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Background material: Picard’s method of successive approximations
[L. Perko, Differential Equations and Dynamical Systems (Springer-Verlag, New York, 2001)]
Consider an ordinary differential equation,

ẋ  f x, x0  x0,

where x and f may here be scalar or vector-valued. If we formally integrate both sides we obtain


0

t
dx  

0

t
f xsds,

xt − x0  
0

t
f xsds,

xt  x0  
0

t
f xsds,

which simply converts our original differential equation into an integral one. The integral version can be tackled
using the method of successive approximations,

u0t  x0,

uk1t  x0  
0

t
f uksds.

It can be shown rigorously that for reasonable functions f  ( f and its first derivative must be continuous on an
open interval containing x0), the sequence limit function

ut  lim
k→
ukt,

exists and satisfies the integral equation

ut  x0  
0

t
f usds.

We can thus expect that ukt for sufficiently large k provides a good approximation to the solution of ẋ  fx.
As an illustrative example we can consider

ẋ  x2, x0  1,

(although we should be careful about interval of existence). The first few successive approximations are:

u0t  1,

u1t  1  
0

t
f 1ds  1  t,

u2t  1  
0

t
f 1  sds  1  

0

t
1  2s  s2ds  1  t  t2  1

3
t3,

u3t  1  
0

t
1  s  s2  1

3
s3

2
ds

 1  t  t2  t3  2
3
t4  1

3
t5  1

9
t6  1

63
t7.

On the time interval t ∈ −, 1 we can actually identify an exact solution to the ODE,

xt  1
1 − t ,

since
d
dt

1
1 − t  1 − t−2  x2t,

and x0 → 1. If we examine the Taylor expansion of this solution about t  0,

xt ∑
n0


tn
n!
f n0,

we have

f nt  n!1 − tn,
and hence

xt  1  t  t2  t3 ,

and we can directly see the correspondence with the successive approximations (ukt appears good to order k in
t).
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Successive approximations for the Schrödinger evolution operator
If we consider the definition of the evolution operator Utf, ti,

|tf  Utf, ti|ti,

where the state must satisfy the Schrödinger Equation

i d
dt

|t  H |t,

we find the evolution equation

i d
dt
Ut, ti|ti  HUt, ti|ti,

i d
dt
Ut, ti |ti  HUt, ti|ti,

d
dt
Ut, ti  1

i
HUt, ti, Uti, ti  1.

By similar reasoning as was applied above, this can be transformed into an integral equation,

Utf, ti  1  1
i ti

tf
HUs, tids.

Of course, if the eigenstates of the total Hamiltonian are known, it is presumably possible to compute the evolution
operator explicitly by exponentiation.

If on the other hand our total Hamiltonian splits into a part with known eigenstates, plus a perturbation,

H  H0  V,

we can choose to work in the interaction picture. The states and operators are transformed by a unitary operator

Tt  expiH0t − t0/,
according to

|t  | ̃t  Tt|t,

At  Ãt  TtAtT †t.
In the interaction picture we have the Schrödinger Equation

i d
dt

|t  H |t,

i d
dt
T †t| ̃t  HT †t| ̃t,

i d
dt
T †t | ̃t  iT †t d

dt
| ̃t  HT †t| ̃t,

iT †t d
dt

| ̃t  −i − i

H0T †t | ̃t  HT †t| ̃t,

i d
dt

| ̃t  Tt−H0  HT †t| ̃t,

i d
dt

| ̃t  Ṽt| ̃t,

with corresponding evolution equation for the interaction picture evolution operator Ũt, ti,

| ̃t  Ũt, ti| ̃ti,

i d
dt
Ũt, ti| ̃ti  ṼtŨt, ti| ̃ti,

d
dt
Ũt, ti  1

i
ṼtŨt, ti,

and integral form

Ũtf, ti  1  1
i ti

tf
ṼsŨs, tids.

We can now apply Picard’s method of successive approximations, with

Ũ0tf, ti  1,

Ũk1tf, ti  1  1
i ti

tf
ṼsŨks, tids.

Hence
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Ũ1tf, ti  1  1
i ti

tf
Ṽs1ds1,

Ũ2tf, ti  1  1
i ti

tf
Ṽs2 1  1

i ti
s2
Ṽs1ds1 ds2

 1  1
i ti

tf
Ṽs2ds2  1

i

2 
ti

tf
ds2 

ti

s2
ds1Ṽs2Ṽs1,



which may be directly compared with Eqs. (14.a,b) in Complement AI. As is discussed there, such an expansion
leads directly to perturbative methods for computing transition amplitudes.
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