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Background material: Picard’s method of successive approximations
[L. Perko, Differential Equations and Dynamical Systems (Springer-Verlag, New York, 2001)]
Consider an ordinary differential equation,

ẋ  f x, x0  x0,

where x and f may here be scalar or vector-valued. If we formally integrate both sides we obtain


0

t
dx  

0

t
f xsds,

xt − x0  
0

t
f xsds,

xt  x0  
0

t
f xsds,

which simply converts our original differential equation into an integral one. The integral version can be tackled
using the method of successive approximations,

u0t  x0,

uk1t  x0  
0

t
f uksds.

It can be shown rigorously that for reasonable functions f  ( f and its first derivative must be continuous on an
open interval containing x0), the sequence limit function

ut  lim
k→
ukt,

exists and satisfies the integral equation

ut  x0  
0

t
f usds.

We can thus expect that ukt for sufficiently large k provides a good approximation to the solution of ẋ  fx.
As an illustrative example we can consider

ẋ  x2, x0  1,

(although we should be careful about interval of existence). The first few successive approximations are:

u0t  1,

u1t  1  
0

t
f 1ds  1  t,

u2t  1  
0

t
f 1  sds  1  

0

t
1  2s  s2ds  1  t  t2  1

3
t3,

u3t  1  
0

t
1  s  s2  1

3
s3

2
ds

 1  t  t2  t3  2
3
t4  1

3
t5  1

9
t6  1

63
t7.

On the time interval t ∈ −, 1 we can actually identify an exact solution to the ODE,

xt  1
1 − t ,

since
d
dt

1
1 − t  1 − t−2  x2t,

and x0 → 1. If we examine the Taylor expansion of this solution about t  0,

xt ∑
n0


tn
n!
f n0,

we have

f nt  n!1 − tn,
and hence

xt  1  t  t2  t3 ,

and we can directly see the correspondence with the successive approximations (ukt appears good to order k in
t).
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Successive approximations for the Schrödinger evolution operator
If we consider the definition of the evolution operator Utf, ti,

|tf  Utf, ti|ti,

where the state must satisfy the Schrödinger Equation

i d
dt

|t  H |t,

we find the evolution equation

i d
dt
Ut, ti|ti  HUt, ti|ti,

i d
dt
Ut, ti |ti  HUt, ti|ti,

d
dt
Ut, ti  1

i
HUt, ti, Uti, ti  1.

By similar reasoning as was applied above, this can be transformed into an integral equation,

Utf, ti  1  1
i ti

tf
HUs, tids.

Of course, if the eigenstates of the total Hamiltonian are known, it is presumably possible to compute the evolution
operator explicitly by exponentiation.

If on the other hand our total Hamiltonian splits into a part with known eigenstates, plus a perturbation,

H  H0  V,

we can choose to work in the interaction picture. The states and operators are transformed by a unitary operator

Tt  expiH0t − t0/,
according to

|t  | ̃t  Tt|t,

At  Ãt  TtAtT †t.
In the interaction picture we have the Schrödinger Equation

i d
dt

|t  H |t,

i d
dt
T †t| ̃t  HT †t| ̃t,

i d
dt
T †t | ̃t  iT †t d

dt
| ̃t  HT †t| ̃t,

iT †t d
dt

| ̃t  −i − i

H0T †t | ̃t  HT †t| ̃t,

i d
dt

| ̃t  Tt−H0  HT †t| ̃t,

i d
dt

| ̃t  Ṽt| ̃t,

with corresponding evolution equation for the interaction picture evolution operator Ũt, ti,

| ̃t  Ũt, ti| ̃ti,

i d
dt
Ũt, ti| ̃ti  ṼtŨt, ti| ̃ti,

d
dt
Ũt, ti  1

i
ṼtŨt, ti,

and integral form

Ũtf, ti  1  1
i ti

tf
ṼsŨs, tids.

We can now apply Picard’s method of successive approximations, with

Ũ0tf, ti  1,

Ũk1tf, ti  1  1
i ti

tf
ṼsŨks, tids.

Hence
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Ũ1tf, ti  1  1
i ti

tf
Ṽs1ds1,

Ũ2tf, ti  1  1
i ti

tf
Ṽs2 1  1

i ti
s2
Ṽs1ds1 ds2

 1  1
i ti

tf
Ṽs2ds2  1

i

2 
ti

tf
ds2 

ti

s2
ds1Ṽs2Ṽs1,



which may be directly compared with Eqs. (14.a,b) in Complement AI. As is discussed there, such an expansion
leads directly to perturbative methods for computing transition amplitudes.
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