is a true projection operator, so
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pure : 2  .

In particular, Tr2  1 for a pure state.
For a mixed state, however, we can use the spectral decomposition to show that Tr2  1. We start by writing

2  ∑
i

 i
Pi


2

∑
i

i
2Pi

,

and note that since Tr  ∑ i
i
  1, each of the  i

 must be strictly less than one for a mixed state. Hence the
eigenvalues of 2, which are equal to the i

2, must add up to less than one.

Joint state space for two subsystems
Suppose we have two independent quantum systems. It seems clear that we can separately consider the
representation of their physical states in two independent Hilbert spaces. Labelling the systems A and B, we can
simply chose state vectors

|A  ∈ HA,

and

|B  ∈ HB.

What if we need to bring these systems together and let them interact?
The joint state space for two such systems corresponds to the tensor product of HA and HB, denoted

HAB  HA ⊗ HB.
Let NA be the dimension of HA, and NB the dimension of HB. If |1A , |2A , |3A ,…  is a complete orthonormal

basis for HA and |1B , |2B , |3B ,…  is a complete orthonormal basis for HB, then HA ⊗ HB is the Hilbert space of
dimension NAB  NANB spanned by the vectors of the form | iA  ⊗ | jB .

Hence arbitrary states in HAB have the form

|AB  ∑
i1

NA

∑
j1

NB

cij | iA  ⊗ | jB .

As long as we fix an ordering for the new basis states | iA  ⊗ | jB , the set of NANB complex coefficients can be used
as a vector representation for kets in HAB.

The tensor product operation between vectors has the following properties:
1. Linearity:  |A  ⊗ |B    |A  ⊗ |B , where  is a complex number
2. Distributivity: |A  ⊗ |B

1   |B
2   |A  ⊗ |B

1   |A  ⊗ |B
2 .

3. ‘Commutativity’: formally, |A  ⊗ |B  is the same as |B  ⊗ |A . In practice however, it is wise to use
consistent ordering.

4. Adjoint: |A  ⊗ |B   〈A | ⊗ 〈B |.
5. Scalar product: 〈A

1 | ⊗ 〈B
1 ||A

2  ⊗ |B
2   〈A

1 |A
2 〈B

1 |B
2 .

It is important to note that basis kets | iA  ⊗ | jB  ∈ HAB thus inherit orthogonality from their ‘factors’ in HA and HB.

Entanglement
The most profound consequence of this mathematical rule for representation of joint states is that there exist
|AB  ∈ HAB that cannot be expressed the tensor product of a state |A  ∈ HA with a state |B  ∈ HB. Such
‘nonfactorizable’ states are said to be entangled.

For example, let’s consider two two-dimensional systems. Say we have chosen orthonormal bases |0A , |1A 
for HA and |0B , |1B  for HB. Then HAB is spanned by the four states

|0A  ⊗ |0B , |0A  ⊗ |1B , |1A  ⊗ |0B , |1A  ⊗ |1B .

Factorizable (nonentangled) states in HAB are all of the form

AB
fac  c0

A|0A   c1
A|1A  ⊗ c0

B|0B   c1
B|1B 

 c0
Ac0

B|0A  ⊗ |0B   c0
Ac1

B|0A  ⊗ |1B 

 c1
Ac0

B|1A  ⊗ |0B   c1
Ac1

B|1A  ⊗ |1B .

That is, a certain relationship exists between the coefficients of the four basis states in HAB.
A simple example of an entangled state, whose coefficients do not exhibit the above relationship, is
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|AB   1
2
|0A  ⊗ |0B   |1A  ⊗ |1B 

≠ |A  ⊗ |B .

When the joint state of two subsystems is entangled, there is no way to assign a pure quantum state to either
subsystem alone. As we shall see below, it is possible to ascribe mixed quantum states to each of the
subsystems considered alone, but first we’ll need to have a look at operators on HAB.

Tensor products of operators
If A is an operator on HA and B is an operator on HB, then

A ⊗ B

is a valid operator on HAB. Its action on an arbitrary state

|AB  ∑
i,j

cij| iA  ⊗ | jB 

is defined by

A ⊗ B|AB  ∑
i,j

cijA| iA  ⊗ B| jB .

In the case where A and B are both normal, we may also write

A ⊗ B  ∑
i

 i
APi

A ⊗ ∑
j

 j
BPj

B

∑
ij

i
A j

B Pi
A ⊗ Pj

B.

Note that the usual relationship holds between projectors on the joint state space and outer-products of joint
state vectors:

|A  ⊗ |B 〈A | ⊗ 〈B |  |A 〈A | ⊗ |B 〈B |

 PA ⊗ PB.

Hence any complete set of joint projectors (summing to the identity operator on HAB) specifies a complete
measurement.

As was the case with state vectors, linear combinations of tensor-product operators are also valid opeators on HAB:

OAB ∑
m

cm Am ⊗ Bm.

Hence, not all operators on a joint state space are factorizable.
Given subsystem density operators A and B, we can form a tensor-product density operator that describes a

mixed ensemble of states in HAB:

AB  A ⊗ B.

In general, one can form convex combinations of such AB to construct new joint density operators.
One can also construct joint density operators directly from ensembles of pure states in HAB. For instance, the

density operator corresponding to the entangled state described above is

|AB   1
2
|0A  ⊗ |0B   |1A  ⊗ |1B 

AB  |AB 〈AB |

 1
2

|0A 〈0A | ⊗ |0B 〈0B |  |0A 〈1A | ⊗ |0B 〈1B |

|1A 〈0A | ⊗ |1B 〈0B |  |1A 〈1A | ⊗ |1B 〈1B |
,

and in general

AB ∑
i

pi |AB
i 〈AB

i |.

Note that operators on a tensor-product space can be expressed as complex matrices okl:
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OAB ∑
kl

okl|kAB 〈 lAB |,

where the summations both run over a complete set of NAB basis vectors.
Given matrix representations for subsystem operators A and B, it is customary to choose an ordering for the

basis states of the joint space such that

A ⊗ B ↔

a11B a12B a13B

a21B a22B a23B 

a31B a32B a33B

 

.

For example if |1A , |2A ,…  is the orthnormal basis for HA used in defining the matrix representation of A, and
similarly for HB, then

|1AB  ↔ |1A  ⊗ |1B ,

|2AB  ↔ |1A  ⊗ |2B ,

|3AB  ↔ |1A  ⊗ |3B ,



|NB  1AB  ↔ |2A  ⊗ |1B ,



As a result, the common class of operators 1A ⊗ B will have block-diagonal representations.

Working with tensor products
Let’s work with our favorite example of two two-dimensional Hilbert spaces HA and HB, with given complete
orthonormal bases |0A , |1A  and |0B , |1B . Let’s also choose the simple tensor-product basis for HAB,
|0A0B , |0A1B , |1A0B , |1A1B .

Suppose we are given vectors |A  ∈ HA and |B  ∈ HB:

|A   a0|0A   a1|1A  ↔
a0

a1

,

|B   b0|0B   b1|1B  ↔
b0

b1

.

Then |AB  ∈ HAB has the vector representation

|A  ⊗ |B   a0|0A   a1|1A  ⊗ b0|0B   b1|1B 

 a0b0 |0A0B   a0b1 |0A1B   a1b0 |1A0B   a1b1 |1A1B 

↔

a0b0

a0b1

a1b0

a1b1

.

Likewise,

〈AB | ↔ a0
∗b0
∗ a0

∗b1
∗ a1

∗b0
∗ a1

∗b1
∗ .

Moving on to operators, let’s compute a matrix representation for x
A ⊗ x

B, where x  |0〈1|  |1〈0|. So

x
A ⊗ x

B  |0A 〈1A |  |1A 〈0A | ⊗ |0B 〈1B |  |1B 〈0B |

 |0A0B 〈1A1B |  |0A1B 〈1A0B |  |1A0B 〈0A1B |  |1A1B 〈0A0B |

↔

0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

.
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Given the ordering we have chosen for the basis of HAB, we could have also used

A ⊗ B ↔
a00B a01B

a10B a11B
,

where in this case

A 
0 1

1 0
, B 

0 1

1 0

A ⊗ B ↔

0
0 1

1 0
1

0 1

1 0

1
0 1

1 0
0

0 1

1 0



0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

.

Partial projections
A particularly useful class of tensor-product operators are the partial projectors,

1A ⊗ Pj
B

and

Pi
A ⊗ 1B,

where Pj
B is a projector onto some state in HB and likewise for Pi

A. Note that such operators are themselves
projectors according to the usual definition, since

A1 ⊗ B1A2 ⊗ B2  A1A2 ⊗ B1B2.

Clearly, observables such as

Oq
A ⊗ 1B

can be spectrally decomposed using partial projectors.
If Pk

B  |kB 〈kB | (where |kB  is a basis vector), then

1A ⊗ Pk
B|AB   1A ⊗ Pk

B∑
ij

cij| iA  ⊗ | jB 

∑
ij

cij| iA  ⊗ Pk
B | jB  ∑

i

cik| iA  ⊗ |kB   |A
k  ⊗ |kB .

Hence the effect of a partial projector on a joint state in HAB is to knock out all terms in the superposition that are
not consistent with subsystem B being in the kth basis state.

It is very important to appreciate that the action of a partial projector will in general ‘affect’ the state of both
subsystems, unless the joint state is factorizable. For example, if

|AB   |A  ⊗ |B ,

|B  ∑
j1

NB

cj
B| jB ,

then under 1A ⊗ Pk
B

|AB   |A  ⊗ ck
B |kB .

If on the other hand |AB  is entangled, e.g.

|AB   c1 |A
1  ⊗ | 1B   c2 |A

2  ⊗ | 2B ,

〈A
1 |A

2  ≠ 1,

then

1A ⊗ P2
B |AB   c2 |A

2  ⊗ | 2B .

Hence even quantities such as 〈Oq
A ⊗ 1B  will be changed.

Note that if∑ j
Pj

B  1B (and likewise for the Pi
A)
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∑
j1

NB

1A ⊗ Pj
B  1A ⊗ 1B  1AB,

∑
i1

NA

Pi
A ⊗ 1B  1A ⊗ 1B.

Hence one can speak of a ‘complete’ set of partial projectors (with respect to either HA or HB), given by

1A ⊗ P0
B,1A ⊗ P1

B,… 

or

P0
A ⊗ 1B,P1

A ⊗ 1B,… .

Such sets of operators specify standard measurements on HAB – the projectors in the set are mutually orthogonal
and sum to the identity. In essence, this type of measurement probes the state of one subsystem without regard for
the other:

Prj  〈1A ⊗ Pj
B ,

or

Pri  〈Pi
A ⊗ 1B .

But as noted above, the post-measurement state of both subsystems will generally be affected by the outcome,
since (for conditioning via the projection postulate)

|AB  
1A ⊗ Pj

B |AB 

〈1A ⊗ Pj
B 

or

|AB  
Pi

A ⊗ 1B |AB 

〈Pi
A ⊗ 1B 

.

The usual generalization holds for joint density operators.
Exercise: Suppose systems A and B are initially prepared in the joint pure state

|AB   1
2
| 0A  ⊗ |0B   | 1A  ⊗ |1B ,

and we perform a measurement of the A-system observable

SxA ⊗ 1B  
2

Px
A ⊗ 1B − 

2
Px−

A ⊗ 1B,

Px ≡ |x 〈x |, |x   1
2
| 0  | 1,

Px− ≡ |x− 〈x− |, |x−   1
2
| 0 − | 1.

What are the possible post-measurement states? What if the initial preparation is the following mixed state?

AB  1
2
| 0A0B 〈0A0B |  | 1A1B 〈1A1B |.

Partial trace and reduced density operators
Having defined partial projectors, we can now define the partial trace operation. Let AB be a density operator on
HAB:

AB ∑
ijkl

ijkl| iA  ⊗ | jB 〈kA | ⊗ 〈 lB |,

where the summations are take over orthonormal bases for HA and HB. Consider the sum of partial projections,
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∑
m1

NB

1A ⊗ Pm
B AB 1

A ⊗ Pm
B 

∑
m1

NB

1A ⊗ Pm
B  ∑

ijkl

ijkl| iA  ⊗ | jB 〈kA | ⊗ 〈 lB | 1A ⊗ Pm
B 

∑
m1

NB

∑
i,k1

NA

imkm| iA  ⊗ |mB 〈kA | ⊗ 〈mB |

∑
m1

NB

|mB 〈mB | ⊗∑
i,k1

NA

imkm| iA 〈kA |.

We define the partial trace of AB over the B subsystem to be

̃A ≡ TrB AB  ∑
m1

NB

∑
i,k1

NA

imkm| iA 〈kA | ∑
i,k1

NA

∑
m1

NB

imkm | iA 〈kA |

Here ̃A is called the ‘reduced density operator’ for subsystem A. It provides the best possible representation of
subsystem A within HA, when the joint state of A and B is entangled/nonfactorizable.

When would we need such a representation? Suppose systems A and B are allowed to interact, and as a result
end up in some entangled state |AB

ent . Then, however, someone comes and removes subsystem B from our lab.
Once B becomes unavailable to us, we can only make measurements of the form

P0
A ⊗ 1B,P1

A ⊗ 1B,… .

The statistics of all such measurements are predicted by the reduced density operator:

Pr i   Tr AB Pi
A ⊗ 1B 

 Tr ∑
j1

NB

1A ⊗ Pj
B AB ∑

k1

NB

1A ⊗ Pk
B Pi

A ⊗ 1B

 Tr ∑
j1

NB

1A ⊗ Pj
BAB 1

A ⊗ Pj
B Pi

A ⊗ 1B

 Tr ∑
j1

NB

| jB 〈 jB | ⊗∑
k,l1

NA

kjlj|kA 〈 lA | Pi
A ⊗ 1B2

 Tr ∑
j1

NB

| jB 〈 jB | ⊗∑
k,l1

NA

kjljPi
A |kA 〈 lA |Pi

A

 Tr ∑
j1

NB

| jB 〈 jB | ⊗ ijij | iA 〈 iA |

∑
k1

NB

∑
l1

NA

〈 lA | ⊗ 〈kB | ∑
j1

NB

| jB 〈 jB | ⊗ ijij | iA 〈 iA | | lA  ⊗ |kB 

∑
j1

NB

ijij.

Likewise,

Tr ̃APi
A   Tr ∑

k,l1

NA

∑
j1

NB

ijkj |kA 〈 lA |Pi
A

 Tr ∑
k1

NA

∑
j1

NB

ijkj |kA 〈 iA |

∑
m1

NA

〈mA |∑
k1

NA

∑
j1

NB

ijkj |kA 〈 iA ||mA 
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∑
m1

NA

∑
k1

NA

∑
j1

NB

ijkj mk im

∑
j1

NB

ijij.

A notationally more convenient, but mathematically less precise way of computing the partial trace is as
follows:

TrB AB  ∑
m1

NB

〈mB |AB |mB  ∑
m1

NB

〈mB | ∑
ijkl

ijkl| iA  ⊗ | jB 〈kA | ⊗ 〈 lB | |mB 

∑
m1

NB

∑
i,k1

NA

imkm| iA 〈kA |.

It is perhaps useful to see a few examples of this type of manipulation.

Open quantum systems
Suppose we have a composite system HAB  HA ⊗ HB with Hamiltonian HAB. We know that the overall dynamics is
described by the SE

i d
dt

|AB t  HAB |AB t.

Let’s say, however, that HA corresponds to a small, ‘compact’ physical system that we are trying to study in the lab,
whereas HB actually represents the degrees of freedom of some environmental reservoir. If we are unable (as is
always the case) to completely isolate the system from the environment, then the Hamiltonian will not separate:
HAB ≠ HA ⊗ 1B  1A ⊗ HB, TABt, 0 ≠ TAt, 0 ⊗ TBt, 0. Hence, even for pure initial states of the system
|A0  ∈ HA, the above SE may (for some initial states) induce evolution into entangled states of the system and
environment.

In general we will be unable to perform complete measurements on the joint Hilbert space HAB, because
reservoirs are usually infinite-dimensional (hence HAB will be also). So limiting our attention to the system HA, it
appears that we must settle for a density-operator description obtained by tracing over the environmental degrees
of freedom:

̃At  TrB|ABt 〈ABt |.

From what we have learned about entanglement in previous lectures, we may expect that this type of evolution
(formation of entanglements with an unobservable reservoir) will lead to loss of purity for the system state. Such
phenomena are generally referred to as ‘decoherence.’

Under certain assumptions about the nature of HAB and of the environment HB, it is sometimes possible to
derive a closed-form evolution equation for the reduced density operator ̃At. In a ‘Master Equation’ of this type,
operators and states for HB do not appear explicitly because they have been analytically traced-out of the
equations of motion. This type of approach is particularly useful for understanding things like dissipation and
thermal fluctuations in a quantum-mechanical setting, and the overall field of studying these things has come to be
known as the theory of open quantum systems.
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