
APPPHYS225 - Tuesday 23 September 2008

Classical probability review, part 1
1. Discrete random variables as functions on a sample space
2. Probability distribution functions
3. Events
4. Algebras of random variables
5. Expectation, variance, and the notion of state
6. Matrix notation

In this class we will restrict our attenion to finite discrete probability models, in both the classical and
quantum contexts. This will greatly simplify the mathematical and notational overhead. In what
follows, we make references to the following freely-available documents (links from the course
website):

Introduction to Probability - Charles M. Grinstead and J. Laurie Snell
ACM217 notes: Stochastic Calculus, Filtering and Stochastic Control - Ramon van Handel

We make these references not only to attribute quoted material, but also to refer the reader to
expanded discussions in the referenced texts.

Textbook discussions of basic probability often start with the example of rolling a six-sided die.
Assuming the die and its roller are deemed fair, we may assign equal probabilities to each of the six
possible outcomes (number of spots on the side that faces up). Before the die is cast, we can ask
simple questions such as:
 What is the probability that the result will be an even number?
 What is the probability that the result will be either 1 or 2?
 What is the probability that the result will not be 6?

All of you already know how to perform the simple calculations required to answer these correctly,
so we will here focus instead on using the example of a six-sided die to establish some formal
terminology and concepts that will help us eventually to understand the nature of the generalization
from classical to quantum probability models. In particular our goal for today will be to understand
that a classical probability model comprises a sample space, an algebra of random variables, and a
probability state. We will also introduce a matrix notation for classical observables that can naturally
be generalized to accommodate quantum probablity models.

Random variables as functions on a sample space
First we note that a single six-sided die, once it has been rolled and come to rest on a level surface,
has exactly six possible configurations (also called outcomes) that are distinct and meaningful for
our purposes. We will ignore the exact spatial position of the die and its precise orientation, paying
attention only to which face is up. Let us abstractly identify the six possible outcomes resulting from
a single die-roll with elements of the set
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  1,2,3,4,5,6,
where the subscript index corresponds to the number of spots on the side that finally faces up. The
set of all possible outcomes is known as the sample space, and is usually denoted . For reasons
that we will discuss below, subsets of  are called events.

Having established the set of possible outcomes, we can now define random variables (also
called observables) to be functions on . If a given random variable takes values in a set S we call it
an S-valued random variable; real- or integer-valued random variables are simply called random
variables. For example consider the following random variables, specified first in terms of intuitive
definitions and second as explicit functions on  :
 X : number of spots on the side facing up,

X1  1, X2  2, X3  3, X4  4, X5  5, X6  6.
 Y : sum of the numbers of spots on the five sides not facing up,

Y1  20, Y2  19, Y3  18, Y4  17, Y5  16, Y6  15.
 Z : value of the smallest prime number larger than the number of spots on the side facing

up,
Z1  2, Z2  3, Z3  5, Z4  5, Z5  7, Z6  7.

The notation here is meant to emphasize the view of random variables as functions; note that these
functions are not necessarily one-to-one. We will implicitly treat the one-to-one random variable X
as a special variable that indicates the numerical value of the die-roll, as this conforms to gambling
convention, although in principle Y or any other one-to-one random variable could play the same
role.

Note that if we know the exact configuration of our system, we implicitly know the exact value of
all observables. Similarly, if we know the exact value of any one-to-one random variable we can
infer the configuration and thus the exact value of all other observables.

Probability distribution functions
Another special function on the set of outcomes is the probability distribution function, which we will
denote m. This special function is defined by

mi  Pri, ∀i.
Since we are assuming that this is a fair die-roll, we have mi  1/6 for all i. Generally speaking,
for a probability distribution function in any scenario we require

0 ≤ mi ≤ 1, ∑
 i∈

mi  1.

Occasionally we may have cause to consider unnormalized probability distributions such that
∑ i∈

mi ≠ 1, and in such cases it is understood that Pri  mi/∑ i∈
mi.

Events
Our next step is to discuss the association of events (subsets of ) with yes-or-no questions about
the outcome. Suppose I roll the six-sided die but do not show you the result. Any relevant yes-or-no
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question you could ask me regarding the outcome of the die-roll can be associated with a subset
E ⊂ , such that I will say yes if and only if the actual outcome is in E. For example:
 Was the result 1? E  1
 Was the result an even number? E  2,4,6
 Was the result 1 or 2? E  1,2
 Was the result not 6? E  1,2,3,4,5

Of course there is more than one way to formulate a yes-or-no question corresponding to a given
set of elements:
 E  1,2 : Was the result less than 3?
 E  1 : Was the result not an even number, and less than 3?

Clearly the information content of the answer to a yes-or-no question regarding membership in a
given subset depends only on the subset, and is independent of the precise way that the question is
worded.

Note that knowledge of membership in a subset E implies knowledge of membership in the
complementary subset EC. In words, this corresponds to the fact that the answer to a yes-or-no
question implies the answer to the negation of this question. Likewise, if we have knowledge of
membership in two different subsets E1 and E2, then we can infer membership in the combined
subsets E1  E2 and E1 ∩ E2 (exercise: write out the corresponding truth tables). It is useful to note
in this context that

E1 ∩ E2  E1
C  E2

CC,
which means that complementation and union are really the essential operations in this type of
inference game. In any case we note that, if I allow you to ask about membership in a “starter
collection” of subsets Ei, you can actually infer membership in a larger collection of subsets
generated by complementation and union (for explicit definitions of set complement, union,
intersection and difference see Grinstead and Snell, p. 21-22).

Note that random variables can also serve to define events:
 Was the result of the die-roll such that X  5? E  5
 Was the result of the die-roll such that Y  15 or Y  16? E  5,6
 Was the result of the die-roll such that Z  5? E  3,4

Knowing the value of a random variable does not necessarily allow you to determine the exact
configuration, but you can narrow it down to a subset of . The term level set is commonly used to
refer to the event that contains all configurations for which a random variable assumes a given
value. Note that the level sets of a random variable are non-overlapping, and that the union of all
level sets of a random variable is .

It is natural to extend the probability distribution function m so that it is defined not only on
elementary outcomes but also on events. Explicitly,

mE ∑
 i∈E

mi.

When viewed as a function from subsets to the reals, m is often referred to as a probability
measure (especially in scenarios with continuous random variables). It is easy to show that the
following properties hold [Grinstead and Snell, Theorem 1.1]:
1. mE ≥ 0 for every E ⊂ .
2. m  1.
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3. If E ⊂ F ⊂  then mE ≤ mF.
4. If A and B are disjoint subsets of , then mA  B  mA  mB.
5. mAC  1 − mA for every A ⊂ .
Here AC indicates the complement of A in , as in our above discussion of events.

Note that the probability distribution function thus induces probabilities for the values of random
variables. If we define

EA,a  i : Ai  a
as the event A  a, then

PrA  a  mEA,a  ∑
 i∈EA,a

mi.

For example X  5 occurs only for 5, so PrX  5  m5  1/6. On the other hand,
PrZ  5  m3  m4  1/3.

Algebras of random variables
Once we have defined some random variables, such as X,Y,Z, it is very easy to generate more
(here we will assume that all random variables can be viewed as taking real values). Note that
sums and products of random variables are themselves random variables, as are the products of
random variables with real numbers. Hence, random variables have a natural algebraic structure.
For example, if we define

R  X  Z,
with , real numbers, then

R1    2, R2  2  3, R3  3  5,
R4  4  5, R5  5  7, R6  6  7.

Similarly,
Z2 ≡ Z2

has values
Z21  4, Z22  9, Z23  25, Z24  25, Z25  49, Z26  49,

and
XZ  XZ

has values
XZ1  2, XZ2  6, XZ3  15, XZ4  20, XZ5  35, XZ6  42.

The probability distribution function on  clearly provides probability distribution functions for such
random variables as well.

An indicator function E of an event (subset) E is a random variable such that
Ei  1, i ∈ E,

 0, i ∉ E.
Technically speaking, any random variable can be expressed in terms of indicator functions on its
level sets:
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R ∑
i

riri
,

where R takes values in the set ri and ri is the level set corresponding to the value ri. For
example,

Z  21  32  53,4  75,6.
It thus appears that indicator functions are like ‘basis functions’ for random variables. Note that for
two events A and B,

A∩Bi  AiBi.
Hence for a pair of random variables R and T,

RT  ∑
i

riri
 ∑

j

tjtj
 ∑

i, j

ritjri∩tj
  TR.

Expectation, variance, and the notion of state
The expectation of a random variable R, which we will write 〈R, is defined as

〈R ≡ ∑
 i∈

Rimi.

This is the average, or mean value of R with respect to the probability distribution function m.
Note that for indicator functions,

〈E   mE.
Similarly, the variance of R is defined as

varR ≡ 〈R2   ∑
 i∈

R2imi  ∑
 i∈

Ri2mi.

It is common also to define the standard deviation of R, also called the uncertainty of R, as

stdR ≡ 〈R2  − 〈R2  ∑
 i∈

Ri2mi − ∑
 i∈

Rimi

2

.

It is common also to define the covariance of two random variables A and B as
covA,B ≡ 〈A − 〈AB − 〈B  〈AB − 〈A〈B

 ∑
 i∈

AiBimi − ∑
 i∈

Aimi ∑
 i∈

Bimi .

It should be clear from these definitions that, in general, 〈R2  ≠ 〈R2 and 〈AB ≠ 〈A〈B. If
covA,B  0 we say that A and B are independent random variables.

Formally, a state is a consistent assignment of an expectation value to every random variable in
an algebra. It should be clear from the above that a state specifies variances and covariances by
virtue of the fact that if A and B are random variables in our algebra, then so are A2, B2
and AB. The probability measure m is a compact way of summarizing the state on an algebra
of random variables. Note that state and configuration are quite different in our useage of the terms
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- classically we assume that there exists an ‘actual’ configuration of the system in question (the
actual disposition of the die after it has been rolled), which may or may not be known to anyone, but
we also have a ‘state’ of knowledge/belief that summarizes the information we use to make
predictions within a probabilistic framework.

Matrix notation
In a finite discrete setting, for which the sample space  contains N elements, it is natural to
associate random variables with N  N real matrices. For an arbitrary random variable R, we
simply place the values Ri along the diagonal and put zeros everywhere else. Hence, continuing
with our example of the six-sided die:

X ↔

1 0 0 0 0 0
0 2 0 0 0 0
0 0 3 0 0 0
0 0 0 4 0 0
0 0 0 0 5 0
0 0 0 0 0 6

, Z ↔

2 0 0 0 0 0
0 3 0 0 0 0
0 0 5 0 0 0
0 0 0 5 0 0
0 0 0 0 7 0
0 0 0 0 0 7

.

We use X to denote the matrix representation of a random variable X. With a bit of thought you
can convince yourself that with this matrix representation, we can use the usual rules of matrix
arithmetic and multiplication to carry out algebraic manipulations among random variables. For
example,

R ≡ X  Z ↔ 

1 0 0 0 0 0
0 2 0 0 0 0
0 0 3 0 0 0
0 0 0 4 0 0
0 0 0 0 5 0
0 0 0 0 0 6

 

2 0 0 0 0 0
0 3 0 0 0 0
0 0 5 0 0 0
0 0 0 5 0 0
0 0 0 0 7 0
0 0 0 0 0 7

 diag  2, 2  3, 3  5, 4  5, 5  7, 6  7,
where the diag…  notation hopefully is obvious. Note that because of the fact that all matrices we
use in this classical probability setting are diagonal, the matrix representations of an algebra of
random variables form a commutative matrix algebra.

We note that the probability distribution can be written in exactly the same matrix notation, and
that we thus arrive with the convenient expressions such as
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〈X ≡ ∑
 i∈

Ximi

↔ Tr

1 0 0 0 0 0
0 2 0 0 0 0
0 0 3 0 0 0
0 0 0 4 0 0
0 0 0 0 5 0
0 0 0 0 0 6

1/6 0 0 0 0 0
0 1/6 0 0 0 0
0 0 1/6 0 0 0
0 0 0 1/6 0 0
0 0 0 0 1/6 0
0 0 0 0 0 1/6

.

We will use the suggestive notation  ≡ diag m1,… ,mN for the matrix representing the
probability distribution function. Hence, in general, the expectation 〈R of an arbitrary random
variable R can be computed by taking the trace of the product of  with R. The matrix  provides a
convenient representation of a state for our algebra of random variables.

Indicator functions have a somewhat special appearance in this matrix notation, as they
correspond to matrices with zeros and ones on the diagonal. Viewed as linear operators, they are
therefore projection (idempotent) operators. For example, the indicator function E for the event
E  1,2 has matrix representation

E ↔

1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

,

where clearly E2  E. It should be evident that the matrix representations of the indicator
functions on all of the individual outcomes 1,2,… ,N provide a linear basis for the
commutative matrix algebra representing all possible random variables on . In particular,

R ∑
i1

N

Ri i .

Hopefully, this perspective also highlights the fact that we can easily identify sub-algebras. For
example if we think about the linear span of the matrix representations of indicator functions on
1,3,5 and 2,4,6, we obtain a closed matrix algebra for which the first, third and fifth
diagonal elements are always the same, as are the second, fourth and sixth. It is only really
two-dimensional. Exercise: determine the sample space for a single roll of two six-sided dice. Of
what dimension are the matrix representations of random variables on this sample space?

Note that once we have obtained the matrix representations for the observables that we care
about, and for the state, we can actually forget about  and the underlying configurations! Our
original notion of random variables as functions on a sample space dictated the dimension of the
matrix representations and their diagonality (required for multiplication to be commutative).
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Summary points
1. Classical observables (random variables) can be viewed as functions on a sample space
2. Classical observables form commutative algebras with indicator-function bases
3. Classical observables can be represented by diagonal matrices (indicator functions by

projectors)
4. Expectations are obtained by trace with a matrix representation of the state (probability

measure)
5. Configuration refers to “physical reality”; state refers to knowledge/belief
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