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At the beginning of the term we briefly discussed the following diagram:

Quantum (non‐commutative)
probability

Quantum physics
& information theory

Classical (commutative)
probability

Classical physics
& information theory

Ω

Hopefully the structure of the diagram makes more sense now that we have had time
to discuss classical versus quantum probability, and classical versus quantum
information. In particular, we have seen that quantum probability represents a
non-commutative generalization of familiar classical probability, which thereby loses its
connection to the notion of an underlying sample space   1,… ,N. We have
looked at some consequences of this generalization for the information theory that is
built on top of probabilistic foundations. But we have not really directly addressed the
physicists’ question of why we should be driven to consider non-commutative
probability outside the realm of abstract mathematics. Unfortunately there is no good
answer to this question, as of yet, other than the rather glib answer that quantum
mechanics is a physical theory based on non-commutative probability and it has
broader applicability than Liouville mechanics, which is the closest equivalent classical
theory based on commutative probability theory.

Historically, many prominent scientists have extolled the central importance of
symmetry considerations in the foundations of physical theory. Our aim for today will
be to look at some ways in which symmetry considerations can be seen as encourage
us to consider non-commutative probability models. In the last week of class we will
survey some alternative approaches to understanding—in physicists’ terms—what
non-commutative probability could all be about.

Symmetries and probability models
Early in the term we introduced the idea that a probability model is defined by an
operator algebra and a state (consistent assignment of an expectation value to every
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observable in the algebra). We noted that for the familiar type of classical probability
model based on a sample space  and probability density function m :  → 0,1, the
observables are random variables (which we can view as functions from  to R)
forming an algebra under pointwise addition and multiplication. The state on this
algebra is then given by expectation value with respect to m. We also noted that this
structure could be embedded in the linear algebra of N  N diagonal real matrices,
where N is the number of elementary configurations in , which results in the
expectation map

〈A  Tr A,
where A is the matrix representing an observable and  is the matrix with the values of
m on its diagonal.

The most familiar sorts of (finite-dimensional) quantum probability models are then
constructed by taking the operator algebra to be the full matrix algebra GLN,C (N  N
complex matrices), with observables corresponding to the Hermitian elements within
this algebra. The most general state on such a set of observables is then a trace-1
positive operator, known as the density matrix. In physical terms we can (for example)
think of such a model as representing the state and observables of a spin-J particle,
with N  2J  1, or of an N-level atom.

We saw that the formalism is capable of describing probability models that are
non-classical but not equivalent to a full matrix algebra. For instance, the set of
matrices of the form

M 
a c
d b

, a,b,c,d ∈ R,

forms a closed matrix algebra GL2,R (clearly a sub-algebra of GL2,C) containing
observables of the form

O 
a c
c b

, a,b,c ∈ R.

These observables do not all commute, since

a c
c b

d f
f g

−
d f
f g

a c
c b


0 af − cd − bf  cg

cd − af  bf − cg 0
,

and therefore this model is not equivalent to a purely classical model. While familiar
spin-1/2 observables such as

x 
0 1
1 0

, z 
1 0
0 −1

,

are clearly included in the algebra,

y 
0 −i
i 0

clearly is not.
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What sorts of practical reasons could we have for considering a particular operator
algebra? In the classical case we are basically building matrix algebras starting from
the sample space. In the usual quantum setting with full matrix algebras (with complex
entries), we could say that we are simply taking the most ‘unrestricted’ matrix algebras
of a given dimension. However, the connection with spin-J particles points to another
possible answer, which is that our non-commutative quantum models are associated
with irreps of the rotation group.

Symmetry groups give rise to matrix algebras in many different ways. One simple
way is that we ask for the smallest matrix algebra that contains all the matrices in a
faithful (one-to-one) linear or projective representation of some given symmetry group.
We have seen that GL2,C contains all the matrices in the following irreducible linear
representation of the R3 rotation group:

n̂, 
cos 

2 − inz sin

2 −inx − ny sin 

2

−inx  ny sin 
2 cos 

2  inz sin 
2

.

The matrices of this representation include

x̂, ↔
0 −i
−i 0

, ŷ, ↔
0 −1
1 0

, ẑ, ↔
−i 0
0 i

, n̂, 0 ↔
1 0
0 1

,

and GL2,C is in fact the smallest algebra that contains the linear span of these.
Along similar lines, let us consider the dihedral group D3, which corresponds to the

symmetries of an equilateral triangle.

This group has six elements that can be interpreted as transformations on the set of
labeled corner points:

g1 : a,b,c  a,b,c, g2 : a,b,c  b,c,a, g3 : a,b,c  c,a,b,
g4 : a,b,c  a,c,b, g5 : a,b,c  c,b,a, g6 : a,b,c  b,a,c.

These satisfy a convenient decomposition,
g1  S0R0, g2  S0R1, g3  S0R2, g4  S1R1, g5  S1R0, g6  S1R2,

where S represents reflection through a ‘bisecting’ symmetry axis (in the plane of the
triangle) and R represents rotation by 2/3 (about a central axis perpendicular to the
plane of the triangle). The group D3 has only three distinct irreps, two of which
(including the trivial irrep) are one-dimensional while the third is two-dimensional:
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Dg1 
1 0
0 1

, Dg2  1
2

−1 − 3
3 −1

, Dg3  1
2

−1 3
− 3 −1

,

Dg4  1
2

1 3
3 −1

, Dg5 
−1 0
0 1

, Dg6  1
2

1 − 3
− 3 −1

.

We note that the linear span of these will include

Dg2 − Dg3  1
2

−1 − 3
3 −1

− 1
2

−1 3
− 3 −1


0 − 3
3 0

,

Dg4 − Dg6  1
2

1 3
3 −1

− 1
2

1 − 3
− 3 −1


0 3
3 0

,

which together with Dg1 and Dg5 provide a basis for all of GL2,R, which is the
non-classical yet not-fully-quantum probability model mentioned above.

Symmetry groups can also generate matrix algebras via their regular
representations. In order to do this, we first construct a vector space with an
orthonormal basis vector vg for each group element g. We then construct a linear
representation of the group by associating each group element g with the permutation
matrix Dg that correctly implements the multiplication table

Dg1vg2  vg1g2 .
To provide a very simple example, we can take G  e,a with a2  e, which is the
group commonly known as C2. We form the vector space

ve 
1
0

, va 
0
1

,

and find the regular representation

De 
1 0
0 1

, Da 
0 1
1 0

,

which we have considered before. Clearly the span of these two matrices is all
matrices of the form

M 
a b
b a

,

which is closed under matrix addition and multiplication:

a b
b a

c d
d c


ac  bd ad  bc
ad  bc ac  bd

.

The observables in this algebra are then all matrices with a,b ∈ R, and if we consider
the general form of an expectation value
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〈O  Tr
11 12

12
∗ 1 − 11

a b
b a

 Tr
a11  b12 a12  b11

a12
∗ − b11 − 1 b12

∗ − a11 − 1

 a11  b12  b12
∗ − a11 − 1

 a  2bRe12 ,
we see that a state on the algebra is actually completely specified by just a single real
number corresponding to Re12 . If we note that

〈x   Tr
11 12

12
∗ 1 − 11

0 1
1 0

 2Re12 ,

we see that we can think of the state as being fully specified by −1 ≤ 〈x  ≤ 1.
In passing we should briefly note a fact that we will invoke below. While the regular

representation that we have just introduced may remind you of the permutation
representation we considered last week for D2 (the symmetries of a rectangle), it is not
quite the same. Recall that the D2 transformations induce permutations among high
symmetry points of the rectangle according to

e : 1  1, 2  2, 3  3, 4  4,
a : 1  1, 2  4, 3  3, 4  2,
b : 1  3, 2  2, 3  1, 4  4,
c : 1  3, 2  4, 3  1, 4  2,

which led us to the permutation representation

Dpa 

1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

, Dpb 

0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1

, Dpc 

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

.

On the other hand the multiplication table of the group is
e : e  e, a  a, b  b, c  c,
a : e  a, a  e, b  c, c  b,
b : e  b, a  c, b  e, c  a,
c : e  c, a  b, b  a, c  e,

which would lead to the regular representation
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Dra 

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

, Drb 

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

, Drc 

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

,

where we verify

DraDrb 

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0



0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 Drc,

DraDrc 

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0



0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 Drb,

DrbDrc 

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0



0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 Dra,

and likewise for DrbDra, DrcDra and DrcDrb. We see that the Dr
matrices are distinct from the Dp matrices, although since the group multiplication
table is commutative it follows that the regular representation is (like the permutation
representation) reducible to the direct sum of one-dimensional irreps. Explicitly, with

S  1
2

1 1 1 1
−1 −1 1 1
1 −1 1 −1
−1 1 1 −1

, S −1  1
2

1 −1 1 −1
1 −1 −1 1
1 1 1 1
1 1 −1 −1

,

we find

Dra  1
4

1 −1 1 −1
1 −1 −1 1
1 1 1 1
1 1 −1 −1

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

1 1 1 1
−1 −1 1 1
1 −1 1 −1
−1 1 1 −1



−1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1

,
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Drb  1
4

1 −1 1 −1
1 −1 −1 1
1 1 1 1
1 1 −1 −1

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

1 1 1 1
−1 −1 1 1
1 −1 1 −1
−1 1 1 −1



1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

,

Drc  1
4

1 −1 1 −1
1 −1 −1 1
1 1 1 1
1 1 −1 −1

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

1 1 1 1
−1 −1 1 1
1 −1 1 −1
−1 1 1 −1



−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

.

But this is apparently not equivalent to the permutation representation since the
matrices have different ‘sign structures’ in their diagonal forms (only one copy of the
trivial irrep for Dr while Dp has two). Note that for D2 the permutation and regular
representations have the same dimension, but for D3 they would not (three corners of
the triangle, six elements of the group).

Covariant measurements
To see yet another way that a symmetry group can motivate the choice of a
non-commutative probability model let us remind ourselves of the notion of a covariant
measurement, which we introduced somewhat quickly last week.

To talk about covariance we should first pick a group G whose elements can be
interpreted as transformations of a set of ‘points’ (perhaps rather abstractly). In a
somewhat suggestive fashion, we’ll use   1,2,… ,N to denote the set of
points, and a group element g acts on these via

g : i  g−1i.
Above we considered the dihedral group D2 acting on a set of points 1,2,3,4
corresponding to high symmetry points on the perimeter of a rectangle. Since the
group element b (reflection through the horizontal axis) induces the permutation of
points

b : 1  3, 2  2, 3  1, 4  4,
we have in our new notation b1  3, b2  2, b3  1, and b4  4.

We next consider a measurement whose various outcomes can be identified with
elements in . For example, we might have a POVM E1,E2,… ,EN, where the
outcome corresponding to Ei is associated with the point i. Or we could be thinking
about an observable A, in which the outcome corresponding to an eigenprojector i is
associated with i. Such a measurement is covariant with respect to a given
representation g  Ug of the group G if

Ug
†EiUg  Eg−1i, ∀g ∈ G.

For the permutation representation of D2 we can easily see that any observable of the
following form is covariant:
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A 

a1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0



0 0 0 0
0 a2 0 0
0 0 0 0
0 0 0 0



0 0 0 0
0 0 0 0
0 0 a3 0
0 0 0 0



0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 a4

≡ ∑
i1

4

aii,

where a1,a2,a3,a4 ∈ R. Checking the covariance requirement for the group element b,
for example,

Dp†b3Dpb 

0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1

0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1



1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 1,

which is correct since b  b−1 and b3  1. We actually checked all the other cases
already last week when we first introduced the permutation representation.

Last week we also considered a more subtle form of covariance, which actually
involved the regular representation of D2. We defined something that we called a
‘covariant POVM’ of the form

Eg  DgD†g, ∀g ∈ G,
with  a positive operator such that

∑
g∈G

Eg  1.

We then have that
D†g2Eg1Dg2  D†g2Dg1D†g1Dg2  Dg2

−1Dg1D†g1D†g2
−1

 Dg2
−1g1D†g2

−1g1  Eg2
−1g1 ,

which is covariant if we define ‘points’ in our above discussions via i ↔ gi and
consider the group action

gj : i  k, gjgi  gk.
This alternate formulation is motivated by the estimation problem we considered -
rather than associating measurement outcomes with points on the rectangle, we
wanted to associate them with transformations in the D2 symmetry group.

We can now propose that a given symmetry group of interest can motivate the
choice of a particular operator algebra if we ask that the algebra be ‘big enough’ to
support measurements that are covariant with respect to a faithful (one-to-one)
representation of our symmetry group. This kind of criterion is meant to remind you, at
least distantly, of the relativistic notion that fundamental physical equations and
quantitites should be expressible in Lorentz-covariant form, where for example a
Lorentz boost along the x-axis has matrix representation
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ct ′

x ′

y ′

z′



 − 0 0
−  0 0
0 0 1 0
0 0 0 1

ct
x
y
z

,

where   v/c and   1/ 1 − v2/c2 . In the case of the irreducible representation of D3

(symmetries of the equilateral triangle) that we introduced above, one finds that the
three normalized planar vectors

va  1
2

3
−1

, vb 
0
1

, vc  1
2

− 3
−1

,

give rise to projectors

a  1
4

3 − 3
− 3 1

, b 
0 0
0 1

, c  1
4

3 3
3 1

,

a  b  c  1
4

3 − 3
− 3 1


0 0
0 1

 1
4

3 3
3 1


3
2 0

0 3
2

that can be used to define a POVM
Ea  2

3 a, Eb  2
3 b, Ec  2

3 c ,

that is covariant with respect to the irrep. Recalling
g1 : a,b,c  a,b,c, g2 : a,b,c  b,c,a, g3 : a,b,c  c,a,b,
g4 : a,b,c  a,c,b, g5 : a,b,c  c,b,a, g6 : a,b,c  b,a,c,

and

Dg1 
1 0
0 1

, Dg2  1
2

−1 − 3
3 −1

, Dg3  1
2

−1 3
− 3 −1

,

Dg4  1
2

1 3
3 −1

, Dg5 
−1 0
0 1

, Dg6  1
2

1 − 3
− 3 −1

,

we have for example

D†g3EbDg3  1
6

−1 − 3
3 −1

0 0
0 1

−1 3
− 3 −1


1
2

1
6 3

1
6 3 1

6

 Ec,

which is as desired since g3
−1  g2 and g2 maps b to c. Note that
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bc − cb 
3 − 3
− 3 1

3 3
3 1

−
3 3

3 1
3 − 3
− 3 1


0 4 3

−4 3 0
,

which means that we can only construct this sort of POVM in a non-commutative
matrix algebra.

If we want to have a commutative probability model in which there exist
measurements covariant with respect to a faithful representation of D3, we actually
need to go to 3  3 matrices. If we do that we can use the permutation representation,
and find that the three orthogonal projectors

a 

1 0 0
0 0 0
0 0 0

, b 

0 0 0
0 1 0
0 0 0

, c 

0 0 0
0 0 0
0 0 1

,

do the trick. However the permutation representation defined by
g1  S0R0, g2  S0R1, g3  S0R2, g4  S1R1, g5  S1R0, g6  S1R2,

S 
0 1 0
1 0 0
0 0 1

, R 

0 0 1
1 0 0
0 1 0

,

is actually reducible. The easiest way to see this is to draw the vectors onto which
a,b,c project, and to note that action of the 3  3 matrix representation is identical to
that of the 2  2 irrep on a tilted plane that contains the points
1,0,0, 0,1,0, 0,0,1. The axis orthogonal to this plane corresponds to a trivial
irrep. Hence we see that if we are for some reason we are interested in probability
models that can acommodate D3-covariant measurements, (note that D3 is the
smallest non-commutative group), a non-commutative model is in some sense more
natural than a classical one because the covariance can utilize an irreducible
representation of the group.

We wrap up today with a quick look at some material from Section 1.2.3 of A. S.
Holevo, Statistical Structure of Quantum Theory (Springer-Verlag, Berlin, 2001).
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