APPPHYS225 - Tuesday 28 October 2008

Quantum dynamics in the Heisenberg picture

In case you haven't seen this before, note that in general in quantum mechanics we can either apply the time-development operator $\mathbf{T}(t, 0)$ to the states (Schrödinger picture)

$$
\begin{aligned}
|\Psi(t)\rangle & =\mathbf{T}(t, 0)|\Psi(0)\rangle \\
\rho(t) & =\mathbf{T}(t, 0) \boldsymbol{\rho}(0) \mathbf{T}^{\dagger}(t, 0)
\end{aligned}
$$

or to the operators (Heisenberg picture),

$$
\mathbf{A}(t)=\mathbf{T}^{\dagger}(t, 0) \mathbf{A}(0) \mathbf{T}(t, 0)
$$

Note that the density matrix/operator maps differently than observables and other operators. Either way we end up computing identical values for measurement probabilities since in general

$$
\begin{array}{ll}
\langle\mathbf{A}\rangle(t)=\operatorname{Tr}[\boldsymbol{\rho}(t) \mathbf{A}]=\operatorname{Tr}\left[\mathbf{T}(t, 0) \boldsymbol{\rho}(0) \mathbf{T}^{\dagger}(t, 0) \mathbf{A}\right], & \text { Schrödinger, } \\
\langle\mathbf{A}\rangle(t)=\operatorname{Tr}[\boldsymbol{\rho} \mathbf{A}(t)]=\operatorname{Tr}\left[\rho \mathbf{T}^{\dagger}(t, 0) \mathbf{A}(0) \mathbf{T}(t, 0)\right], & \text { Heisenberg, }
\end{array}
$$

and we have cyclic property of the trace. Recall that for closed systems the time-development operator is unitary and can be obtained by exponentiating the Hamiltonian operator. For a Hamiltonian that is constant on the time interval $[0, t]$:

$$
\begin{aligned}
i \hbar \frac{d}{d t}|\Psi(t)\rangle & =\mathbf{H}|\Psi(t)\rangle \\
\mathbf{T}(t, 0) & =\exp (-i \mathbf{H} t / \hbar) \\
\mathbf{T}^{\dagger}(t, 0) & =\exp (i \mathbf{H} t / \hbar)=\mathbf{T}(0, t)=\mathbf{T}^{-1}(t, 0)
\end{aligned}
$$

Note that this all applies straightforwardly even when we have a joint system, as for example in the Heisenberg picture

$$
\mathbf{A}(t) \otimes \mathbf{B}(t)=\mathbf{T}^{\dagger}(t, 0) \mathbf{A}(0) \otimes \mathbf{B}(0) \mathbf{T}(t, 0)
$$

where $\mathbf{T}(t, 0)$ is here understood to be an operator on the joint Hilbert space $H^{A} \otimes H^{B}$, the exponential of a joint Hamiltonian.

To see a very simple example of how this works, even in the classical setting, consider a two-element sample space $\Omega=\left\{\omega_{H}, \omega_{T}\right\}$ for a coin flip. Let $m(\cdot)$ be the probability distribution function, and let $X(\cdot)$ be a random variable that indexes the result:

$$
X\left(\omega_{H}\right)=+1, \quad X\left(\omega_{T}\right)=-1
$$

We know from previous lectures that we can represent $m(\cdot)$ and $X(\cdot)$ as matrices,

$$
m(\cdot) \leftrightarrow\left(\begin{array}{|l|l|}
\hline \operatorname{Pr}\left(\omega_{H}\right) & 0 \\
\hline 0 & \operatorname{Pr}\left(\omega_{T}\right) \\
\hline 0
\end{array}\right), \quad X(\cdot) \leftrightarrow\left(\begin{array}{|l|l}
\hline 1 & 0 \\
\hline 0 & -1 \\
\hline
\end{array}\right) .
$$

Consider the action of "manually" turning the coin over, so that $\omega_{H} \mapsto \omega_{T}$ and $\omega_{T} \mapsto \omega_{H}$. We can represent this dynamic with the unitary matrix

$$
U=U^{\dagger}=\left(\begin{array}{ll}
\hline 0 & 1 \\
\hline 1 & 0
\end{array}\right), \quad U^{2}=1 .
$$

Consider a scenario in which we first flip the coin and then manually turn it over without looking at it. In the Schrödinger picture we would compute
$(m) \mapsto U^{\dagger}(m) U=\left(\begin{array}{|l|l}\hline 0 & 1 \\ \hline 1 & 0 \\ \hline\end{array}\right)\left(\begin{array}{|l|l}\hline \operatorname{Pr}\left(\omega_{H}\right) & 0 \\ \hline 0 & \operatorname{Pr}\left(\omega_{T}\right) \\ \hline\end{array}\right)\left(\begin{array}{|l|l}\hline 0 & 1 \\ \hline 1 & 0 \\ \hline\end{array}\right)=\left(\begin{array}{ll|l}\left.\begin{array}{|l|l|}\hline \operatorname{Pr}\left(\omega_{T}\right) & 0 \\ \hline 0 & \operatorname{Pr}\left(\omega_{H}\right) \\ \hline 0\end{array}\right), \\ \hline\end{array}\right.$
and

$$
\langle X\rangle=\operatorname{Tr}\left[U^{\dagger}(m) U(X)\right]=\operatorname{Tr}\left[\left(\begin{array}{|l|l}
\hline \operatorname{Pr}\left(\omega_{T}\right) & 0 \\
\hline 0 & -\operatorname{Pr}\left(\omega_{H}\right)
\end{array}\right)\right]=\operatorname{Pr}\left(\omega_{T}\right)-\operatorname{Pr}\left(\omega_{H}\right) .
$$

In the Heisenberg picture,

$$
\begin{aligned}
& (X) \mapsto U(X) U^{\dagger}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{|ll}
\hline 1 & 0 \\
0 & -1
\end{array}\right)\left(\begin{array}{ll}
\hline 0 & 1 \\
1 & 0
\end{array}\right)=\left(\begin{array}{ll}
\hline-1 & 0 \\
\hline 0 & 1
\end{array}\right), \\
& \langle X\rangle=\operatorname{Tr}\left[(m) U(X) U^{\dagger}\right]=\operatorname{Tr}\left[\left(\begin{array}{ll}
\hline-\operatorname{Pr}\left(\omega_{H}\right) & 0 \\
\hline 0 & \operatorname{Pr}\left(\omega_{T}\right)
\end{array}\right)\right]=\operatorname{Pr}\left(\omega_{T}\right)-\operatorname{Pr}\left(\omega_{H}\right) .
\end{aligned}
$$

Ramon's problem: the Projection Postulate

The following material was originally outlined by Ramon van Handel. Our goal will be to show that in an indirect implementation of a projective measurement, of the kind we discussed last time, it is actually possible to use the classical rules for conditional expectation to derive the post-measurement quantum state of the system. In a sense, we thus make the Projection Postulate appear to be a derived notion rather than an axiom. To simplify the notation we make use of the convention

$$
\rho(A) \equiv \operatorname{Tr}[\rho A],
$$

where ρ is a density matrix and A is an operator. We will also sometimes use $E(\cdot)$ to denote the expectation value of either a classical random variable or a quantum observable.

We begin with a preliminary reminder of how the classical notion of conditional expectation can be applied to commuting quantum observables.
a. Show that the classical definition of $E(X \mid Y)$ is equivalent to

$$
E(X \mid Y)=\sum_{i} \sum_{j} x_{j} \frac{\rho\left(P_{j} Q_{i}\right)}{\rho\left(Q_{i}\right)} Q_{i}=\sum_{i} \frac{\rho\left(X Q_{i}\right)}{\rho\left(Q_{i}\right)} Q_{i},
$$

for two commuting observables $X=\sum_{j} x_{j} P_{j}$ and $Y=\sum_{i} y_{i} Q_{i}$ in an algebra A with state ρ. Here x_{j}, y_{i} are the eigenvalues and P_{j}, Q_{i} the eigenprojectors of X, Y, respectively.
The basic idea here is to map the quantum observables into classical random
variables using simultaneous diagonalization, apply the conditional expectation, and then map back. Explicitly, since X and Y commute there exists a linear transformation T such that

$$
T X T^{-1}, T Y T^{-1} \in M_{n}
$$

are diagonal $n \times n$ matrices with $\left\{x_{j}\right\}$ and $\left\{y_{i}\right\}$ along their diagonals. Now we construct a classical configuration space by associating ω_{i} with the $i^{\text {th }}$ position along the matrix diagonal. Then we can define classical random variables

$$
\xi\left(\omega_{j}\right) \equiv x_{j}, \quad \Upsilon\left(\omega_{i}\right) \equiv y_{i},
$$

with corresponding level sets such that

$$
\xi(\cdot)=\sum_{j} x_{j} \chi_{\Omega_{j}^{x}}(\cdot), \quad \Upsilon(\cdot)=\sum_{i} y_{i} \chi_{\Omega_{i}^{y}}(\cdot) .
$$

In this way we establish a correspondence

$$
\chi_{\Omega_{j}^{x}}(\cdot) \leftrightarrow P_{j}, \quad \chi_{\Omega_{i}^{\Omega}}(\cdot) \leftrightarrow Q_{i} .
$$

Then according to the usual definition,

$$
\begin{aligned}
E(\xi \mid \Upsilon)(\cdot) & =\sum_{i} \sum_{j} x_{j} \frac{\operatorname{Pr}\left(\Omega_{j}^{\chi} \cap \Omega_{i}^{y}\right)}{\operatorname{Pr}\left(\Omega_{i}^{y}\right)} \chi_{\Omega_{i}^{y}}(\cdot) \\
& =\sum_{i} \sum_{j} x_{j} \frac{E\left(\chi_{\Omega_{j}^{x}} \chi_{\Omega_{i}^{y}}\right)}{E\left(\chi_{\Omega_{i}^{y}}\right)} \chi_{\Omega_{i}^{y}}(\cdot),
\end{aligned}
$$

which we can invert through our correspondence to obtain

$$
E(X \mid Y)=\sum_{i} \sum_{j} x_{j} \frac{\rho\left(P_{j} Q_{i}\right)}{\rho\left(Q_{i}\right)} Q_{i}=\sum_{i} \frac{\rho\left(X Q_{i}\right)}{\rho\left(Q_{i}\right)} Q_{i}
$$

where the second equation follows from linearity of the trace.

Now we move on to considering interaction of a system and ancilla ('meter'), in the Heisenberg picture, via maps j: $X \mapsto U^{*} X U$.
b. Show that $j\left(\sigma_{x, y, z} \otimes 1\right)$ commute with $j\left(1 \otimes \sigma_{z}\right)$. Now define
$\pi\left(\sigma_{x, y, z}\right)=E\left(j\left(\sigma_{x, y, z} \otimes 1\right) \mid j\left(1 \otimes \sigma_{z}\right)\right)$. Show that $\pi\left(\sigma_{x, y, z}\right)$ commute with each other and with $j\left(1 \otimes \sigma_{z}\right)$. Argue that we can thus simultaneously infer $\sigma_{x, y, z}$ after interaction with the meter.
We first expliclty check that

$$
j\left(\sigma_{x, y, z} \otimes 1\right)=U^{*}\left(\sigma_{x, y, z} \otimes 1\right) U
$$

commute with

$$
j\left(1 \otimes \sigma_{z}\right)=U^{*}\left(1 \otimes \sigma_{z}\right) U
$$

Straightforwardly,

$j\left(\sigma_{x, y, z} \otimes 1\right) j\left(1 \otimes \sigma_{z}\right)$	$=U^{*}\left(\sigma_{x, y, z} \otimes 1\right) U U^{*}\left(1 \otimes \sigma_{z}\right) U$
	$=U^{*}\left(\sigma_{x, y, z} \otimes 1\right)\left(1 \otimes \sigma_{z}\right) U$
	$=U^{*}\left(\sigma_{x, y, z} \otimes \sigma_{z}\right) U$,
$j\left(1 \otimes \sigma_{z}\right) j\left(\sigma_{x, y, z} \otimes 1\right)$	$=U^{*}\left(1 \otimes \sigma_{z}\right) U U^{*}\left(\sigma_{x, y, z} \otimes 1\right) U$
	$=U^{*}\left(1 \otimes \sigma_{z}\right)\left(\sigma_{x, y, z} \otimes 1\right) U$
	$=U^{*}\left(\sigma_{x, y, z} \otimes \sigma_{z}\right) U$,

where we are using the usual definition of product on $A \otimes A$. Since we have shown that $j\left(\sigma_{x, y, z} \otimes 1\right)$ and $j\left(1 \otimes \sigma_{z}\right)$ commute, we can define

$$
\begin{aligned}
\pi\left(\sigma_{x, y, z}\right) & \equiv E\left(j\left(\sigma_{x, y, z} \otimes 1\right) \mid j\left(1 \otimes \sigma_{z}\right)\right) \\
& =\sum_{i} \frac{\rho\left(U^{*}\left(\sigma_{x, y, z} \otimes 1\right) U Q_{i}\right)}{\rho\left(Q_{i}\right)} Q_{i}
\end{aligned}
$$

where

$$
j\left(1 \otimes \sigma_{z}\right)=U^{*}\left(1 \otimes \sigma_{z}\right) U=\sum_{i} y_{i} Q_{i}
$$

Noting that the $\rho\left(U^{*}\left(\sigma_{x, y, z} \otimes 1\right) U Q_{i}\right) / \rho\left(Q_{i}\right)$ are just numbers, it is easy to see that these conditional expectations commute. For example,

$$
\begin{aligned}
\pi\left(\sigma_{x}\right) \pi\left(\sigma_{y}\right) & =\sum_{i} \frac{\rho\left(U^{*}\left(\sigma_{x} \otimes 1\right) U Q_{i}\right)}{\rho\left(Q_{i}\right)} Q_{i} \sum_{j} \frac{\rho\left(U^{*}\left(\sigma_{y} \otimes 1\right) U Q_{j}\right)}{\rho\left(Q_{j}\right)} Q_{j} \\
& =\sum_{i} \sum_{j} \frac{\rho\left(U^{*}\left(\sigma_{x} \otimes 1\right) U Q_{i}\right)}{\rho\left(Q_{i}\right)} \frac{\rho\left(U^{*}\left(\sigma_{y} \otimes 1\right) U Q_{j}\right)}{\rho\left(Q_{j}\right)} Q_{i} Q_{j} \\
& =\sum_{i} \sum_{j} \frac{\rho\left(U^{*}\left(\sigma_{x} \otimes 1\right) U Q_{i}\right)}{\rho\left(Q_{i}\right)} \frac{\rho\left(U^{*}\left(\sigma_{y} \otimes 1\right) U Q_{j}\right)}{\rho\left(Q_{j}\right)} \delta_{i j} Q_{i} \\
& =\sum_{i} \sum_{j} \frac{\rho\left(U^{*}\left(\sigma_{y} \otimes 1\right) U Q_{j}\right)}{\rho\left(Q_{j}\right)} \frac{\rho\left(U^{*}\left(\sigma_{x} \otimes 1\right) U Q_{i}\right)}{\rho\left(Q_{i}\right)} Q_{j} Q_{i} \\
& =\pi\left(\sigma_{y}\right) \pi\left(\sigma_{x}\right) .
\end{aligned}
$$

Likewise,

$$
\begin{aligned}
& \pi\left(\sigma_{x}\right) j\left(1 \otimes \sigma_{z}\right)=\sum_{i} \frac{\rho\left(U^{*}\left(\sigma_{x} \otimes 1\right) U Q_{i}\right)}{\rho\left(Q_{i}\right)} Q_{i} \sum_{j} y_{j} Q_{j} \\
&=\sum_{i} \sum_{j} \frac{\rho\left(U^{*}\left(\sigma_{x} \otimes 1\right) U Q_{i}\right)}{\rho\left(Q_{i}\right)} y_{j} Q_{i} Q_{j} \\
&=\sum_{i} \sum_{j} \frac{\rho\left(U^{*}\left(\sigma_{x} \otimes 1\right) U Q_{i}\right)}{\rho\left(Q_{i}\right)} y_{j} \delta_{i j} Q_{i} \\
&=\sum_{i} \sum_{j} \frac{\rho\left(U^{*}\left(\sigma_{x} \otimes 1\right) U Q_{i}\right)}{\rho\left(Q_{i}\right)} y_{j} Q_{j} Q_{i} \\
&=j\left(1 \otimes \sigma_{z}\right) \pi\left(\sigma_{x}\right) . \\
& \hline
\end{aligned}
$$

Thus $j\left(1 \otimes \sigma_{z}\right)$ and $\pi\left(\sigma_{x, y, z}\right)$ are equivalent to a set of classical random variables, and nothing stops us from performing simultaneous inference in the usual manner.
c. Calculate explicit matrix representations for $U, j\left(\sigma_{x, y, z} \otimes 1\right), j\left(1 \otimes \sigma_{z}\right)$ and $\pi\left(\sigma_{x, y, z}\right)$.
First recall the usual representations

$$
\sigma_{x}=\left(\begin{array}{c|c}
\hline 0 & 1 \\
\hline 1 & 0 \\
\hline
\end{array}\right), \quad \sigma_{y}=\left(\begin{array}{|c|c}
\hline 0 & -i \\
\hline i & 0 \\
\hline
\end{array}\right), \quad \sigma_{z}=\left(\begin{array}{|c|c|}
\hline 1 & 0 \\
\hline 0 & -1 \\
\hline
\end{array}\right) .
$$

(I am using a convention where

which will appear over and over again below.) Then we have

$$
U=U^{*}=|0\rangle\langle 0| \otimes 1+|1\rangle\langle 1| \otimes \sigma_{x}=\left(\begin{array}{|c|c|c|c|}
\hline 1 & 0 & 0 & 0 \\
\hline 0 & 1 & 0 & 0 \\
\hline 0 & 0 & 0 & 1 \\
\hline 0 & 0 & 1 & 0 \\
\hline
\end{array}\right)
$$

$$
1 \otimes \sigma_{z}=\left(\begin{array}{c|c|c|c}
\hline 1 & 0 & 0 & 0 \\
\hline 0 & -1 & 0 & 0 \\
\hline 0 & 0 & 1 & 0 \\
\hline 0 & 0 & 0 & -1 \\
\hline 0
\end{array}\right), \quad j\left(1 \otimes \sigma_{z}\right)=U^{*}\left(1 \otimes \sigma_{z}\right) U=\left(\begin{array}{c|c|c|c}
\hline 1 & 0 & 0 & 0 \\
\hline 0 & -1 & 0 & 0 \\
\hline 0 & 0 & -1 & 0 \\
\hline 0 & 0 & 0 & 1 \\
\hline
\end{array}\right) .
$$

Likewise,

$\sigma_{x} \otimes 1=$				0	$\left.\begin{array}{\|l\|}0 \\ \hline 1 \\ 0 \\ \hline 0\end{array}\right)$,	$j\left(\sigma_{x} \otimes 1\right)=$	$\left(\begin{array}{\|l\|}\hline 0 \\ 0 \\ \hline 0 \\ \hline 1 \\ \hline\end{array}\right.$	0 0 0 1	1	0 1 0 0				
$\sigma_{y} \otimes 1=$	$\left(\begin{array}{l}0 \\ \hline 0 \\ \hline i \\ 0\end{array}\right.$			$-i$ 0 0 0	($\left.\begin{array}{c}0 \\ -i \\ 0 \\ 0\end{array}\right)$,	$j\left(\sigma_{y} \otimes 1\right)=$	$=($	0 0 0 i	0 0 i	0 0 i 0	0		-i ${ }^{-}$(
$\sigma_{z} \otimes 1=$	$\left(\begin{array}{l}1 \\ \hline 0 \\ 0 \\ 0 \\ \hline\end{array}\right.$			0 0 -1 0	$\left.\begin{array}{c}0 \\ 0 \\ 0 \\ -1\end{array}\right)$, $j\left(\sigma_{z} \otimes 1\right)=$	$=($,		0 1 0 0			$\left.\begin{array}{c}0 \\ 0 \\ 0 \\ -1\end{array}\right)$	

Next we compute the eigenvectors of $j\left(1 \otimes \sigma_{z}\right)$:

hence

$$
\begin{aligned}
j\left(1 \otimes \sigma_{z}\right)=(+1)\left(\begin{array}{ll|l|l|l}
\hline 1 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 1 \\
\hline
\end{array}\right)+(-1)\left(\begin{array}{|l|l|l|l|}
\hline 0 & 0 & 0 & 0 \\
\hline 0 & 1 & 0 & 0 \\
\hline 0 & 0 & 1 & 0 \\
\hline 0 & 0 & 0 & 0 \\
\hline
\end{array}\right. \\
\equiv y_{1} Q_{1}+y_{2} Q_{2} .
\end{aligned}
$$

Then finally, assuming a state

$$
\rho \otimes|0\rangle\langle 0|=\left(\begin{array}{c|c|c|c|}
\hline \rho_{11} & 0 & \rho_{12} & 0 \\
\hline 0 & 0 & 0 & 0 \\
\hline \rho_{21} & 0 & \rho_{22} & 0 \\
\hline 0 & 0 & 0 & 0 \\
\hline
\end{array}\right)
$$

we compute

$$
\pi\left(\sigma_{x}\right)=\sum_{i} \frac{\rho\left(U^{*}\left(\sigma_{x} \otimes 1\right) U Q_{i}\right)}{\rho\left(Q_{i}\right)} Q_{i}=0
$$

Similarly,

$$
\pi\left(\sigma_{y}\right)=\sum_{i} \frac{\rho\left(U^{*}\left(\sigma_{y} \otimes 1\right) U Q_{i}\right)}{\rho\left(Q_{i}\right)} Q_{i}=0
$$

and

$$
\pi\left(\sigma_{z}\right)=\sum_{i} \frac{\rho\left(U^{*}\left(\sigma_{z} \otimes 1\right) U Q_{i}\right)}{\rho\left(Q_{i}\right)} Q_{i}=\left(\begin{array}{c|c|c|c}
\hline 1 & 0 & 0 & 0 \\
\hline 0 & -1 & 0 & 0 \\
\hline 0 & 0 & -1 & 0 \\
\hline 0 & 0 & 0 & 1
\end{array}\right) .
$$

d. As $\pi\left(\sigma_{x, y, z}\right)$ and $j\left(1 \otimes \sigma_{z}\right)$ (and 1) all commute, they generate a commutative subalgebra of $A \otimes A$... Construct explicitly a classical sample space Ω and state $p(\omega)$, and use these to express $\pi\left(\sigma_{\chi, y, z}\right)$ and $j\left(1 \otimes \sigma_{z}\right)$ as classical random variables.
Clearly we can just use positions along the diagonal of the matrix representations we found above. Hence,

$\Omega=\left\{\omega_{1}, \omega_{2}, \omega_{3}, \omega_{4}\right\}$,
$\pi\left(\sigma_{x}\right) \mapsto X: \Omega \rightarrow R, \quad X\left(\omega_{1}\right)=X\left(\omega_{2}\right)=X\left(\omega_{3}\right)=X\left(\omega_{4}\right)=0$,
$\pi\left(\sigma_{y}\right) \mapsto Y: \Omega \rightarrow R, \quad Y\left(\omega_{1}\right)=Y\left(\omega_{2}\right)=Y\left(\omega_{3}\right)=Y\left(\omega_{4}\right)=0$,
$\pi\left(\sigma_{z}\right) \mapsto Z: \Omega \rightarrow R, \quad Z\left(\omega_{1}\right)=Z\left(\omega_{4}\right)=1, Z\left(\omega_{2}\right)=Z\left(\omega_{3}\right)=-1$,
$j\left(1 \otimes \sigma_{z}\right) \mapsto M: \Omega \rightarrow R, \quad M\left(\omega_{1}\right)=M\left(\omega_{4}\right)=1, M\left(\omega_{2}\right)=M\left(\omega_{3}\right)=-1$.

The state we want can be found by taking
$\operatorname{Tr}\left[\left(\begin{array}{|c|c|c|c}\left.\left.\begin{array}{|c|c|c|c|c|}\omega_{1} & 0 & 0 & 0 \\ \hline 0 & \omega_{2} & 0 & 0 \\ \hline 0 & 0 & \omega_{3} & 0 \\ \hline 0 & 0 & 0 & \omega_{4}\end{array}\right)\left(\begin{array}{|c|c|c|c}\rho_{11} & 0 & \rho_{12} & 0 \\ \hline 0 & 0 & 0 & 0 \\ \hline \rho_{21} & 0 & \rho_{22} & 0 \\ \hline 0 & 0 & 0 & 0\end{array}\right)\right]=\omega_{1} \rho_{11}+\omega_{3} \rho_{22}, \\ \hline\end{array}\right.\right.$
meaning that

$$
p\left(\omega_{1}\right)=\rho_{11}, \quad p\left(\omega_{2}\right)=0, \quad p\left(\omega_{3}\right)=\rho_{22}, \quad p\left(\omega_{4}\right)=0 .
$$

e. The conditional expectations $\pi\left(\sigma_{x, y, z}\right)$ are very similar to ordinary expectations-only they are random variables. For now, just by analogy, consider defining a "conditional density matrix" as a random 2×2 matrix $\tilde{\rho}(\omega)$ such that $\pi\left(\sigma_{x, y z}\right)(\omega)=\operatorname{Tr}\left[\tilde{\rho}(\omega) \sigma_{x, y, z}\right]$. Find an explicit expression for $\tilde{\rho}(\omega)$. Interpret the result in terms of what you learned about quantum measurement in previous quantum courses.

We want

$$
\begin{array}{|l}
\hline \operatorname{Tr}\left[\tilde{\rho}\left(\omega_{1}\right) \sigma_{x}\right]=0, \operatorname{Tr}\left[\tilde{\rho}\left(\omega_{1}\right) \sigma_{y}\right]=0, \operatorname{Tr}\left[\tilde{\rho}\left(\omega_{1}\right) \sigma_{z}\right]=1, \\
\hline \operatorname{Tr}\left[\tilde{\rho}\left(\omega_{2}\right) \sigma_{x}\right]=0, \operatorname{Tr}\left[\tilde{\rho}\left(\omega_{2}\right) \sigma_{y}\right]=0, \operatorname{Tr}\left[\tilde{\rho}\left(\omega_{2}\right) \sigma_{z}\right]=-1, \\
\operatorname{Tr}\left[\tilde{\rho}\left(\omega_{3}\right) \sigma_{x}\right]=0, \operatorname{Tr}\left[\tilde{\rho}\left(\omega_{3}\right) \sigma_{y}\right]=0, \operatorname{Tr}\left[\tilde{\rho}\left(\omega_{3}\right) \sigma_{z}\right]=-1, \\
\operatorname{Tr}\left[\tilde{\rho}\left(\omega_{4}\right) \sigma_{x}\right]=0, \operatorname{Tr}\left[\tilde{\rho}\left(\omega_{4}\right) \sigma_{y}\right]=0, \operatorname{Tr}\left[\tilde{\rho}\left(\omega_{4}\right) \sigma_{z}\right]=1 .
\end{array}
$$

Hence we can conclude that $\tilde{\rho}\left(\omega_{1}\right)=\tilde{\rho}\left(\omega_{4}\right)$ and determine the matrix via

(where we additionally invoke hermiticity and positive-semidefiniteness). Likewise,

$$
\begin{aligned}
\operatorname{Tr}\left[\left(\begin{array}{|l|l}
\hline \tilde{\rho}_{11} & \tilde{\rho}_{12} \\
\hline \tilde{\rho}_{21} & \tilde{\rho}_{22}
\end{array}\right)\left(\begin{array}{ll}
\hline 0 & 1 \\
\hline 1 & 0
\end{array}\right)\right] & =\tilde{\rho}_{12}+\tilde{\rho}_{21}=0 \\
\operatorname{Tr}\left[\left(\begin{array}{|l|l}
\hline \tilde{\rho}_{11} & \tilde{\rho}_{12} \\
\hline \tilde{\rho}_{21} & \tilde{\rho}_{22}
\end{array}\right)\left(\begin{array}{|c|c}
\hline 0 & -i \\
i & 0
\end{array}\right)\right] & =i \tilde{\rho}_{12}-i \tilde{\rho}_{21}=0 \\
\operatorname{Tr}\left[\left(\begin{array}{|l|l}
\hline \tilde{\rho}_{11} & \tilde{\rho}_{12} \\
\hline \tilde{\rho}_{21} & \tilde{\rho}_{22}
\end{array}\right)\left(\begin{array}{|c|c}
\hline 1 & 0 \\
\hline 0 & -1 \\
\hline
\end{array}\right)\right] & =\tilde{\rho}_{11}-\tilde{\rho}_{22}=-1, \\
\operatorname{Tr}\left[\left(\begin{array}{l|l}
\tilde{\rho}_{11} & \tilde{\rho}_{12} \\
\hline \tilde{\rho}_{21} & \tilde{\rho}_{22} \\
\hline
\end{array}\right)\right] & =\tilde{\rho}_{11}+\tilde{\rho}_{22}=1, \\
& \Rightarrow \tilde{\rho}\left(\omega_{2}\right)=\tilde{\rho}\left(\omega_{3}\right)=\left(\begin{array}{lll}
\hline 0 & 0 \\
\hline 0 & 1
\end{array}\right)
\end{aligned}
$$

This is of course exactly what we would expect, as now

$$
\begin{array}{rlrl}
p\left(\omega_{1}\right) & =\rho_{11}, \quad j\left(1 \otimes \sigma_{z}\right)\left(\omega_{1}\right)=1, & \tilde{\rho}\left(\omega_{1}\right)=|0\rangle\langle 0|, \\
p\left(\omega_{3}\right) & =\rho_{22}, & j\left(1 \otimes \sigma_{z}\right)\left(\omega_{3}\right)=1, & \\
\tilde{\rho}\left(\omega_{3}\right)=|1\rangle\langle 1|, \\
p\left(\omega_{1}\right)+p\left(\omega_{3}\right) & =1, & & \\
\hline p\left(\omega_{2}\right) & =p\left(\omega_{4}\right)=0 . & & \\
\hline
\end{array}
$$

f. Show that $\rho(E(X \mid Y))=\rho(X)$ for any commuting X, Y. Use this to show that the random density matrix $\tilde{\rho}(\omega)$ together with the classical state $p(\omega)$ form a non-redundant representation of the state $\rho \otimes \rho_{0}$ restricted to the (noncommutative) subalgebra of $A \otimes A$ generated by $j\left(\sigma_{x, y, z} \otimes 1\right), j\left(1 \otimes \sigma_{z}\right)$, and 1.
We note that

$$
\begin{aligned}
E(X \mid Y) & \equiv \sum_{i} \frac{\rho\left(X Q_{i}\right)}{\rho\left(Q_{i}\right)} Q_{i} \\
Y & =\sum_{j} y_{j} Q_{j}
\end{aligned}
$$

for any commuting X, Y. Hence

$$
\begin{aligned}
\rho(E(X \mid Y)) & =\rho\left(\sum_{i} \frac{\rho\left(X Q_{i}\right)}{\rho\left(Q_{i}\right)} Q_{i}\right)=\sum_{i} \frac{\rho\left(X Q_{i}\right)}{\rho\left(Q_{i}\right)} \rho\left(Q_{i}\right) \\
& =\sum_{i} \rho\left(X Q_{i}\right)=\rho\left(X \sum_{i} Q_{i}\right)=\rho(X)
\end{aligned}
$$

assuming Y is self-adjoint and thus has a spanning set of eigenvectors, so $\sum_{i} Q_{i}=1$.
Even without using this, we can prove the desired fact by brute force. Looking at
$\left.\begin{array}{l}j\left(1 \otimes \sigma_{z}\right)=\left(\begin{array}{c|c|c|c}\hline 1 & 0 & 0 & 0 \\ \hline 0 & -1 & 0 & 0 \\ \hline 0 & 0 & -1 & 0 \\ \hline 0 & 0 & 0 & 1\end{array}\right), \quad j\left(\sigma_{x} \otimes 1\right)=\left(\begin{array}{cc|}\hline 0 & 0 \\ \hline\end{array}\right) \\ \hline 0\end{array}\right)$
we can read off

$$
\begin{array}{ll}
\hline j\left(1 \otimes \sigma_{z}\right)=\sigma_{z} \otimes \sigma_{z}, & j\left(\sigma_{x} \otimes 1\right)=\sigma_{x} \otimes \sigma_{x} \\
j\left(\sigma_{y} \otimes 1\right)=\sigma_{y} \otimes \sigma_{x}, & j\left(\sigma_{z} \otimes 1\right)=\sigma_{z} \otimes 1 \\
\hline
\end{array}
$$

Let's see what these generate:

$$
\begin{array}{|l}
\hline\left(\sigma_{z} \otimes \sigma_{z}\right)\left(\sigma_{z} \otimes \sigma_{z}\right)=1 \otimes 1, \quad\left(\sigma_{z} \otimes \sigma_{z}\right)\left(\sigma_{x} \otimes \sigma_{x}\right)=i \sigma_{y} \otimes i \sigma_{y}, \\
\hline\left(\sigma_{z} \otimes \sigma_{z}\right)\left(\sigma_{y} \otimes \sigma_{x}\right)=-i \sigma_{x} \otimes i \sigma_{y}, \quad\left(\sigma_{z} \otimes \sigma_{z}\right)\left(\sigma_{z} \otimes 1\right)=1 \otimes \sigma_{z}, \\
\left(\sigma_{x} \otimes \sigma_{x}\right)\left(\sigma_{z} \otimes \sigma_{z}\right)=-i \sigma_{y} \otimes-i \sigma_{y}, \quad\left(\sigma_{x} \otimes \sigma_{x}\right)\left(\sigma_{x} \otimes \sigma_{x}\right)=1 \otimes 1, \\
\left(\sigma_{x} \otimes \sigma_{x}\right)\left(\sigma_{y} \otimes \sigma_{x}\right)=i \sigma_{z} \otimes 1, \quad\left(\sigma_{x} \otimes \sigma_{x}\right)\left(\sigma_{z} \otimes 1\right)=-i \sigma_{y} \otimes \sigma_{x}, \\
\hline\left(\sigma_{y} \otimes \sigma_{x}\right)\left(\sigma_{z} \otimes \sigma_{z}\right)=i \sigma_{x} \otimes-i \sigma_{y}, \quad\left(\sigma_{y} \otimes \sigma_{x}\right)\left(\sigma_{x} \otimes \sigma_{x}\right)=-i \sigma_{z} \otimes 1, \\
\hline\left(\sigma_{y} \otimes \sigma_{x}\right)\left(\sigma_{y} \otimes \sigma_{x}\right)=1 \otimes 1, \quad\left(\sigma_{y} \otimes \sigma_{x}\right)\left(\sigma_{z} \otimes 1\right)=i \sigma_{x} \otimes \sigma_{x}, \\
\hline\left(\sigma_{z} \otimes 1\right)\left(\sigma_{z} \otimes \sigma_{z}\right)=1 \otimes \sigma_{z}, \quad\left(\sigma_{z} \otimes 1\right)\left(\sigma_{x} \otimes \sigma_{x}\right)=i \sigma_{y} \otimes \sigma_{x}, \\
\hline\left(\sigma_{z} \otimes 1\right)\left(\sigma_{y} \otimes \sigma_{x}\right)=-i \sigma_{x} \otimes \sigma_{x}, \quad\left(\sigma_{z} \otimes 1\right)\left(\sigma_{z} \otimes 1\right)=1 \otimes 1 . \\
\hline
\end{array}
$$

Hence the only new elements generated are $\sigma_{y} \otimes \sigma_{y}, \sigma_{x} \otimes \sigma_{y}$, and $1 \otimes \sigma_{z}$. One can easily see that nothing further gets generated. Hence, our subalgebra consists of elements of the form
$\Sigma=a 1 \otimes 1+b 1 \otimes \sigma_{z}+c \sigma_{z} \otimes 1+d \sigma_{x} \otimes \sigma_{x}+e \sigma_{y} \otimes \sigma_{y}+f \sigma_{z} \otimes \sigma_{z}+g \sigma_{x} \otimes \sigma_{y}+h \sigma_{y} \otimes \sigma_{x}$,
and

Hence we can map

$$
\Sigma \mapsto \sigma: \Omega \rightarrow R, \quad \sigma\left(\omega_{1}\right)=a+b+c+f, \quad \sigma\left(\omega_{3}\right)=a+b-c-f,
$$

and then just use the state $p(\omega)$ we derived above to assign an expectation value to every observable. Alternatively we may write

$$
\begin{aligned}
& \sum \mapsto s(\omega) \equiv \operatorname{Tr}\left[\left(\begin{array}{|c|c}
\hline a+b+c+f & 0 \\
\hline 0 & a+b-c-f
\end{array}\right) \tilde{\rho}(\omega)\right] \\
& \langle\Sigma\rangle=\sum p(\omega) s(\omega)
\end{aligned}
$$

Now we are asked to define $S=e^{i \pi \sigma_{y} / 4} \otimes 1$ and $U^{\prime}=S^{-1} U S=S^{*} U S$.
g. What happens in c. -e. if we use U^{\prime} instead of U ?

Let's just have a look at the matrices:

It's clear from the form of S that this represents a modified controlled-not gate, which applies σ_{x} to the probe spin if the system spin is in the $\left|1_{x}\right\rangle$ eigenstate. Note that we can write,

We thus expect that the overall procedure will implement an indirect measurement of σ_{x} rather than σ_{z} for the system.

Contingency of least-squares in quantum measurement theory
M. R. James, "Risk-sensitive optimal control of quantum systems," Phys. Rev. A 69, 032108 (2004).

