
APPPHYS225 - Tuesday 28 October 2008

Quantum dynamics in the Heisenberg picture
In case you haven’t seen this before, note that in general in quantum mechanics we
can either apply the time-development operator Tt, 0 to the states (Schrödinger
picture)

|t  Tt, 0|0,

t  Tt, 00T†t, 0,
or to the operators (Heisenberg picture),

At  T†t, 0A0Tt, 0.
Note that the density matrix/operator maps differently than observables and other
operators. Either way we end up computing identical values for measurement
probabilities since in general

〈At  Tr tA  Tr Tt, 00T†t, 0A , Schrödinger,

〈At  Tr At  Tr T†t, 0A0Tt, 0 , Heisenberg,

and we have cyclic property of the trace. Recall that for closed systems the
time-development operator is unitary and can be obtained by exponentiating the
Hamiltonian operator. For a Hamiltonian that is constant on the time interval 0, t :

i d
dt |t  H |t,

Tt, 0  exp−iHt/,

T†t, 0  expiHt/  T0, t  T −1t, 0.
Note that this all applies straightforwardly even when we have a joint system, as for
example in the Heisenberg picture

At ⊗ Bt  T†t, 0A0 ⊗ B0Tt, 0,
where Tt, 0 is here understood to be an operator on the joint Hilbert space HA ⊗ HB,
the exponential of a joint Hamiltonian.

To see a very simple example of how this works, even in the classical setting,
consider a two-element sample space   H,T for a coin flip. Let m be the
probability distribution function, and let X be a random variable that indexes the
result:

XH  1, XT  −1.
We know from previous lectures that we can represent m and X as matrices,

m ↔
PrH 0
0 PrT

, X ↔
1 0
0 −1

.

Consider the action of “manually” turning the coin over, so that H  T and T  H.
We can represent this dynamic with the unitary matrix
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U  U † 
0 1
1 0

, U 2  1.

Consider a scenario in which we first flip the coin and then manually turn it over
without looking at it. In the Schrödinger picture we would compute

m  U †mU 
0 1
1 0

PrH 0
0 PrT

0 1
1 0


PrT 0
0 PrH

,

and

〈X  Tr U †mU X  Tr
PrT 0
0 −PrH

 PrT − PrH.

In the Heisenberg picture,

X  UXU † 
0 1
1 0

1 0
0 −1

0 1
1 0


−1 0
0 1

,

〈X  Tr mU XU †  Tr
−PrH 0
0 PrT

 PrT − PrH.

Ramon’s problem: the Projection Postulate
The following material was originally outlined by Ramon van Handel. Our goal will be
to show that in an indirect implementation of a projective measurement, of the kind we
discussed last time, it is actually possible to use the classical rules for conditional
expectation to derive the post-measurement quantum state of the system. In a sense,
we thus make the Projection Postulate appear to be a derived notion rather than an
axiom. To simplify the notation we make use of the convention

A ≡ Tr A,
where  is a density matrix and A is an operator. We will also sometimes use E to
denote the expectation value of either a classical random variable or a quantum
observable.

We begin with a preliminary reminder of how the classical notion of conditional
expectation can be applied to commuting quantum observables.

a. Show that the classical definition of E X |Y is equivalent to

E X |Y ∑
i
∑

j

xj
PjQi
Qi

Qi ∑
i

XQi
Qi

Qi,

for two commuting observables X  ∑ j xjPj and Y  ∑ i yiQi in an algebra A
with state . Here xj,yi are the eigenvalues and Pj,Qi the eigenprojectors of
X,Y, respectively.

The basic idea here is to map the quantum observables into classical random
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variables using simultaneous diagonalization, apply the conditional expectation, and
then map back. Explicitly, since X and Y commute there exists a linear transformation
T such that

TXT −1, TYT −1 ∈ Mn

are diagonal n  n matrices with xj and yi along their diagonals. Now we construct
a classical configuration space by associating i with the ith position along the matrix
diagonal. Then we can define classical random variables

j ≡ xj, i ≡ yi,
with corresponding level sets such that

 ∑
j

xjj
x,  ∑

i

yii
y.

In this way we establish a correspondence
j

x ↔ Pj, i
y ↔ Qi.

Then according to the usual definition,

E  |  ∑
i
∑

j

xj
Prj

x ∩ i
y

Pri
y

i
y

∑
i
∑

j

xj
E j

xi
y

E i
y

i
y,

which we can invert through our correspondence to obtain

E X |Y ∑
i
∑

j

xj
PjQi
Qi

Qi ∑
i

XQi
Qi

Qi,

where the second equation follows from linearity of the trace.

Now we move on to considering interaction of a system and ancilla (‘meter’), in the
Heisenberg picture, via maps j : X  U∗XU.

b. Show that jx,y,z ⊗ 1 commute with j1 ⊗ z. Now define
x,y,z  E jx,y,z ⊗ 1 | j1 ⊗ z . Show that x,y,z commute with each
other and with j1 ⊗ z. Argue that we can thus simultaneously infer x,y,z
after interaction with the meter.

We first expliclty check that
jx,y,z ⊗ 1  U∗x,y,z ⊗ 1U

commute with
j1 ⊗ z  U∗1 ⊗ zU.

Straightforwardly,
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jx,y,z ⊗ 1j1 ⊗ z  U∗x,y,z ⊗ 1UU∗1 ⊗ zU
 U∗x,y,z ⊗ 11 ⊗ zU
 U∗x,y,z ⊗ zU,

j1 ⊗ zjx,y,z ⊗ 1  U∗1 ⊗ zUU∗x,y,z ⊗ 1U
 U∗1 ⊗ zx,y,z ⊗ 1U
 U∗x,y,z ⊗ zU,

where we are using the usual definition of product on A ⊗ A. Since we have shown
that jx,y,z ⊗ 1 and j1 ⊗ z commute, we can define

x,y,z ≡ E jx,y,z ⊗ 1 | j1 ⊗ z

∑
i

U∗x,y,z ⊗ 1UQi
Qi

Qi,

where
j1 ⊗ z  U∗1 ⊗ zU ∑

i

yiQi.

Noting that the U∗x,y,z ⊗ 1UQi/Qi are just numbers, it is easy to see that these
conditional expectations commute. For example,

xy ∑
i

U∗x ⊗ 1UQi
Qi

Qi∑
j

U∗y ⊗ 1UQj
Qj

Qj

∑
i
∑

j

U∗x ⊗ 1UQi
Qi

U∗y ⊗ 1UQj
Qj

QiQj

∑
i
∑

j

U∗x ⊗ 1UQi
Qi

U∗y ⊗ 1UQj
Qj

 ijQi

∑
i
∑

j

U∗y ⊗ 1UQj
Qj

U∗x ⊗ 1UQi
Qi

QjQi

 yx.
Likewise,
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xj1 ⊗ z ∑
i

U∗x ⊗ 1UQi
Qi

Qi∑
j

yjQj

∑
i
∑

j

U∗x ⊗ 1UQi
Qi

yjQiQj

∑
i
∑

j

U∗x ⊗ 1UQi
Qi

yj ijQi

∑
i
∑

j

U∗x ⊗ 1UQi
Qi

yjQjQi

 j1 ⊗ zx.
Thus j1 ⊗ z and x,y,z are equivalent to a set of classical random variables, and
nothing stops us from performing simultaneous inference in the usual manner.

c. Calculate explicit matrix representations for U, jx,y,z ⊗ 1, j1 ⊗ z and
x,y,z.

First recall the usual representations

x 
0 1
1 0

, y 
0 −i
i 0

, z 
1 0
0 −1

.

(I am using a convention where

a11 a12

a21 a22
⊗

b11 b12

b21 b22


a11
b11 b12

b21 b22
a12

b11 b12

b21 b22

a21
b11 b12

b21 b22
a22

b11 b12

b21 b22

,

which will appear over and over again below.) Then we have

U  U∗  |0〈0| ⊗ 1  |1〈1| ⊗ x 

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

,

1 ⊗ z 

1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

, j1 ⊗ z  U∗1 ⊗ zU 

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

.

Likewise,
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x ⊗ 1 

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

, jx ⊗ 1 

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

,

y ⊗ 1 

0 0 −i 0
0 0 0 −i
i 0 0 0
0 i 0 0

, jy ⊗ 1 

0 0 0 −i
0 0 −i 0
0 i 0 0
i 0 0 0

,

z ⊗ 1 

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

, jz ⊗ 1 

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

.

Next we compute the eigenvectors of j1 ⊗ z :

0
0
1
0

,

0
1
0
0

↔ −1,

0
0
0
1

,

1
0
0
0

↔ 1,

hence

j1 ⊗ z  1

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

 −1

0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

≡ y1Q1  y2Q2.
Then finally, assuming a state

 ⊗ |0〈0| 

11 0 12 0
0 0 0 0
21 0 22 0
0 0 0 0

,

we compute

x ∑
i

U∗x ⊗ 1UQi
Qi

Qi  0.

Similarly,
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y ∑
i

U∗y ⊗ 1UQi
Qi

Qi  0,

and

z ∑
i

U∗z ⊗ 1UQi
Qi

Qi 

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

.

d. As x,y,z and j1 ⊗ z (and 1) all commute, they generate a
commutative subalgebra of A ⊗ A... Construct explicitly a classical sample
space  and state p, and use these to express x,y,z and j1 ⊗ z as
classical random variables.

Clearly we can just use positions along the diagonal of the matrix representations we
found above. Hence,

  1,2,3,4,
x  X :  → R, X1  X2  X3  X4  0,
y  Y :  → R, Y1  Y2  Y3  Y4  0,
z  Z :  → R, Z1  Z4  1, Z2  Z3  −1,

j1 ⊗ z  M :  → R, M1  M4  1, M2  M3  −1.
The state we want can be found by taking

Tr

1 0 0 0
0 2 0 0
0 0 3 0
0 0 0 4

11 0 12 0
0 0 0 0
21 0 22 0
0 0 0 0

 111  322,

meaning that
p1  11, p2  0, p3  22, p4  0.

e. The conditional expectations x,y,z are very similar to ordinary
expectations—only they are random variables. For now, just by analogy,
consider defining a “conditional density matrix” as a random 2  2 matrix ̃
such that x,y,z Tr̃x,y,z . Find an explicit expression for ̃.
Interpret the result in terms of what you learned about quantum measurement
in previous quantum courses.

We want
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Tr ̃1x   0, Tr ̃1y   0, Tr ̃1z   1,
Tr ̃2x   0, Tr ̃2y   0, Tr ̃2z   −1,
Tr ̃3x   0, Tr ̃3y   0, Tr ̃3z   −1,
Tr ̃4x   0, Tr ̃4y   0, Tr ̃4z   1.

Hence we can conclude that ̃1  ̃4 and determine the matrix via

Tr
̃11 ̃12

̃21 ̃22

0 1
1 0

 ̃12  ̃21  0,

Tr
̃11 ̃12

̃21 ̃22

0 −i
i 0

 ĩ12 − ĩ21  0,

Tr
̃11 ̃12

̃21 ̃22

1 0
0 −1

 ̃11 − ̃22  1,

Tr
̃11 ̃12

̃21 ̃22
 ̃11  ̃22  1,

 ̃1  ̃4 
1 0
0 0

,

(where we additionally invoke hermiticity and positive-semidefiniteness). Likewise,

Tr
̃11 ̃12

̃21 ̃22

0 1
1 0

 ̃12  ̃21  0,

Tr
̃11 ̃12

̃21 ̃22

0 −i
i 0

 ĩ12 − ĩ21  0,

Tr
̃11 ̃12

̃21 ̃22

1 0
0 −1

 ̃11 − ̃22  −1,

Tr
̃11 ̃12

̃21 ̃22
 ̃11  ̃22  1,

 ̃2  ̃3 
0 0
0 1

.

This is of course exactly what we would expect, as now
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p1  11, j1 ⊗ z1  1, ̃1  |0〈0|,
p3  22, j1 ⊗ z3  1, ̃3  |1〈1|,

p1  p3  1,
p2  p4  0.

f. Show that  E X |Y  X for any commuting X,Y. Use this to show
that the random density matrix ̃ together with the classical state p
form a non-redundant representation of the state  ⊗ 0 restricted to the
(noncommutative) subalgebra of A ⊗ A generated by jx,y,z ⊗ 1, j1 ⊗ z,
and 1.

We note that

E X |Y ≡ ∑
i

XQi
Qi

Qi,

Y ∑
j

yjQj,

for any commuting X,Y. Hence

 E X |Y   ∑
i

XQi
Qi

Qi ∑
i

XQi
Qi

Qi

∑
i

XQi   X∑
i

Qi  X,

assuming Y is self-adjoint and thus has a spanning set of eigenvectors, so∑ i Qi  1.
Even without using this, we can prove the desired fact by brute force. Looking at

j1 ⊗ z 

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

, jx ⊗ 1 

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

,

jy ⊗ 1 

0 0 0 −i
0 0 −i 0
0 i 0 0
i 0 0 0

, jz ⊗ 1 

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

,

we can read off
j1 ⊗ z  z ⊗ z, jx ⊗ 1  x ⊗ x,
jy ⊗ 1  y ⊗ x, jz ⊗ 1  z ⊗ 1.

Let’s see what these generate:
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z ⊗ zz ⊗ z  1 ⊗ 1, z ⊗ zx ⊗ x  iy ⊗ iy,
z ⊗ zy ⊗ x  −ix ⊗ iy, z ⊗ zz ⊗ 1  1 ⊗ z,
x ⊗ xz ⊗ z  −iy ⊗ −iy, x ⊗ xx ⊗ x  1 ⊗ 1,
x ⊗ xy ⊗ x  iz ⊗ 1, x ⊗ xz ⊗ 1  −iy ⊗ x,
y ⊗ xz ⊗ z  ix ⊗ −iy, y ⊗ xx ⊗ x  −iz ⊗ 1,
y ⊗ xy ⊗ x  1 ⊗ 1, y ⊗ xz ⊗ 1  ix ⊗ x,
z ⊗ 1z ⊗ z  1 ⊗ z, z ⊗ 1x ⊗ x  iy ⊗ x,
z ⊗ 1y ⊗ x  −ix ⊗ x, z ⊗ 1z ⊗ 1  1 ⊗ 1.

Hence the only new elements generated are y ⊗ y, x ⊗ y, and 1 ⊗ z. One can
easily see that nothing further gets generated. Hence, our subalgebra consists of
elements of the form
  a1 ⊗ 1  b1 ⊗ z  cz ⊗ 1  dx ⊗ x  ey ⊗ y  fz ⊗ z  gx ⊗ y  hy ⊗ x,

and

〈  Tr

a ⊗
1 0
0 0

 b ⊗
1 0
0 0

 cz ⊗
1 0
0 0

dx ⊗
0 1
0 0

 ey ⊗
0 −i
0 0

 fz ⊗
1 0
0 0

gx ⊗
0 −i
0 0

 hy ⊗
0 1
0 0

 Tr

a  b  c  f11 a  b − c − f12

0
a  b  c  f21 a  b − c − f22

0

 a  b  c  f11  a  b − c − f22.
Hence we can map

   :  → R, 1  a  b  c  f, 3  a  b − c − f,
and then just use the state p we derived above to assign an expectation value to
every observable. Alternatively we may write

  s ≡ Tr
a  b  c  f 0

0 a  b − c − f
̃ ,

〈  ∑ ps.
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Now we are asked to define S  eiy/4 ⊗ 1 and U ′  S−1US  S∗US.
g. What happens in c. – e. if we use U ′ instead of U?

Let’s just have a look at the matrices:

e−iy/4  exp
0 − 

4

4 0

 exp
1 1
i −i

− 1
4 i 0

0 1
4 i

1
2 − 1

2 i
1
2

1
2 i


1 1
i −i

e−i/4 0
0 ei/4

1
2 − 1

2 i
1
2

1
2 i

 1
2

1 −1
1 1

.

S  eiy/4 ⊗ 1  1
2

1 0 −1 0
0 1 0 −1
1 0 1 0
0 1 0 1

, S −1  S∗  1
2

1 0 1 0
0 1 0 1
−1 0 1 0
0 −1 0 1

,

U ′  S∗US  1
2

1 1 −1 1
1 1 1 −1
−1 1 1 1
1 −1 1 1

, U ′−1  U ′∗  U.

It’s clear from the form of S that this represents a modified controlled-not gate, which
applies x to the probe spin if the system spin is in the |1x  eigenstate. Note that we
can write,
U ′  eiy/4 ⊗ 1|0〈0| ⊗ 1  |1〈1| ⊗ xe−iy/4 ⊗ 1

 eiy/4|0〈0|e−iy/4 ⊗ 1  eiy/4|1〈1|e−iy/4 ⊗ x

 1
2

1 1
−1 1

1 0
0 0

1 −1
1 1

⊗ 1  1
2

1 1
−1 1

0 0
0 1

1 −1
1 1

⊗ x

 1
2

1 −1
−1 1

⊗ 1  1
2

1 1
1 1

⊗ x

 |0x 〈0x | ⊗ 1  |1x 〈1x | ⊗ x

We thus expect that the overall procedure will implement an indirect measurement of
x rather than z for the system.

Contingency of least-squares in quantum measurement theory
M. R. James, “Risk-sensitive optimal control of quantum systems,” Phys. Rev. A 69,
032108 (2004).
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