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Background material: Picard’s method of successive approximations
[L. Perko, Differential Equations and Dynamical Systems (Springer-Verlag, New York, 2001)]
Consider an ordinary differential equation,

X =f(x), x(0) = xo,
where x and /'may here be scalar or vector-valued. If we formally integrate both sides we obtain

[Pav = [ roxtsnas
0 0
x(0) =0 = [ f(a(s))ds

t
x(0) = xo+ [ _f(x(s))ds,
which simply converts our original differential equation into an integral one. The integral version can be tackled
using the method of successive approximations,
uo(t) = xo,
t
e (£) = xo + j Su(s))ds.
It can be shown rigorously that for reasonable functions /(-) (/and its first derivative must be continuous on an
open interval containing xo), the sequence limit function
u(t) = ;im u(t),
exists and satisfies the integral equation
t
u(t) = xo + j F(u(s))ds.
0
We can thus expect that «,(¢) for sufficiently large & provides a good approximation to the solution of x = f{(x).
As an illustrative example we can consider
x=x% x(0)=1,
(although we should be careful about interval of existence). The first few successive approximations are:
uo(t) =1,

t
ua(t) = 1+ [ f()ds = 1+1,
0
t 1 1
us(t) = 1+f F(L+5)ds = 1+j (L+2s+5)ds = 1+1+22+ L8,
0 0 3

us(t) =1+ I;(l +5+5%+ %53)2ds

_ 2,583,244, 15, 16, 17
=1l+t+t°+1°+ Bt + 3t + gt + 63t'
On the time interval 7 € (-0, 1) we can actually identify an exact solution to the ODE,
__1
x(0) = 707,
since
i 1 _ _ 2 2
(1) -a-07 -0,
and x(0) —» 1. If we examine the Taylor expansion of this solution about 7 = 0,
x(0) = 3 L),
n=0
we have
SO = nt@d -0,
and hence
x(®) =1+t+2+%+ -,
and we can directly see the correspondence with the successive approximations (u(z) appears good to order & in

0.



Successive approximations for the Schrddinger evolution operator
If we consider the definition of the evolution operator U(, ¢;),

lw(tp) = Ultnt)lw(4)),
where the state must satisfy the Schréodinger Equation
Ly (1)) = Hly(0)),
we find the evolution equation
i (U ) w (1)) = HU@ 1)y (1)),
in(L U, ))lwie)) = HUG )]y (1))
dt IRg) 1 IRg ) 1 )
d y- L1 . 1) =
g U(t, ;) - HU(t,t;), Ut t;) = 1.
By similar reasoning as was applied above, this can be transformed into an integral equation,
) = 4 (" s
Ultpt) =1+ I,, HU(s, t;)ds.

Of course, if the eigenstates of the total Hamiltonian are known, it is presumably possible to compute the evolution
operator explicitly by exponentiation.

If on the other hand our total Hamiltonian splits into a part with known eigenstates, plus a perturbation,
H=Hy+7V,
we can choose to work in the interaction picture. The states and operators are transformed by a unitary operator
T(t) = exp(iHo(t — to)/h),
according to
[w (D)~ [w(@)) = T(Olw@)),
A(t) = A@t) = T(OAWTH(1).
In the interaction picture we have the Schrddinger Equation
i<y (0) = Hly ()
ih%(T*(t)Il/?(t») = H(T'O|¥ (1)),
. i T ~ . T i ~ _ T ~
(L1 0)19) + i O-L19w) = HT' O[FO)),
ot d _ o . N N~
T (0)-L17(0)) = ~ih(—LHoT' () ) [#(0) + H(T 01 7(0)),
i< 7(1)) = () (~Ho + )T ()] 9(1))

i-<L\ip(1)) = VOl (1),
with corresponding evolution equation for the interaction picture evolution operator U(z, ;),
[ () = U@, )|§(1:),
i< (0, )1())) = VO U@ )] 7(2)),
A oy = Lo+
4 ) = VU ),
and integral form
Tt 1) — N N
Ottpt) =1+ j 7(5)U(s, 1;)ds.
We can now apply Picard’s method of successive approximations, with
Uo(tpti) = 1,
Oialtpt) = 1+ L | ) U5, 1)ds.
' lh t; '
Hence



~ o 1 7.
Ou(tsts) = 1+ = j P(s1)dst,

~ N 1 I~ 1 52 o
Ua(tpt:) = 1+ i Ir, V(Sz){1+ 7 J'[! V(Sl)dsl}dSz

_ L tro ' <i>2 ty 52 - -
=1+ I“ Viso)dsz + jz, dszL ds17(s2) V(s1),

which may be directly compared with Eqgs. (14.a,b) in Complement A,. As is discussed there, such an expansion
leads directly to perturbative methods for computing transition amplitudes.



