APPPHYS383 Thursday 14 January 2010

Summary points

1. Discrete-to-discrete transitions have first-order probabilities $\sim T^{2}$
a. Turns out to be leading order of a sinusoid
b. Exact calculations possible for isolated two-dimensional subspaces
2. Discrete-to-continuum transitions have first-order probabilities $\sim T$
a. Turns out to be leading order of an exponential
b. Interesting to see where this comes from - requires integration over diffraction functions $\left[\delta^{(T)}\left(E-E_{i}\right)\right]^{2}$
c. Valid for T long enough to justify flat continuum approximation, short enough to justify first-order perturbation expression
3. Collapse-and-revival dynamics sits between the extremes
4. Inelastic scattering: Figure 2(e) versus Figure 3

General perturbation of a two-level system
Without loss of generality we can write

$$
H_{0}=\left(\begin{array}{cc}
E_{i} & 0 \\
0 & E_{f}
\end{array}\right), \quad V=\left(\begin{array}{cc}
0 & V_{f i}^{*} \\
V_{f i} & 0
\end{array}\right)
$$

Hence

$$
H=\left(\begin{array}{ll}
E_{i} & V_{f i}^{*} \\
V_{f i} & E_{f}
\end{array}\right) .
$$

Since H is Hermitian it is diagonalizable,

$$
H=S^{-1} \Lambda S,
$$

with a real diagonal matrix of eigenvalues. If we want to consider the $\left|\varphi_{i}\right\rangle \rightarrow\left|\varphi_{f}\right\rangle$ transition probability, then we would ideally like to compute

$$
T_{f i}=\left(\begin{array}{ll}
0 & 1
\end{array}\right) S^{-1} \exp (-i \Lambda t / \hbar) S\binom{1}{0}
$$

At this point we resort to computer algebra to compute the Jordan decomposition of

$$
H \rightarrow\left(\begin{array}{ll}
a & c+i d \\
c-i d & b
\end{array}\right)
$$

from which we obtain the exact result,

$$
T_{f i}=\frac{c-i d}{\sqrt{a^{2}-2 a b+b^{2}+4 c^{2}+4 d^{2}}}\{\exp (-i \theta t / \hbar)-\exp (-i \lambda t / \hbar)\},
$$

where θ and λ are the eigenvalues of H,

$$
\begin{aligned}
& \theta=\frac{1}{2} a+\frac{1}{2} b-\frac{1}{2} \sqrt{a^{2}-2 a b+b^{2}+4 c^{2}+4 d^{2}}, \\
& \lambda=\frac{1}{2} a+\frac{1}{2} b+\frac{1}{2} \sqrt{a^{2}-2 a b+b^{2}+4 c^{2}+4 d^{2}} .
\end{aligned}
$$

If we switch back to $a \leftrightarrow E_{i}, b \leftrightarrow E_{f}, c+i d \leftrightarrow V_{f i}^{*}$ and define

$$
\begin{aligned}
\Omega & \equiv \frac{1}{2} \sqrt{a^{2}-2 a b+b^{2}+4 c^{2}+4 d^{2}} \\
& \leftrightarrow \frac{1}{2} \sqrt{\left(E_{f}-E_{i}\right)^{2}+4\left|V_{f i}\right|^{2}},
\end{aligned}
$$

then

$$
\begin{aligned}
T_{f i} & =\frac{V_{f i} \exp \left(-i\left(E_{a}+E_{b}\right) t / 2 \hbar\right)}{\sqrt{\left(E_{f}-E_{i}\right)^{2}+4\left|V_{f i}\right|^{2}}}\{\exp (i \Omega t / \hbar)-\exp (-i \Omega t / \hbar)\} \\
& =\frac{V_{f i} \exp \left(-i\left(E_{a}+E_{b}\right) t / 2 \hbar\right)}{\sqrt{\left(E_{f}-E_{i}\right)^{2}+4\left|V_{f i}\right|^{2}}} 2 i \sin (\Omega t / \hbar),
\end{aligned}
$$

and

$$
P_{f i}=\frac{4\left|V_{f i}\right|^{2}}{\left(E_{f}-E_{i}\right)^{2}+4\left|V_{f i}\right|^{2}} \sin ^{2}\left(\frac{t}{2 \hbar} \sqrt{\left(E_{f}-E_{i}\right)^{2}+4\left|V_{f i}\right|^{2}}\right) .
$$

Literature assignment \#1

- Validity of electric dipole approximation with one compact and one extended state; non-E1 effects in Rydberg atoms
- Non-E1 effects in nanophotonics
- Dipole-type approximations in resonant energy transfer
- Relativistic origin of non-E1 effects
- Emergence of electric quadruople and magnetic dipole terms in next-to-highest order?

