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Summary points

e Reservoir correlation timescale, coupling timescale (Brownian analogy)

e Assumptions leading to reservoir "force" with zero mean and fast fluctuations
e or a fixed stationary state that commutes with Hg
e Linear coupling assumption
e Dense reservoir spectrum

e Secular approximation

Discussion points
e Lindblad form of the Master Equation
e Non-selective versus selective evolution; quantum trajectories

We have the Interaction Picture Schrédinger Equation, written for the density matrix,
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We can ‘iterate’ this equation by writing
iy Ll’//N//~//
p) = pO+ 4 [ dt' V), )],
and inserting this back into the expression for Ap(t) = p(t + At) — p(t),
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At this point the expression is still exact. We next want to trace over the reservoir degrees of freedom, to obtain
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Under the ‘thermodynamic’ approximation that the coarse-grained evolution maintains p(t) in a factorizable form
p(t) = 6(t) ® or, wWith or a constant incoherent combination of reservoir energy eigenstates, and recalling Egs.
(B.16-B.18),
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we have (using cyclic property of the trace)
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by the zero-mean assumption Eq. (B.19) for or. Hence (again with the cyclic property) the first integral vanishes.
Looking at the second integral we similarly have (r = t' —t")
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Looking at the third integral,
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Putting everything together we are left with
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and it becomes clear that the only reservoir property that survives into the Master Equation, even
non-perturbatively, is the correlation function g(z). Note that there is almost a nice double-commutator structure in
the integrand, which would work out if g(r) were actually symmetric about zero.

With the assumptions made about the reservoir state we can simplify the expression for g(r) somewhat:
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This being the case we find
9(-7) = 97(v),
as advertised. Under the assumption that the states |v) are dense we can argue that g(r) decays quickly to zero...
To proceed further we use a perturbative expansion of the integral equation for Ap(t), applying Picard iteration
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We have (with the reasonable assumption that the integrand is C! on the relevant interval)
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Recalling that the first integral vanishes because of the zero mean assumption, and taking s = t + At, we have the
second-order approximation
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Tracing over the reservoir and dividing both sides by At leads to Eg. (B.30):
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Since v = t' —t", it seems tempting to try to change variables in the integration so that we are integrating over dr.

As shown in Fig. 1 of Chapter IV, the domain of integration begins as the triangle 0AB, where 0B is the line on
which t” = t'. Hence 7 = 0 on the line 0B, and we see that we could integrate over the same triangle by setting

[ jdt” [ j:dr.

We next note that since g(z) decays quickly to zero, we should not make much of an error by extending the integral
over 7 from 0 to «o. Hence we can write
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where we swap the order of |ntegrat|ons, which we can now do, in order to match Eq. (B.33).
We next project the Master Equation onto the energy-state basis of Hx :
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We next note that
exp(imant’) exp(ionct’) = exp(iwact’),
exp(ioact’) exp(ioat’) = exp(i(wap — wea)t'),
Sbd expimact’) = Spa exp(imact’) exp(iwapt’) = Spa exp(i(wap — wca)t'),
exp(iognt”) exp(iomt’) = exp(iogpt'),
SaceXp(ioat’) = Sacexp(imact’) exp(ioat’) = Sacexp(i(wap — wea)t'),
hence
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and we follow the book by next applying the integral
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The sync function factor indicates that the integral will be very small if |(wan — @wcd)At] is large, meaning that we can
safely ignore any terms in which |@a, — @ca| > /AL If |oa — wea| < 1/At then the sync function and the exponential
in At are approximately equal to one; by a somewhat roundabout argument (see text, last paragraph of IV.B.4) one
can therefore motivate the secular approximation in which we neglect all terms in the sum except those for which
lwap — wcq| < 1/At and approximate the integral over t' accordingly:
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Using
Gan(t) = (@|exp(iHat)o exp(—iHat)|b) = exp(iwapbt)can,
Gad(t) = (c|exp(iHat)oexp(-iHat)|d) = exp(i®cdt)ocd,
we can fully switch back to the Schrodinger Picture, where we should be careful to note that
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= —i@aoa(t) + exp(—iwabt)%&ab(t).
Hence by treating the coarse-grained timestep we have been using as a differential, we finally obtain
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Noting that the Rans coefficients have all time variables integrated out, we arrive at the fundamental fact that the
Master Equation takes the form of a linear differential equation with time-independent coefficients.

Generally speaking, any Master Equation can be written in the so-called Lindblad form,
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This form points out that for o viewed as a numerical matrix, the linear differential equation requires both left- and
right-multiplication by coefficient matrices L; (the Lindblad operators). It is straightforward to show that whatever
the form of the {L;}, one can transform the Master Equation into a vector form
vV = My,

where v is a vector containing all the matrix elements of o (for example, simply stacking the columns of ¢ on top of
one another) and M is a constant matrix (with dimension equal to the square of the dimension of the A Hilbert
space). In this form it is possible to apply various efficient methods for integrating the Master Equation, or finding a
steady-state solution vo such that Mv, = 0. In principle, we always have the formal solution

v(t) = exp(Mt)v(0),
although in practice M can be too complex to work with analytically and of too large a dimension to permit brute

force numerical computation of the expontenial. In such cases one can simply resort to numerical integration
methods.

In the simple case of a two-level atom coupled to a vacuum field, the textbook arrives at
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%Uba = —i(wpa + Aba)Oba — %oba.
Note that we can write
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and hence
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where L is the atomic lowering operator. To verify,
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and we can read off
Gaa = ['oph, Gbp = —T'opp,
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- A T
Gba = —i(®@ba + Apa)Oba 2 Oba,

in agreement with expectations. Note that the radiative level shift A, simply merges with the ‘bare’ energy
difference wp, in an effective Hamiltonian for A.



