APPPHYS225 - Tuesday 28 October 2008

Quantum dynamics in the Heisenberg picture

In case you haven’t seen this before, note that in general in quantum mechanics we
can either apply the time-development operator T(t,0) to the states (Schroédinger
picture)

|'P(t)) = T(t,0)['¥(0)),

p(t) = T(t,0)p(0)T (t,0),
or to the operators (Heisenberg picture),
A®t) = TT(t,0)A0)T(t,0).

Note that the density matrix/operator maps differently than observables and other
operators. Either way we end up computing identical values for measurement
probabilities since in general

(AY(D) = Tr[p(H)A] = Tr[ T(t,0)p(0)T'(,0)A ], Schrédinger,
(AYD) = TrpAM)] = Tr[pT (1, 0)A0)T(t,0) |, Heisenberg,

and we have cyclic property of the trace. Recall that for closed systems the
time-development operator is unitary and can be obtained by exponentiating the
Hamiltonian operator. For a Hamiltonian that is constant on the time interval [0,1] :

iz d _
IhaH’(t)) = H|¥Y(1)),

T(t,0) = exp(-iHt/h),
TT(t,0) = exp(iHt/A) = T(0,t) = T 1(t,0).
Note that this all applies straightforwardly even when we have a joint system, as for
example in the Heisenberg picture
A(t) ® B(t) = TT(t,0)A(0) ® B(0)T(t,0),
where T(t,0) is here understood to be an operator on the joint Hilbert space H* @ HE,

the exponential of a joint Hamiltonian.

To see a very simple example of how this works, even in the classical setting,
consider a two-element sample space Q = {wn, @7} for a coin flip. Let m(-) be the
probability distribution function, and let X(-) be a random variable that indexes the
result:

X(wn) = +1, X(oT) = 1.
We know from previous lectures that we can represent m(-) and X(-) as matrices,

Pr(wn) | O 10
. <> X . <> .
me) ( 0 Pr(wT) > ) ( 0-1 )

Consider the action of “manually” turning the coin over, so that oy ~» ot and ot ~» on.
We can represent this dynamic with the unitary matrix




U=UT = 01 . uU? =1.
1]0

Consider a scenario in which we first flip the coin and then manually turn it over
without looking at it. In the Schrodinger picture we would compute

m) - Utmu = [ (211 ) [Pren) [0 o[1]\ _([Prwn o
1,0 0 Pr(owr) 10 0 Preon) | )’

and

Xy =Tr[UTMUX) ] = Tf[( frlen) |0 ) = Pr(oT) — Pr(ow).

0 —Pr(on) ]
110
0 1|/

In the Heisenberg picture,

AL 10 01
e (135 )(5 % )(55)

(X) = Tr[(m)U(X)UT] _ Tr|:< —Pr(on) | 0 )

0 Pr(eT)

= Pr(wt) — Pr(on).

Ramon’s problem: the Projection Postulate

The following material was originally outlined by Ramon van Handel. Our goal will be
to show that in an indirect implementation of a projective measurement, of the kind we
discussed last time, it is actually possible to use the classical rules for conditional
expectation to derive the post-measurement quantum state of the system. In a sense,
we thus make the Projection Postulate appear to be a derived notion rather than an
axiom. To simplify the notation we make use of the convention

p(A) = Tr[pA],
where p is a density matrix and A is an operator. We will also sometimes use E(-) to
denote the expectation value of either a classical random variable or a quantum
observable.

We begin with a preliminary reminder of how the classical notion of conditional
expectation can be applied to commuting quantum observables.
a. Show that the classical definition of E(X|Y) is equivalent to

ECXIY) = P(PiQi) 3 PXQi) o
() = 22250, = 25,
for two commuting observables X = > xjPjand Y = > yiQi in an algebra A

with state p. Here x;,y; are the eigenvalues and Pj, Q; the eigenprojectors of
X,Y, respectively.
The basic idea here is to map the quantum observables into classical random




variables using simultaneous diagonalization, apply the conditional expectation, and
then map back. Explicitly, since X and Y commute there exists a linear transformation
T such that

TXTL, TYT e M,

are diagonal n x n matrices with {x;} and {y;} along their diagonals. Now we construct
a classical configuration space by associating o; with the i"" position along the matrix
diagonal. Then we can define classical random variables

E(wj) =X, Y(wi) =Vi,
with corresponding level sets such that

E() = D Xixar (), Y() = D yixar(e).
j i

In this way we establish a correspondence
xor(s) < Pi xor(¢) < Qi
Then according to the usual definition,

Pr QN Q)
ECEIN() = ZZ N e el
E(raxar) )
ZZ X E( )
which we can invert through our correspondence to obtain

p(P;iQi) p(XQi)
E(X]Y) = X P = is
(XI¥) =220 gy @~ 2 pn @
where the second equation follows from linearity of the trace.

Now we move on to considering interaction of a system and ancilla (‘meter’), in the
Heisenberg picture, via maps j : X » U*XU.
b. Show that j(oxy, ® 1) commute with j(1 ® o,). Now define
(oxyz) = E(j(0xy. ® 1) [j(1 ® 6)). Show that 7(oxy,) commute with each
other and with j(1 ® o). Argue that we can thus simultaneously infer o,
after interaction with the meter.
We first expliclty check that

j(Ux,y,z &® l) = U*(Gx,y,z ® 1)U

commute with

i(1®0,) = U (1l ® ;).

Straightforwardly,



J(oxy: ® j(1 ® 0;) = U*(0oxy: ® 1)UU*(1 ® 0,)U
= U*(oxy: ®1)(1 ® 0,)U
= U*(oxy: ® 0,)U,
JA®0y)j(oxy: ®1) = U*(1 ® 0,)UU*(oxy, ® 1)U
=U"(1®0;)(oxy: ® 1)U
= U*(oxy: ® 07)U,

where we are using the usual definition of product on A ® A. Since we have shown
that j(oxy, ® 1) and j(1 ® ¢,) commute, we can define

n(Oxyz) = E(](Gx,y,z ®1)[jl® 02))

o PU*(0ne ® HUQ))
-2 Q) 0

where

jQ®o,) =U"1®c)U =D yiQ.

Noting that the p(U*(oyxy, ® 1)UQi)/p(Q;) are just numbers, it is easy to see that these
conditional expectations commute. For example,

 p(U (0, ® DUQ) - v p(U (0, @ HUQy)
LCRLCHEDD p@Q)) Q'Zj: eI

- p(U*(ox ® 1)UQi) p(U(oy ® DHUQj)
J

Q1) pQ) 29

BN p(U(ox ® DUQi) p(U*(oy ® HUQ))
i

Q) p@Q) i

->> p(U*(oy ® DUQj) p(U*(ox ® 1UQI)
J

Q) p@Q) @

= n(oy)n(ox).

Likewise,



n(ox)j(l1® o0;) = Z 'D(U*(GPX(S;)UQO Qi Zijj
i : j

- 3 3 A By 00,
]

p(Qi)

- ZZ p(U*(pr(gj)UQi) YidijQi
i

_ p(U*(0x ® DUQD) . .
Z JZ p(QI) yJQJQ'
= j(1 ® 07)7(ox).

Thus j(1 ® 0,) and n(oyy,,) are equivalent to a set of classical random variables, and
nothing stops us from performing simultaneous inference in the usual manner.

c. Calculate explicit matrix representations for U, j(oxy, ® 1), j(1 ® ;) and

77.'(0'X’yyz ) .
First recall the usual representations

(I am using a convention where

ail

b11 | b1 b1 | by
aiz
a1 | ar ® b1 | b _ b21 | b2z D21 | b2
azr | ax bo1 | by by | ba but | biy ’
a2
bo1 | b2y bo1 | boo

which will appear over and over again below.) Then we have

d21

11000
U=U"=[0)0|@ 1+ @ox=| 120
0001
0/0/1/0
1,000 10 0
0-10|0 _ 0/-1/0 0
1®0, = jl®0;) = U (1®o,)U =
000 1]/0 0/0|-10
000 0/-1 0 01

Likewise,



0/0/1/0 0001
0/0|01 ) 0/0/1/0
0X®l: ’ J(GX®1): ’
1/0/0/0 0/1/0/0
0/1/0/0 1/0/0/0
/Tolol-ilo olo] o
o1 0/0/0|-i i, ® 1) 0/0|-i
o} = , o = ,
’ i 000 ’ 0 i
\ 0]i /00 i 0
/T1lol 0 1/o/o]o
0[/1]|0 . 0/1/0/|0
Gz®l: ] J(GZ®1):
0/0 -1 0/0/-1/0
\[0]/0/0 -1 00/ 0 -1
Next we compute the eigenvectors of j(1 ® ¢,) :
o]\ /o (/o 1
0 1 0 0
— s — <—>—1,< | y | Hla
1 0 0 0
0/ \9 1/ \[°]
hence
1/0/0/0 00|00
i(1®0.) = (+1) 00|00 (1) 0/1/0/0
0 — —
‘ 01000 0010
0001 0/0/0]0
= y1Q1 +Y2Qo.
Then finally, assuming a state
pir 0| p12 | 0
0 0] 01O
p ® |0X0| =
p21 |0 p2|0
0 0] OO

we compute

O'x ® 1)UQ|) Qi — 0

E(Gx) = Z p(U*(

p(Qi)

Similarly,




n(oy) = 3 p(U*(Gg(gj)UQ‘) Qi -0,

and

o - LA e

|
[EEN
| Ol O O

d. As n(oxy:) and j(1 ® o) (and 1) all commute, they generate a
commutative subalgebra of A ® A... Construct explicitly a classical sample
space Q) and state p(»), and use these to express n(oxy.) and j(1 ® o,) as
classical random variables.
Clearly we can just use positions along the diagonal of the matrix representations we
found above. Hence,

Q = {01,02,03,04},
n(ox) » X:Q >R, X(w1) = X(w2) = X(w3) = X(wg) =0,
n(oy) »Y:Q >R, Y1) = Y(w2)=Y(®3) =Y(ws) =0,
(o)) » Z:Q->R, Z(wi) =2(ws) =1, Z(w2) = Z(w3) = -1,
l®ao;)»M:Q >R, M) =Mws) =1, Mw2) = M(w3) = -1.
The state we want can be found by taking

w000 p11 10| p12 |0
w2 00 0 (0] 010
Tr = W1p11 + @®3P22,
o3| 0 p21 0| p2 |0
0 | w4 0 (0] 010

meaning that

p(w1) = p11, P(w2) =0, p(ws) = p2, plws)=0.

e. The conditional expectations 7 (cyy) are very similar to ordinary
expectations—only they are random variables. For now, just by analogy,
consider defining a “conditional density matrix” as a random 2 x 2 matrix p(o)
such that 7(oxy.) (@) =Tr[p(w)oxy.]|. Find an explicit expression for p(w).
Interpret the result in terms of what you learned about quantum measurement
in previous quantum courses.

We want



(1)1)02

[ ] [P ]

rip(wz)oy] = 0, Tr[p(w2)o.]
[ ] [F ] =
rl

plw4)oy] =0, Tr[p(w4)6z] =1
p( a)4) and determine the matrix via

—
—_
|—||—||—||—|
eyl
~
S
w
N
3
>
~ | [
Il

Hence we can conclude tha (a) ) =
P P 01
Te| | 202 = pu+pu =0,
P21 | P22 1,0
D11 | P 0|-i . )
Tr 611 612 - = ipp—ipn =0,
P21 | P22 i 0
P P 10
Te| (2202 = pu-pn =1,
P21 | P22 0 -1
Tr /311 /312 = pu+p2 =1,
P21 | P22

- N 110
= p(o1) = p(ws) = ( oo )

(where we additionally invoke hermiticity and positive-semidefiniteness). Likewise

bt | P ol1 |

Tr '[311 '[312 = p12+pa =0,
P21 | P22 1101/
b | 7 o]

Tr /311 /312 -
P21 | P2z i|0
Py Py 10 |

Tr '[311 '[312 = pu—p2 =-1,
P21 | P22 0 -11/

= ip12 —ip2a =0,

= pu+p2 =1,

= Bl@2) = Plos) = ( 8 2 )

This is of course exactly what we would expect, as now




p(w1) = p11, JA1®o)(w1) =1,

p(w1) = [0X0],

p(w3) = p22, j(1®o0:)(w3) =1,

plws) = [1){],

p(w1) +p(ws) =1,

p(w2) = p(ws) = 0.

f. Show that p(E(X|Y)) = p(X) for any commuting X, Y. Use this to show
that the random density matrix p(«) together with the classical state p(w)
form a non-redundant representation of the state p ® po restricted to the
(noncommutative) subalgebra of A ® A generated by j(oxy, ® 1), J(1 ® 0,),

and 1.
We note that

XQi
E(X|Y) = Z%Qi,

Y =>"yQ;
j

for any commuting X,Y. Hence

p(Ex) - o

pxQ) ) _
= o@Q) Q') 2

p(XQi)

p(Qi)

p(Qi)

=D p(XQi) = p(xz_jqi) = p(X),

assuming Y is self-adjoint and thus has a spanning set of eigenvectors, so Zi Qi =1
Even without using this, we can prove the desired fact by brute force. Looking at

/11l 0100 ololol1
0/-1 00 0/o/1]0

-1®Gz: ,-Gx®1:

I ee:) 00 10 | ) 0/1/0/0
\0001 1/0/0/0
/Tololo /=i 10/0/0
00 —i 010 0

j(ocy®1) = , o 1) =

oy @1 = | o 1) = |
\io 0/0|0|-1

we can read off

j(l ®Uz) =0;Q 0y,

j(Ux & 1) = 0x ® Oy,

jloy®1) =0y ® oy,

J(Gz@l) :Gz®l.

Let's see what these generate:




(Gz ®Uz)((72 &® Gz) =1® 1,

(GZ ® Gz)(Gx X Gx) = iGy X iGy,

(0:®07)(0y @ 0x) = —lox @ oy,

(Gz ®Gz)(02 ® 1) =1Q® oy,

(Gx ® Gx)(Gz & O'z) = —iGy X —iO'y,

(Ux &® O'X)(Ux &® O'X) =1®1,

(Ux ® Ux)(Gy ® Ux) =i0; ® 1,

(Ux ®0'x)(62 ® 1) = —iO'y ® oy,

(Gy ® Gx)(Uz &® Gz) = iUx &® _i0y1

(oy ® ox)(0x ® 0x) = —io; ® 1,

(oy ® ox)(oy ®ox) =1®1,

(Gy ®ox)(o:®1) = iox ® oy,

(GZ ® 1)(62 ®0-2) = 1 ®O-Z)

(O-Z ® 1)(6)( ® 0-)() = iGy ® Gx,

(0:®1)(oy ® 0x) = —lox ® Oy,

(0:01)0,®1) =11

Hence the only new elements generated are oy ® oy, 0x ® oy, and 1 ® o,. One can
easily see that nothing further gets generated. Hence, our subalgebra consists of
elements of the form

2:a1®1+b1®62+co'z®1+d0_x®o_x+e6y®6y+f62®O-z+go_x®Gy+h6y®6x,

and
2 & 110 b ® 110 e % 110
O
P 0/0 P 0/0 po: 0l0
Z)y="Tr| | +d ® 011 +epoy ® 0 +fpo, ® L]0
= O x o Oz
P 0/0 poy 0l o P 0/0
+g ® 0| +h ® 01
O O
po 00 poy 0/0
_/ (@+b+c+f)pn | O|(@+b-c—f)pp O |
O 0 O O
=Tr
(a+b+C+f)p21 ] (a+b—c—f)p22 ]
\ O O O 0
:(a+b+c+f)p11+(a+b—c—f)p22.

Hence we can map
Xo»0:Q->R, olw)=a+b+c+f, o(w3)=a+b-c—f,

and then just use the state p(w) we derived above to assign an expectation value to
every observable. Alternatively we may write

5 o s(@) = Tr a+b+c+f 0 5(0)
- 0 a+b-c-f P ’

=) = D pla)s(®).

10



Now we are asked to define S = e”"v/* ® 1 and U' = S~ tUS = S*US.
g. What happens in c. —e. if we use U’ instead of U?
Let’s just have a look at the matrices:

0 - 1)1 -Liz | 0 L1
()Y
0 || 0 Tlﬂ' >
B 111 e 74| Q
i =i 0 |ein4

N
[~

e*iﬂﬂy/‘l — exp

N

/T1l0/-1 0 /1170100
_ 0|1/ 0|1 01|01
S:elﬂayl4®1: 1 ’S—l_s*: 1 1
J2| 11]0 0 J2 1-1/0 10
\010 \0—101
1/-1]1
, 1 1111 L .
U’ =S*US = = . UHTT=(UH =uU.
ABEIEEERE ) u)
1/-1 11

It's clear from the form of S that this represents a modified controlled-not gate, which
applies oy to the probe spin if the system spin is in the |1,) eigenstate. Note that we
can write,

U’ = e @ 1(0X0| ® 1 + |1)(1]| ® ox)e ™ @ 1

— eiﬂO’y/4|0><0|e*iTC5y/4 1+ eiﬂGy/4|1><1|e*iﬂ'O’yl4 ® o«

R G R EEEEE

(111 (11
= = QK1+ = X oy
2\ 111 2\ 1101

= [0){0x]| ® 1 +[1x)X(14| ® o«

We thus expect that the overall procedure will implement an indirect measurement of
oy rather than o, for the system.

Contingency of least-squares in quantum measurement theory
M. R. James, “Risk-sensitive optimal control of quantum systems,” Phys. Rev. A 69,
032108 (2004).
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