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Quantum states and measurements as non-commutative probability
1. Observables as non-commutative random variables; algebras thereof
2. Spectral decomposition, projection operators as basis elements of the

algebra
3. Density matrix as a representation of state
4. Commutative sub-algebras as classical probability models
5. Heisenberg Uncertainty Principle
6. Binary quantum state discrimination
7. Measures of distance/distinguishability for quantum states
8. Dirac notation review

Quantum states and measurements as non-commutative probability
Last week we saw that a classical probability model can be formulated in terms of an
algebra of observables (random variables), and a state on that algebra. There is a
natural representation of the observables as diagonal matrices, and the state can then
be represented by a diagonal matrix  such that

〈A  Tr A.
The random variables can be viewed as functions on a sample space, with  then a
representation of the probability distribution function, but this is not essential. We saw
that conditioning can be performed directly on the algebra of observables (as opposed
to the probability distribution function) via expressions such as

〈EF ∑
j

〈E fj 

〈 fj 
 fj,

which can easily be mapped into the matrix representation. The indicator functions
 provide basis functions in the algebra of random variables, whose matrix
representations are projection operators that similarly provide a basis for the matrix
algebra of observables.

Today we take some (deceptively) simple steps to make the generalization to
(discrete) quantum probability models. We retain the basic structure of an algebra of
observables with a state, both of which will still have natural matrix representations,
but we no longer require these to be diagonal. We will however require that quantum
observables be Hermitian, in order to ensure that they take values in the real numbers
only. Hence to begin with, we have the following simple table of equivalences:

observables state matrix 
classical models diagonal matrices diagonal, non-negative, Tr  1
quantum models Hermitian matrices Hermitian, non-negative, Tr  1

For diagonal matrices, non-negative simply means that the entries are ≥ 0. For
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general Hermitian matrices, non-negative means that all eigenvalues are ≥ 0. In
quantum probability models we retain the rule

〈A  Tr A,
where we have dropped the A notation as in the quantum case we will tend not to
distinguish between an observable and its matrix representation. A famous example of
a quantum probability model is that of a spin-1/2 particle, or qubit, which can be built
from the following basis set of 2  2 observables:

I 
1 0
0 1

, x 
0 1
1 0

, y 
0 −i
i 0

, z 
1 0
0 −1

.

Here j is the observable corresponding to spin angular momentum along the j axis
(we have taken  → 1). If we form the linear span of these over the real numbers we
obtain Hermitian matrices of the form

M 
a c − id

c  id b
, a,b,c,d ∈ R,

which are observables contained within the algebra of 2  2 complex matrices. Our
observables are easily seen to be non-commutative under multiplication since

xy − yx  2iz, yz − zy  2ix, zx − xz  2iy.
The set of valid state matrices for this model can be written

  1
2 I  〈x x  〈y y  〈z z  1

2
1  〈z  〈x  − i〈y 

〈x   i〈y  1 − 〈z 
,

where we are here thinking of 〈i  as convenient parameters for the state matrix. We’ll
examine this model and its symmetries much further, later in the course.

It is worth noting that the set of valid quantum state matrices (like the set of valid
classical state matrices) is closed under convex combination:

  p1  1 − p2,
where 0 ≤ p ≤ 1, or more generally

 ∑
n

pnn, 0 ≤ pn ≤ 1, ∑
n

pn  1.

Generally speaking, we can think of convex combination as a way of representing
randomized preparation of the system. By adopting the state matrix
  p1  1 − p2 we assign expectation values

〈A  Tr A  pTr A1   1 − pTr A2 ,
which we can think of as an average, weighted by p, over the values that would be
obtained with 1 and 2. Some quantum states cannot be obtained as convex
combinations of any others, and these are called pure states. They are rank-1
projectors. In classical probability the rank-1 projectors are state matrices
corresponding to precise configurations, and there are only a limited number of such
states for any finite sample space. In quantum probability there are a continuum of
pure states for any matrix dimension.
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For classical models we noted that the basis decomposition of a random variable
in terms of indicator functions on its level sets,

A ∑
i

aiai,

takes the appearance in matrix representation of a spectral decomposition:
A ∑

i

aiai ,

where for example if   1,2,3 and
A1  2, A2  A3  3,

then

A 
2 0 0
0 3 0
0 0 3

 2 
1 0 0
0 0 0
0 0 0

 3 
0 0 0
0 1 0
0 0 1

.

It is clear that in the spectral decomposition the ai are the eigenvalues of A and
the ai are projectors onto the corresponding eigenspaces. In quantum models we
use the fact that any Hermitian matrix has a similar spectral decomposition,

Q ∑
i

qiqi ,

where the qi are the eigenvalues of Q and qi are orthogonal projectors onto the
corresponding eigenspaces. Recall that in the classical case we can compute the
probability of A  ai as 〈ai   Trai . In the quantum case we have the same
probability rule, that in a measurement of Q we obtain the outcome qi with probability
〈qi   Trqi , which is consistent with the rule for expecations,

〈Q  TrQ  Tr ∑
i

qiqi ∑
i

qiTrqi  ∑
i

qi Prqi.

To illustrate some of these ideas let us consider the 3  3 example

Q 

0 0 1
0 0 0
1 0 0

,

which is Hermitian and definitely not diagonal. What is its spectral decomposition?
First we note that its eigenvalues and eigenvectors are

− 1 : 1
2

1
0
−1

, 0 :
0
1
0

, 1 : 1
2

1
0
1

.

The projectors onto the eigenspaces are thus
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 −1  1
2

1
0
−1

1 0 −1 

1
2 0 − 1

2

0 0 0
− 1

2 0 1
2

,

0 

0 0 0
0 1 0
0 0 0

, 1 

1
2 0 1

2

0 0 0
1
2 0 1

2

.

Apparently then we are to interpret Q as an observable whose possible values are
−1,0,1, and for which the non-diagonal projectors  −1,0,1 generalize the role
of indicator functions on level sets for classical random variables. Although the
projectors are not diagonal they are still mutually orthogonal (they are guaranteed to
be so since they correspond to distinct eigenvalues), so

 −10   −11  01  0.
It is worth noting that any Hermitian projection operator can be converted into a valid
state matrix  for a quantum probability model via

  /Tr.
In our current example all the eigenprojectors are rank-1 and we can easily see that
   is a state that assigns expectation value  to Q :

〈Q  TrQ → TrQ   Tr1 −  −1   .
Hence we see that the existence of non-diagonal state matrices is somehow natural in
a model containing observables “built from” non-diagonal projectors.

Of course, the statement that a matrix is non-diagonal actually depends on our
choice of basis. Any Hermitian matrix is diagonalizable, meaning that we can express

Q  PP−1,
where  is a diagonal matrix of eigenvalues and P is a matrix containing the
corresponding eigenvectors as columns. In fact since Q is Hermitian it is unitarily
diagonalizable, meaning that P−1  P∗ (Hermitian conjugate) as long as we construct P
using orthonormal eigenvectors. Recall that the eigenvectors of a Hermitian matrix can
always be chosen to provide an orthonormal basis for the vector space the matrix acts
on. For our example,

 

−1 0 0
0 0 0
0 0 1

, P  1
2

1 0 1
0 2 0
−1 0 1

, P−1  P∗  1
2

1 0 −1
0 2 0
1 0 1

,

PP−1  1
2

1 0 1
0 2 0
−1 0 1

−1 0 0
0 0 0
0 0 1

1 0 −1
0 2 0
1 0 1



0 0 1
0 0 0
1 0 0

.

This means that if we consistently apply the similarity transformation M  P−1MP
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(which is actually just a unitary rotation M  P∗MP) to all matrices in our quantum
probability model, we will actually obtain a diagonal representation for Q :

Q  P∗QP  P∗PP∗P  .
At the same time, we must transform   P∗P and likewise for any other observable
we are concerned with. Note that any power of Q also becomes diagonal with this
change of basis:

Qn  PP∗n  PnP∗  n.
The set of all powers of Q actually provides a basis for a closed algebra of
observables:

 ∑
m0



cmQm   ∑
n0



dnQn ∑
p0



cp  dpQ p, , ∈ R,

 ∑
m0



cmQm ∑
n0



dnQn ∑
p0



 ∑
m,n : mnp

cmdn Q p,  ∈ R,

all of which are diagonal in the eigenbasis of Q :

∑
p0



cpQ p ∑
p0



cpp.

We thus find that if we are only interested in observables in this closed diagonal
algebra, it appears that we can choose a basis that makes them look equivalent to
observables of a classical probability model. And what about the state matrix? Let us
first note

̃ −1 ≡ P∗ −1P  1
2

1 0 −1
0 1 0
1 0 1

1
2 0 − 1

2

0 0 0
− 1

2 0 1
2

1 0 1
0 2 0
−1 0 1



1 0 0
0 0 0
0 0 0

,

̃ 0 ≡ P∗ 0P 

0 0 0
0 1 0
0 0 0

, ̃ 1 ≡ P∗ 1P 

0 0 0
0 0 0
0 0 1

,

and introduce the notation
̃ ≡ P∗P.

Then as long as we are only concerned with computing expectation values for
observables in our restricted algebra, we see that
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∑
p0



cpp ∑
p0



cp〈p  ∑
p0



cpTrp̃ ∑
p0



cp −1pTr ̃−1̃  0 pTr ̃0̃  1pTr ̃ 1̃

∑
p0



cp −1pTr ̃−1̃̃−1  0 pTr ̃0̃̃0  1pTr ̃ 1̃̃ 1

∑
p0



cp−1p̃11  0 p̃22  1p̃33,

where ̃i j denotes the i, j matrix element of ̃. Hence we see that the expectation
values of observables in the restricted algebra, and hence the state on the restricted
algebra, depends only on the diagonal elements of the transformed state matrix.

Clearly this argument about the existence of an equivalent classical probability
model generalizes to any algebra of observables that can be simulataneously
diagonalized. As we know from basic linear algebra this means that any commutative
algebra of observables, even if we want to think of them as being “quantum” in origin,
has an equivalent classical probability model. If among the set of observables we are
concerned with there exist any pairs that do not commute, however, then there does
not exist a simultaneously-diagonalizing linear transformation. Hence we see the
existence of non-commuting observables as fundamental to the distinction between
classical and quantum probability.

One often hears that the primary significance of the existence of non-commuting
observables is the Heisenberg Uncertainty Principle. Here we take a moment to
ponder this assertion. Consider a pair of observables A,B that do not commute, and let

A,B  AB − BA ≡ iC,
where A, B and C are all Hermitian. Now consider an arbitrary state matrix  and
define

Ã ≡ A − 〈A, B̃ ≡ B − 〈B,
so that

〈Ã2   A − 〈A2  〈A2  − 〈A2  ΔA2,

〈B̃2   B − 〈B2  〈B2  − 〈B2  ΔB2,

〈ÃB̃  〈A − 〈AB − 〈B  〈AB − 〈A〈B.
Note that A,B ≡ TrA∗B is an inner product and therefore satisfies a
Cauchy-Schwartz inequality:

|A,B|2 ≤ A,AB,B,
which in our scenario with Hermitian matrices implies

TrÃB̃ 2 ≤ TrÃ2  TrB̃2  ,

|〈AB − 〈A〈B| ≤ ΔAΔB.
Now we massage this a bit further, with

6



AB  1
2 AB  BA  AB − BA

 1
2 AB  BA  iC,

〈AB  1
2 〈AB  BA  i〈C.

Since AB  BA and C are both Hermitian operators, 〈AB  BA is real while i〈C is
purely imaginary. Hence

| 〈AB − 〈A〈B|  1
2 〈AB  BA − 〈A〈B

2
 1

4 〈C
2 ≥ 1

2 |〈C|,

and thus
ΔAΔB ≥ 1

2 |〈A,B|.

which is the usual statement of the Heisenberg Uncertainty Principle. This is of course
often a useful quantitative expression, but does it say anything qualitatively profound
about the consequences of non-commutativity?

The first thing to notice is that there are always states that make the RHS of the
inequality vanish. If we write the spectral decomposition for A,

A ∑
i

aii,

and recall that the i are mutually orthogonal, we can pick any eigenprojector of A
as state matrix:

i  i/Tri .
With this choice of state,

〈A,B  TrABi  − TrBAi 

 TrBiA − TrBiA
 0,

where we have used both the cyclic property of Tr and the fact that

iA  i ∑
j

ajj  Ai.

Hence in finite dimensions there is no non-trivial global lower bound on the uncertainty
product of two observables, even if they do not commute. This makes sense of course
since any eigenstate of A gives us ΔA  0, so as long as ΔB is bounded we would
expect to have vanishing uncertainty product (and similarly for an eigenstate of B).
Now in infinite dimensions we have for example

x,p  i,
which means that there are no states for which the uncertainty product ΔxΔp vanishes
- apparently we should think of this as related to the unboundedness of operators such
as x and p, or perhaps to the fact that the eigenstates of x and p aren’t really valid
quantum states (as they aren’t square-normalizable).

In a classical probability model we can find combinations of states and
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observables that have non-zero uncertainty product. For example, if we take

C1 

1 0 0
0 1 0
0 0 0

, C2 

1 0 0
0 0 0
0 0 1

,  

0 0 0
0 1

2 0

0 0 1
2

,

we have

ΔC1  〈C1
2  − 〈C1 2  1

2 −
1
4  1

2 ,

ΔC2  〈C2
2  − 〈C2 2  1

2 −
1
4  1

2 ,

so ΔC1ΔC2  1/4 for this choice of . Hence we confirm that the existence of non-zero
uncertainty products is not a unique aspect of quantum probability.

Note however that in the classical setting we are forced to use non-pure states as
soon as we ask for non-zero uncertainty even of a single observable. In the quantum
setting on the other hand,

 

1 0 0
0 0 0
0 0 0

, Q 

0 0 1
0 0 0
1 0 0

, Q2 

1 0 0
0 0 0
0 0 1

,

ΔQ  〈Q2  − 〈Q2  1 − 0  1.

Hence we see that one key consequence of non-commutativity (which, as we saw
earlier, requires us to consider non-diagonal states/observables) is that there exist
pure states in the model that have non-zero uncertainty for some observables. This
type of pure-state uncertainty in the value of an observable is often referred to as
intrinsic quantum uncertainty, as we cannot view it as being the result of a randomized
preparation.

Last week we reviewed classical probability formalism for handling joint systems
and conditioning; we will defer a parallel discussion for quantum probability models
until a bit later in the term.

Binary quantum state discrimination
Suppose I prepare a quantum system either in the state 1 or the state 2, with even
probability, but I don’t tell you which. I give you the physical system and allow you to
make a single measurement, on the basis of which you must try to guess whether I
prepared 1 or 2. This is the quantum analogue of the classical state discrimination
problem we considered last week using conditional probability. Now, we haven’t yet
discussed conditioning for quantum states, so you might worry that we wouldn’t be
ready yet to take on the quantum state discrimination problem. But in fact we already
know how to do everything we need to do!

For example suppose we are working in the qubit model with states
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1 
a1 c1 − id1

c1  id1 1 − a1
, 2 

a2 c2 − id2

c2  id2 1 − a2
,

and assume we have chosen the labels such that a1  a2. Suppose that I choose
between these by flipping a fair coin, let M be a random variable on the sample
space of the coin   1,2 such that M1  1, M2  2, and suppose that I
prepare the quantum system in state m according the value of M  m. Note that
before you make any measurements, your state on the algebra of observables is

  1
2 1  2,

since I have promised even probabilities for the two different preparations. If you
choose for example the observable

z 
1 0
0 −1

,

the possible outcomes and associated projection operators are

 1 ↔ z 
1 0
0 0

, − 1 ↔  −z 
0 0
0 1

.

The set of forward probabilities are thus
Prz  1 |m  1  Tr1z   a1, Prz  1 |m  2  Tr2z   a2,
Prz  −1 |m  1  1 − a1, Prz  −1 |m  2  1 − a2.

The conditional probabilites are then

Prm  1 |z  1  Prz  1 |m  1Prm  1
Prz  1


a1 1

2 
1
2 a1  a2

 a1
a1  a2

,

Prm  2 |z  1  a2
a1  a2

,

Prm  1 |z  −1  1 − a1
2 − a1 − a2

,

Prm  2 |z  −1  1 − a2
2 − a1 − a2

.

Hence assuming a1  a2, we should guess 1 if the result is z  1 and 2 if the
result is z  −1. The probability of error is then

PEz  Prz  −1 |m  1Prm  1  Prz  1 |m  2Prm  2  1
2 1 − a1  a2.

As we might expect, the only way for this to vanish is if a1  1 and a2  0.
Suppose however that you had chosen to measure x rather than z. In that case

we would utilize the spectral decomposition

x 
0 1
1 0

 x −  −x  1
2

1 1
1 1

− 1
2

1 −1
−1 1

,

and obtain the forward probabilities
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Prx  1 |m  Trmx   1
2 Tr

am cm − idm

cm  idm 1 − am

1 1
1 1

 1
2  cm,

Prx  −1 |m  1
2 − cm,

and the conditional probabilities

Prm |x  1  Prx  1 |mPrm
Prx  1


 1

2  cm 1
2

1
2 1  c1  c2


1
2  cm

1  c1  c2
,

Prm |x  −1 
1
2 − cm

1 − c1 − c2
.

Let us suppose, just for the sake of simplifying the argument, that c1  c2. Then we
should guess 1 if the outcome is x  1 and 2 if the outcome is x  −1, and the
probability of error is

PEx  Prx  −1 |m  1Prm  1  Prx  1 |m  2Prm  2  1
2 1 − c1  c2.

Hence a measurement of x is better than a measurement of z if
PEx  PEz,

1 − c1  c2  1 − a1  a2,
c2 − c1  a2 − a1.

Since we are assuming a1  a2 and c1  c2, and recalling
a1  1

2 1  〈z 1, a2  1
2 1  〈z 2, c1  1

2 〈x 1, c2  1
2 〈x 2,

we see that PEx  PEz if
〈x 1 − 〈x 2  〈z 1 − 〈z 2.

Hence we should pick the observable for which the difference in expectation values
between 1 and 2 is greater. Generally speaking, we expect that in any quantum
state discrimination scenario it will be important to pick an optimal observable.

In any case we see that, just as in the classical case, some pairs of quantum
states are easier to discriminate than others. As discussed in [C. A. Fuchs and J. van
de Graaf, IEEE Transactions on Information Theory, Vol. 45, p. 1216 (1999)],
measures of distinguishability can be derived for quantum states as well as classical:

PE1,2  1
2 −

1
4 Tr |1 − 2 |,

K1,2  1
2 Tr |1 − 2 |,

B1,2  Tr 1 2 1 .

In the Probability of Error and Kolmogorov distance definitions, it is remarkably
possible to write expressions directly in terms of the state matrices that already take
into account an optimization over all possible measurements that could be used for
the state discrimination. Next time we’ll see something about how that kind of
optimization can be performed.
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Review of Dirac notation
Having made our case for the formal similarities between classical and quantum
probability, we will now transition into more traditional quantum-mechanics notation for
our upcoming discussions of subtleties. Most of you are probably quite familiar with
Dirac notation, but here we’ll include a brief review just to make sure everyone is on
the same page.

So far we have represented quantum observables and states as N  N Hermitian
matrices. Any such matrix implicitly acts upon an N-dimensional complex vector space
HN. Vectors in this vector space are denoted by Dirac kets and bras:

|c  ↔

c1

c2



cN

, |c ∗  〈c |  c1
∗ c2

∗  cN
∗ .

Inner (scalar) products can then be denoted as follows:

〈c |d  ≡ 〈c ||d   c1
∗ c2

∗  cN
∗

d1

d2



dN

∑
i1

N

ci
∗di,

with 〈c |c   1 indicating that |c  is normalized and 〈c |d   0 indicating that
|c  and |d  are orthogonal. It is natural to choose an orthonormal basis for the
vector space

HN  span| 1, | 2,… , |N, 〈 i | j    ij,
in terms of which we can write expansions

|c  ∑
i

ci| i, 〈c | ∑
i

ci
∗〈 i |.

The trace of a matrix O can likewise be written
TrO ∑

i
〈 i |O | i .

Outer products can be defined via

|c 〈d | 

c1

c2



cN

d1
∗ d2

∗  dN
∗ 

c1d1
∗ c2d1

∗  cNd1
∗

c1d2
∗ c2d2

∗ cNd2
∗

  

c1dN
∗ c2dN

∗  cNdN
∗

.

We note that if |c  represents a normalized vector, then
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|c 〈c | 

|c1 |2 c2c1
∗  cNc1

∗

c1c2
∗ |c2 |2 cNc2

∗

  

c1cN
∗ c2cN

∗  |cN |2

is a rank-1 orthogonal projector onto the axis defined by |c . We can see that it is a
projector, for example, by computing

|c 〈c |2  |c 〈c ||c 〈c |  |c 〈c |.
We can construct higher-rank projectors onto hyperplanes, etc., by combining
orthogonal rank-1 projectors:

cd  |c 〈c |  |d 〈d |, 〈c |d   0.
Again we can check,

cd
2  |c 〈c |  |d 〈d ||c 〈c |  |d 〈d |  cd,

and the need to have 〈c |d   0 is clear.
The state matrix for a pure state can thus be written

  |c 〈c |,
and it is common to think of the ket |c  or the bra 〈c | as a natural vector
representation of the state. For any given operator/matrix O,

O 

o11 o12  o1N

o21 o22 o2N

  

oN1 oN2  oNN

∑
i,j

oij| i〈 j |,

we have

〈O  TrO  Tr ∑
i,j

oij| i〈 j ||c 〈c | ∑
k
〈k | ∑

i,j

oij| i〈 j ||c 〈c | |k 

∑
i, j,k

oijck
∗cjk,i ∑

i, j

oijci
∗cj  〈c |O |c .

Finally we note that eigenvalue equations for Hermitian observables take the
following form in Dirac notation:

T |i   ti|i, j , 〈i, j |k,l    ik jl,
where the notation accounts for the fact that eigenvalues can be degenerate, and we
assume that the eigenvectors have been orthonormalized. We then have the spectral
decomposition

T ∑
i, j

ti|i, j 〈i, j |.

If any of the eigenvalues ti is degenerate, we can obviously group together the
corresponding rank-1 projectors onto eigenvectors into a higher-rank projector onto
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the entire eigenspace:
T ∑

i

tii, i ∑
j

|i, j 〈i, j |.
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