
APPPHYS225 - Tuesday 4 November 2008

Entropy of Entanglement
On several occasions we have remarked that joint pure states can be ‘checked’ for
entanglement by forming the reduced density matrix ̃ of one subsystem and
computing its purity, Tr ̃2 . In fact, the purity of the reduced density matrix can be
regarded as a quantitative measure of entanglement for a pure joint state of two
systems. For example, if we consider

|AB   1
2 | 0A0B   | 0A1B   | 1A0B   ei | 1A1B ,

|AB 〈AB |  1
4 | 0A0B 〈0A0B |  | 0A1B 〈0A0B |  | 1A0B 〈0A0B |  ei | 1A1B 〈0A0B |

 | 0A0B 〈0A1B |  | 0A1B 〈0A1B |  | 1A0B 〈0A1B |  ei | 1A1B 〈0A1B |
 | 0A0B 〈1A0B |  | 0A1B 〈1A0B |  | 1A0B 〈1A0B |  ei | 1A1B 〈1A0B |
 e−i| 0A0B 〈1A1B |  e−i| 0A1B 〈1A1B |  e−i| 1A0B 〈1A1B |  | 1A1B 〈1A1B |,

we have
̃A  TrB|AB 〈AB |

 〈0B ||AB 〈AB || 0B   〈1B ||AB 〈AB || 1B 

 1
4 | 0A 〈0A |  | 1A 〈0A |  | 0A 〈1A |  | 1A 〈1A |

 | 0A 〈0A |  ei | 1A 〈0A |  e−i | 0A 〈1A |  | 1A 〈1A |

↔
1
2

1
4  1

4 e−i

1
4  1

4 ei 1
2

,

and thus

̃A
2 ↔

3
8  1

8 cos 1
4  1

4 e−i

1
4  1

4 ei 3
8  1

8 cos
, Tr ̃A

2   3
4  1

4 cos.

Hence the purity of ̃A
2 varies from 1 (  0, unentangled) down to 1

2 (  ).
It is actually more common to use the von Neumann entropy of the reduced

density matrix rather than its purity, as a measure of pure-state entanglement, which is
then called the entropy of entanglement. Note that it generally does not matter which
system we trace over when performing a calculation of this kind. In our above example
the joint pure state was completely symmetry between A and B, but we can consider
the following more illustrative example:
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|AB   1
3
| 0A0B   | 0A1B   | 1A2B ,

|AB 〈AB |  1
3 | 0A0B 〈0A0B |  | 0A1B 〈0A0B |  | 1A2B 〈0A0B |

 | 0A0B 〈0A1B |  | 0A1B 〈0A1B |  | 1A2B 〈0A1B |
 | 0A0B 〈1A2B |  | 0A1B 〈1A2B |  | 1A2B 〈1A2B |,

where subsystem A lives in a two-dimensional Hilbert space but B lives in a
three-dimensional space. We can compute,

̃A  TrB|AB 〈AB |

 〈0B ||AB 〈AB || 0B   〈1B ||AB 〈AB || 1B   〈2B ||AB 〈AB || 2B 

 1
3 | 0A 〈0A |  | 0A 〈0A |  | 1A 〈1A |

↔
2
3 0

0 1
3

,

so that Tr ̃A
2   5

9 , while
̃B  TrA|AB 〈AB |

 〈0A ||AB 〈AB || 0A   〈1A ||AB 〈AB || 1A 

 1
3 | 0B 〈0B |  | 1B 〈0B |  | 0B 〈1B |  | 1B 〈1B |  | 2B 〈2B |

↔

1
3

1
3 0

1
3

1
3 0

0 0 1
3

, ̃B
2 ↔

2
9

2
9 0

2
9

2
9 0

0 0 1
9

,

so Tr ̃B
2   5

9 as well. It turns out that the eigenvalues of ̃B are 0, 1
3 , 2

3 , so we
have −Tr ̃A ln ̃A   −Tr ̃B ln ̃B  as well.

Schmidt decomposition
Consider a joint pure state of subsystems A and B, where
HA  span| 0A , | 1A ,… , |MA  and HB  span| 0B , | 1B ,… , |NB . We can write, in
general,

|AB  ∑
i1

M

∑
j1

N

cij| iA jB .

It turns out that one can always rewrite such a joint pure state in terms of a Schmidt
decomposition,

|AB   ∑
k1

minM,N

sk |uA
k  ⊗ |vB

k ,
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where for each value of k, |uA
k  ∈ HA and |vB

k  ∈ HB satisfying
uA

i |uA
i′   ii′ , vB

i |vB
i′   ii′ .

The states |uA
k  ⊗ |vB

k  are sometimes called the Schmidt basis for HA ⊗ HB induced
by the given joint pure state |AB . If we denote by K ≤ minM,N the number of
non-zero Schmidt coefficients sk, which is sometimes called the Schmidt rank, we can
write

|AB 〈AB |  ∑
k,k′1

K

sk′
∗ sk|uA

k  uA
k′ ⊗ |vB

k  vB
k′ ,

and

̃A ∑
j1

K

vB
j |AB 〈AB | vB

j

∑
j1

K

vB
j ∑

k,k′1

K

sk′
∗ sk|uA

k  uA
k′ ⊗ |vB

k  vB
k′ vB

j

∑
j1

K

| sj |2 uA
j uA

j ,

and similarly

̃B ∑
j1

K

uA
j ∑

k,k′1

K

sk′
∗ sk|uA

k  uA
k′ ⊗ |vB

k  vB
k′ uA

j

∑
j1

K

| sj |2 vB
j vB

j .

Note that because of the assumed orthonormality of the Schmidt basis states, these
are actually spectral decompositions for the reduced density operators. It is thus clear
from these expressions that ̃A and ̃B have the same eigenvalues and therefore the
same entropies of entanglement. We can also see from these expressions that the
Schmidt basis states can be computed by finding eigenvectors of the reduced density
matrices.

As an example, consider again
|AB   1

3
| 0A0B   | 0A1B   | 1A2B ,

which is easily seen to be equivalent to

|AB   2
3 |0A  ⊗ 1

2
|0B   1

2
|1B   1

3
|1A  ⊗ | 2B .

Hence
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s1  2
3 , |uA

1   | 0A , |vB
1   1

2
| 0B   | 1B ,

s2  1
3

, |uA
2   | 1A , |vB

2   | 2B ,

and K  2 ≤ mindimHA  2,dimHB  3, while we can easily verify the
orthogonality conditions on the Schmidt basis states.

If we consider the much less obvious example
|AB   1

2 | 0A0B   | 0A1B   | 1A0B   i | 1A1B 

 1
2 |0A  ⊗ | 0B   | 1B   1

2 |1A  ⊗ | 0B   i | 1B ,

where we note that we cannot just use the same simple ‘factoring’ trick since
| 0B   | 1B , | 0B   i | 1B 

are not an orthogonal pair of states, we must work from the reduced density matrix

̃A 
1
2

1
4  1

4 e−i

1
4  1

4 ei 1
2

,

which we computed above. With  → /4 we find that the eigenvectors and
eigenvalues of ̃A are

 1
2 1 − i

1
2

↔ 2  1
2 2

,

hence
|uA

1   1 − i
2 |0A   1

2
|1A ,

|uA
2   i − 1

2 |0A   1
2

|1A ,

and we check that

〈uA
1 |uA

2   1  i
2

i − 1
2  1

2  i − 1 − 1 − i
4  1

2  0.

We see that
| 0A   1

1 − i |uA
1  − |uA

2 , | 1A   1
2
|uA

1   |uA
2 ,

hence
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|AB   1
2 |0A  ⊗ | 0B   | 1B   1

2 |1A  ⊗ | 0B   i | 1B 

 1
2 − 2i |uA

1  − |uA
2  ⊗ | 0B   | 1B   1

2 2
|uA

1   |uA
2  ⊗ | 0B   i | 1B 

 |uA
1  ⊗ 1

2 − 2i | 0B   | 1B   1
2 2

| 0B   i | 1B 

 |uA
2  ⊗ 1

2 2
| 0B   i | 1B  − 1

2 − 2i | 0B   | 1B 

 |uA
1  ⊗ 1

2 2 1 − i
1  2 − i | 0B   1  2  i | 1B 

 |uA
2  ⊗ 1

2 2 1 − i
1 − 2 − i | 0B   1 − 2  i | 1B  .

Checking the normalizations,
1  2 − i 1  2  i  1  2  i  2  2  2 i − i − 2 i  1  4  2 2 ,

1 − 2 − i 1 − 2  i  1 − 2  i − 2  2 − 2 i − i  2 i  1  4 − 2 2 ,

hence

|vB
1  

1  2 − i

8  4 2
|0B  

1  2  i

8  4 2
|1B ,

|vB
2  

1 − 2 − i

8 − 4 2
|0B  

1 − 2  i

8 − 4 2
|1B ,

and

|AB  
8  4 2

2 2 1 − i
|uA

1  ⊗ |vB
1  

8 − 4 2
2 2 1 − i

|uA
2  ⊗ |vB

2 


1  1

2

1 − i |uA
1  ⊗ |vB

1  
1 − 1

2

1 − i |uA
2  ⊗ |vB

2 

 1  i
2 1  1

2
|uA

1  ⊗ |vB
1   1  i

2 1 − 1
2

|uA
2  ⊗ |vB

2 ,

and we check that

| s1 |2  1
2  1

2 2
 2  1

2 2
,

| s2 |2  1
2 −

1
2 2

 2 − 1
2 2

,

match the eigenvalues of ̃A computed above.

Entanglement concentration
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Here we will briefly introduce an entanglement concentration scheme presented by C.
H. Bennett et al., “Concentrating partial entanglement by local operations,” Phys. Rev.
A 53, 2046 (1996). Please refer to the paper and your upcoming homework for further
details.

Consider a situation in which Alice and Bob share a large number of pairs of
partially entangled two-level systems. Let the state of each pair be

|i   cos| 0Ai1Bi   sin| 1Ai0Bi .
Overall, the state of N such particle pairs will look like
|1…N   cos| 0A11B1   sin| 1A10B1  ⊗ cos| 0A21B2   sin| 1A20B2 cos| 0AN1BN   sin| 1AN0BN 

We recognize that when the product is distributed, we’ll end up with a range of terms
with coefficients of the form cosN, cosN−1 sin, cosN−2 sin2,…cos sinN−1, sinN. If
we group together all the terms that have coefficient cosN−k sink, these will span a
subspace of the total 2N-particle Hilbert space of dimension

Dk  N
k ,

that is, ‘N choose k’ dimensions. We note that each subspace basis state identified in
this manner is a product state. For example, the subspace with k  1 has N basis
states of the form
|k  1, i ≡ | 1Ai0Bi 

j≠i
| 0Aj1Bj   | 0A1 0A2…1Ai…0AN  ⊗ | 1B1 1B2…0Bi…1BN , i  1…N.

It thus follows that either Alice or Bob can perform a measurement composed of
rank-Dk partial projectors into the k subspaces constructed in this way. The probability
of obtaining result k ′ in such a measurement is

Prk ′  N
k ′

cos2N−2k′ sin2k′.

After such a measurement is performed, with result k ′, the joint state of all the particles
is projected into the subspace span|k ′, i. There will be Dk′ terms in the conditional
state, each of which has equal magnitude. Hence, except in the relatively rare cases
k ′  0 or k ′  N, we end up with a maximally entangled state in some subspace of the
total 2N-particle Hilbert space.

Entropy of Formation
So far we have discussed only pure states of a joint system. What about mixed
states? This turns out to be quite a complicated matter...

We have previously discussed the fact that a given density matrix can be
‘decomposed’ into ensembles of pure states in countless ways. Consider for example

AB  1
2 |0A0B 〈0A0B |  1

2 |1A1B 〈1A1B |,

which represents the ensemble density matrix for both
p0  1

2 , |0   | 0A0B ,

p1  1
2 , |1   | 1A1B ,
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and
p0  1

2 , |0   1
2
| 0A0B   | 1A1B ,

p1  1
2 , |1   1

2
| 0A0B  − | 1A1B .

The first correspondence should be obvious, and to see the second just note that all
the ‘cross-terms’ will have opposite signs and therefore disappear when the ensemble
density matrix is formed. While |0 , |1  ensemble, which contains only highly
entangled states, might suggest that AB could be considered to be an entangled
mixed state, the existence of the alternative ensemble |0 , |1  presumably proves
that it should not be so considered.

The entanglement of formation of a mixed state AB is defined to be the minimum
average entropy of entanglement among all consistent ensembles of pure states. That
is,

EFAB  min
pi,|i 

∑
i

pi E|i , AB ∑
i

pi|i 〈i |,

where E|i  denotes the entropy of entanglement of the pure state |i . Efficient
methods for calculating EF for subsystems of arbitrary dimension are not known (in
fact, even just deciding whether it is nonzero seems to be quite hard), but for the
special case of two two-dimensional systems (qubits) there is an efficient method due
to Wootters [W. K. Wootters, “Entanglement of Formation of an Arbitrary State of Two
Qubits,” Phys. Rev. Lett. 80, 2245 (1998)].

The distillable entanglement ED of a mixed state AB is defined to be the
asymptotic yield of arbitrarily pure singlets that can be prepared locally by
entanglement purification protocols analogous to the pure-state entanglement
concentration procedure sketched above. Surprisingly, there exist mixed states that
cannot be prepared without some input of entanglement yet have ED  0 provably [D.
Yang et al., “Irreversibility for All Bound Entangled States,” Phys. Rev. Lett. 95,
190501 (2005)].

Entanglement of Assistance
Consider now the three-part state

|ABC   1
2
|0A1B C   | 1A0B C ,

|ABC 〈ABC |  1
2 |0A1B C 〈0A1B C |  | 1A0B C 〈0A1B C |

 |0A1B C 〈1A0B C |  | 1A0B C 〈1A0B C |,
where we are working in a joint Hilbert space HA ⊗ HB ⊗ HC with

HA  span| 0A , | 1A , HB  span| 0B , | 1B , HC  span|C , |C .
Assume that Alice and Bob have posession of the particles whose states live in HA

and HB, respectively, and that Charlie has the particle from spaace HC.
If Alice and Bob get together but Charlie runs off on his own, what can Alice and
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Bob say about their marginal state? As we have done with computing reduced density
matrices for one subsystem out of two, we can here just take a partial trace over HC to
obtain a reduced joint density matrix:

̃AB  TrC|ABC 〈ABC |

 〈C ||ABC 〈ABC ||C   〈C ||ABC 〈ABC ||C 

 1
2 | 0A1B 〈0A1B |  | 1A0B 〈1A0B |.

This is clearly a mixed state with zero entanglement of formation. As we have
previously discussed, we can think of the partial trace here as corresponding to a
scenario in which Charlie measures his state in the |C , |C -basis but does not
inform Alice and Bob of the result. But note that it would not help Alice and Bob to
know the result of Charlie’s measurement if what they want is to end up with some
entanglement.

We know that it does not matter what basis (for HC) we use for the partial trace,
but what if Charlie actually does perform a measurement on his particle and then does
inform Alice and Bob of the result? They would then end up with a state derived by
selective evolution, which we will compute by applying a partial projection before
factoring out the state of particle C. An illustrative example is obtained if we have
Charlie perform his measurement in the basis |C , |C , where

|C   1
2
|C   |C , |C   1

2
|C  − |C ,

|C   1
2
|C   |C , |C   1

2
|C  − |C .

Rewriting our initial joint state with this basis for HC in mind, we have
|ABC   1

2
|0A1B C   | 1A0B C 

 1
2 | 0A1B C   | 0A1B C   | 1A0B C  − | 1A0B C 

 1
2 | 0A1B   | 1A0B  ⊗ |C   1

2 | 0A1B  − | 1A0B  ⊗ |C .

Hence we see that if Charlies makes his measurement and obtains the  result, Alice
and Bob are left with the entangled pure joint state

|AB   |AB
   1

2
| 0A1B   | 1A0B ,

whereas if he obtains the  result,
|AB   |AB

−   1
2
| 0A1B  − | 1A0B .

Note of course that the ensemble density operator corresponding to non-selective
evolution with this scenario is still

̃AB  1
2 |AB

 〈AB
 |  1

2 |AB
− 〈AB

− |  1
2 | 0A1B 〈0A1B |  | 1A0B 〈1A0B |,

where again the last equivalence can be seen by noting that all the ‘cross-terms’
cancel. It thus appears that Charlie’s choice of measurement basis, while it cannot
change Alice and Bob’s non-selective reduced density matrix, does pick out a specific
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ensemble decomposition of ̃AB. In particular if Charlie picks a measurement basis that
generates an ensemble containing highly entangled states, then Alice and Bob can
end up with a highly entangled state if Charlie informs them of the measurement
result. On the other hand Charlie may be able to pick a measurement basis that leads
to conditional states for Alice and Bob that have lower entanglement, or even no
entanglement if EF̃AB  0.

This type of consideration motivates the definition of a quantity called
entanglement of assistance,

EAAB  max
pi,|i 

∑
i

pi E|i , AB ∑
i

pi|i 〈i |,

the definition of which is quite like the definition of EF except that the minimum is
replaced by a maximum. The general idea is that if the impurity of a given bipartite
mixed state AB is assumed to result entirely from entanglement with a third system,
but nothing is known about the structure of that entanglement, EF and EA bound the
minimum and maximum expected entropy of entanglement (respectively) between A
and B that could result from partial projection of the third system.

The ‘quantum eraser’ scenario
The simple calculations we have performed above are quite similar to those involved
in the analysis of the so-called ‘quantum eraser’ scenario.

Suppose for example that we have two optical cavities, each prepared initially in a
one-photon Fock state. We can model these as having quantum states that live in
two-dimensional Hilbert spaces,

HA  span| 0A , | 1A , HB  span| 0B , | 1B ,
where the labels of the given basis states indicate photon number. Our initial state is
thus

|AB   | 1A1B .
We need to enlarge the system under consideration in order to include a very
simplistic description of energy decay, via leakage of the photons stored in the cavities
into outgoing modes of the electromagnetic field. We will assume that each of these
outgoing modes is monitored by perfect photon-counting detectors with high time
resolution Δt, assumed to be much smaller than the cavity decay time constant.

If we add two more Hilbert spaces,
H  span| 0 , | 1 , H  span| 0 , | 1 ,

we can model the leakage of photons from cavity A into the  mode, and of photons
from cavity B into the  mode, via the interaction Hamiltonian

Hint  i a† − a†  i b† − b† .

(Note that a proper quantum-optical decay model would be far more complicated,
involving multimode electromagnetic fields outside the cavity and quantum Markov
approximations—see below—but this toy model will suffice for our purposes.) Here the
annihilation operators are defined by
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a  | 0A 〈1A |, b  | 0B 〈1B |,   | 0 〈1 |,   | 0 〈1 |,
and  is a parameter related to the rate of photon leakage. We assume that the initial
state of the four-part system is now

|AB   | 1A1B 00 .
We proceed by evolving this state with coarse-grained timestep Δt, interleaving
periods of unitary (Schrödinger) evolution with measurements of the photon number in
modes  and . If the result of the measurement on the  output channel is
m ∈ 0,1 and the result of the measurement on the  output channel is n ∈ 0,1,
we have the selective evolution

|t  |t  Δt  exp−iΔtHint/|t


Amn exp−iΔtHint/|t

〈t| expiΔtHint/Amn
† Amn exp−iΔtHint/|t

,

where
A00  1A ⊗ 1B ⊗ | 0 〈0 | ⊗ | 0 〈0 |, A01  1A ⊗ 1B ⊗ | 0 〈0 | ⊗ | 0 〈1 |,

A10  1A ⊗ 1B ⊗ | 0 〈1 | ⊗ | 0 〈0 |, A11  1A ⊗ 1B ⊗ | 0 〈1 | ⊗ | 0 〈1 |,

Amn
† Amn ≡ 1A ⊗ 1B ⊗ |m 〈m | ⊗ |n 〈n |.

Under the assumption of small Δt we have
exp−iΔtHint/ ≈ 1 − iΔtHint/

 1   a†  a†   b†  b† ,

where  ≡ Δt, and so in the very first time-step
|Δt ≈ 1   a†  a†   b†  b† | 1A1B 00 

 | 1A1B 00    | 0A1B 10    | 1A0B 01 .
We then have measurement probabilities, to first order in ,

Prm  0 ≈ 1, Prm  1 ≈ , Prn  0 ≈ 1, Prn  1 ≈ .
It thus follows that the most likely ‘effect’ of each evolution-measurement sequence
will be for |t to be projected back to the | 1A1B 00 . In each time step, however,
there is a small but finite probability  for a click in either the  or  detector (we
neglect Prm  1,n  1 as vanishingly small). In general we thus expect to have a
state ‘trajectory’ that looks either like

| 1A1B 00  → | 0A1B 00  → | 0A0B 00 ,
or

| 1A1B 00  → | 1A0B 00  → | 0A0B 00 ,
depending on which detector clicks first. We expect the complete decay to | 0A0B 00 
to occur over a time interval of order −1. Note that no entanglement between cavities
A and B is ever generated.

A different picture results if we add a 50/50 beamsplitter to the setup. Suppose we
place it to mix the outputs of cavities A and B before the photon counting detectors.
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The net effect of this change in setup is to modify the measurement operators. In
particular, the annihilation operators for the new, ‘mixed’ modes are

  1
2
    1

2
| 0 〈1 |  | 0 〈1 |,

  1
2
 −   1

2
| 0 〈1 | − | 0 〈1 |,

according to fundamental quantum-optical relations for a 50/50 beamsplitter, and we
will now want to consider states such as

| 00   | 00 ,

| 10   †| 00   1
2
| 10   | 01 ,

| 01   †| 00   1
2
| 10  − | 01 ,

where we note that
| 10 〈10 |  1

2 | 10   | 01 〈10 |  〈01 |

 1
2 | 10 〈10 |  | 01 〈10 |  | 10 〈01 |  | 01 〈01 |,

| 10 〈10 |  1
2 | 10  − | 01 〈10 | − 〈01 |

 1
2 | 10 〈10 | − | 01 〈10 | − | 10 〈01 |  | 01 〈01 |,

If use m and n to denote the numbers of photons detected at the two
post-beamsplitter detectors, we thus have

A01  1A ⊗ 1B ⊗ | 00 〈01 |, A10  1A ⊗ 1B ⊗ | 00 〈10 |.
Note that

A10
† A10  A01

† A01  1A ⊗ 1B ⊗ | 10 〈10 |  | 10 〈10 |

 1A ⊗ 1B ⊗ | 10 〈10 |  | 01 〈01 |

 A10
† A10  A01

† A01 ,
which means that

Prm  1,n  0  Prm  0,n  1  Prm  1,n  0  Prm  0,n  1.
In other words, the probability per time step of obtaining a click is unchanged. On the
other hand,
A10 |Δt  1

2
|00 〈10 |  〈01 || 1A1B 00    | 0A1B 10    | 1A0B 01 

 | 0A1B 00   | 1A0B 00 ,

A01 |Δt  1
2

|00 〈10 | − 〈01 || 1A1B 00    | 0A1B 10    | 1A0B 01 

 | 0A1B 00  − | 1A0B 00 .
We see that | 00  factors out in either case, and Alice and Bob are left conditionally
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with entangled pure states |AB
 .

The usual interpretation of the difference between these two scenarios is that
while the unitarily evolved joint state

|Δt  | 1A1B 00    | 0A1B 10    | 1A0B 01 
is in fact very slightly entangled, by virtue of the fact that the ‘decayed’ kets in the
superposition differ in terms of which cavity contributed the leaked photon, direct
measurement of the output channels  and  breaks this interesting superposition by
determining which cavity the detected photon came from. The role of the 50/50
beamspliter is to ‘erase’ this information - a click in counter  or  could have been
caused by leakage of a photon from either cavity. Various analogues of this scheme
are widely considered in modern quantum optics.

Again, we should be careful to recognize that the way ‘decay’ is treated in our toy
model leaves much to be desired. For example, even though (with all parameters
fixed) we have a ‘coarse-grained rate’ of photodetection  /Δt, we have the strange
property that the probability per time step   Δt2. Also, if we simply let the cavity
fields and output fields evolve unitarily under the joint Hamiltonian Hint, without ever
performing any measurements, photons would actually oscillate coherently between
the cavity and output field modes. In order to fix these problems and obtain a more
physically sensible model of irreversible exponential decay, we would need to do
something similar to the Wigner-Weisskopf treatment of atomic spontaneous
emission. See elementary texts in quantum optics for more details.
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