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 The essential function of physical theory is to make quantitative predictions
about experiments.

preparation representation |t1 

↓ ↓

evolution specification of dynamics i d
dt |   H | 

↓ ↓

measurement prediction 〈t2 |O |t2 

 State vectors |  and density operators  are mathematical objects that
summarize our knowledge about the state (preparationsubsequent evolution)
of a physical system.

 The use of representing knowledge in this way is that it efficiently allows us to
make statistical predictions about the outcome of any measurement that could
be made on the system.

Given that we fix a complete orthonormal basis for the Hilbert space, kets can be
represented as column vectors

|   c0|0  c1|1 ↔
c0

c1
,

bras can be represented as row vectors

〈 |  c0
∗〈0|  c1

∗〈1| ↔ c0
∗ c1

∗ ,

and density operators can be represented as square matrices
  | 〈 |  c0|0  c1|1c0

∗〈0|  c1
∗〈1|

↔
c0

c1
c0
∗ c1

∗ 
|c0 |2 c0c1

∗

c0
∗c1 |c1 |2

.

There is a distinct standard measurement procedure corresponding to every complete
set of orthogonal projectors. We say that measurement A is ‘distinct’ from
measurement B if there exists some preparation of the system such that A and B have
different measurement statistics. There are an uncountable number of distinct
measurements (even in two Hilbert-space dimensions), so |  and  are pretty
compact ways to summarize the statistics of all of them!

On the other hand, there are important consequences of this ‘many-to-one-ness.’
To illustrate this concretely let’s work with a simple two-dimensional Hilbert space,
with basis kets |x  and |y . Given an arbitrary pair of states
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|c   cx|x   cy|y ,
|d   dx|x   dy|y  ,

we ask under what conditions is it possible to find a (standard) measurement that can
distinguish them with zero probability of error. For our purposes today, a standard
measurement is specified by a complete set of orthogonal projectors. Since for now
we are working in just two dimensions, we actually only need to specify a single ket
| . Then unambiguously,

P1  | 〈 |,
P2  1 − P1.

In the current scenario, we are trying to pick |  such that
Pr1 |c   〈c |P1|c   1,
Pr1 |d   〈d |P1|d   0,
Pr2 |c   〈c |P2|c   0,
Pr2 |d   〈d |P2|d   1.

In order to satisfy the first condition, we clearly need to choose
|   |c .

As a consequence
Pr1 |d   〈d |P1|d   |cx

∗dx  cy
∗dy |2,

and we find that our two states c and d are not perfectly distinguishable unless
they have zero overlap:

Pr1 |d   0 iff 〈c |d   0.
Hopefully it should be clear that among all possible pairs of vectors in a Hilbert space,
only a vanishing fraction are orthogonal! Furthermore, as we’ll see below, the overlap
of quantum states is preserved by physical dynamics according to the Schrödinger
Equation.

And yet, according to our quantum representation rule, every vector in the Hilbert
space corresponds to a distinct physical state of the system – that is, to a distinct
preparation procedure.

Even though quantum measurement theory allows for non-projective
measurements (as we have already briefly discussed), it is nonetheless a theorem
that no measurement can distinguish nonorthogonal states, with zero probability of
error, in a single trial. It is a mystery that quantum mechanics presents us with such a
huge space of possible physical states without allowing us perfectly to distinguish
between them. Why is it that we can “put more information into” the preparation of a
quantum system than we can “get back out” in a single measurement of that very
same system?

Random-basis quantum cryptography
Over the next few lectures we’ll be talking a lot about entangment and its role in
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enabling quantum information/communication protocols. Before we do that however
we should note that some quantum information protocols don’t even need
entanglement!

As an example of this let’s look at the crytographic key distribution protocol of C.
H. Bennett and G. Brassard (Proceedings of the IEEE International Conference on
Computers, Systems, and Signal Processing, Bangalore, India (IEEE, New York,
1984), p. 175; also, C. H. Bennett, G. Brassard, and N. D. Mermin, Phys. Rev. Lett.
68, 557 (1992)). (In another lecture we’ll look at a quantum cryptographic key
distribution protocol that does require entanglement.)

A common way to encrypt data (string of meaningful bits) is the so-called
“one-time pad,” which requires a secret key (string of random bits) with length equal to
that of the data. The encrypted version of the data is obtained simply by performing a
bitwise XOR between the plain data and the secret key:

data : 01011011101111…
key : 01101010001101…

encrypted : 00110001100010…
Recall that the XOR operation is defined by the following truth table:

XOR0,0  0, XOR0,1  1,
XOR1,0  1, XOR1,1  0.

If the key is truly random, the encrypted data is now statistically independent of the
plain data. The encrypted data can only be decrypted by someone who knows the
secret key. The procedure is then quite simple, corresponding to another XOR:

encrypted : 00110001100010…
key : 01101010001101…

data : 01011011101111…
The drawback of one-time pad is that the communicators always need to have lots of
secret key available (it’s no good if you re-use it). In general, when all the available
key has been used up the two parties have to either get together to decide on some
new key bits, or they must use a trusted courier to “carry” new key information from
one party to the other. Quantum cryptographic key distrubtion seeks to use quantum
phenomena to allow generation of shared random key over public communication
channels.

The basic idea is simple. Let the two communicators be named Alice and Bob (a
common convention in the field of cryptography). Alice will send Bob a sequence of
two-level quantum systems, each of which is randomly prepared in one of four
possible states:

| 0 , | 1 , |x  ≡ 1
2
| 0   | 1 , |y  ≡ 1

2
| 0  − | 1 .

Alice doesn’t initially say anything to anybody about the sequence of states. Every
time Bob receives one of these quantum systems, he randomly chooses to make one
of two standard measurements:

| 0 〈0| , | 1 〈1| or |x 〈x| , |y 〈y|.
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After the entire transmission is done, Alice publicly announces for each transmission
whether the state was selected from the 0,1 basis or the x,y basis (but without actually
revealing which of the two basis states was sent). Bob also announces whether he
measured in the 0,1 basis or the x,y basis, but without revealing his result. In cases
where they happened to choose the same basis, Bob should have been able to
perfectly recover the identity of the state that Alice sent. They can check this by using
up a subset of the transmissions.

 State vectors can be used when the preparation and evolution of a system are
as sharply defined as possible – in such cases, we have only intrinsic
uncertainties regarding the outcome of future measurements.

 Density operators must be used when there are extrinsic uncertainties in the
problem, or when the system of interest is entangled with an inaccessible
system.

 Intrinsic uncertainties are associated with coherent superposition of
eigenstates; extrinsic uncertainties arise (among other reasons) when we are
not sure which of several preparations or dynamics has actually occured.

 Coherent superpositions can lead to interference effects; probabilistic mixtures
cannot.

Recall that for essentially all states in a Hilbert space,

ΔOq  〈|Oq − 〈Oq |  〈Oq
2  − 〈Oq 

2  0

for every observable (physical quantity) Oq except those that are proportional to the
identity operator. In orther words, for any given state in the Hilbert space there are
plenty of questions one can ask to which there is no definite answer! Contrast this to
the classical situation – if you know the position and momentum of a classical point
particle, there’s no measurement I could perform for which you can’t predict the exact
answer. The only way to have ΔOq  0 is to prepare the system in an eigenstate of
Oq. Any time we have a superposition of eigenstates corresponding to distinct
eigenvalues of Oq, we have intrinsic quantum-mechanical uncertainty.

Stern-Gerlach example
Consider the following experimental schematic, which depicts a sequential version of
the famous 1922 experiment by Stern and Gerlach:
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The oven and collimating slit produce a beam of silver atoms that passes through a
specially-configured magnet; that magnet splits the beam in two (for reasons we’ll
discuss below) and then one of the branches is directed through a second specially
configured magnet. If the second magnet is oriented in the same way as the first
(upper diagram), one observes that it does not further split the atomic beam. But if the
orientation of the second magnet is perpendicular to that of the first (lower diagram),
one observes that the atomic beam is once again split into two branches.

The manipulation of the atomic beam by the specially-configured magnets is
actually based on the internal spin of each atom (since each atom’s magnetic moment
is proportional to its spin) and must therefore be modeled quantum mechanically in
order to make accurate predictions. Silver atoms happen to have an overall spin
angular momentum of 1

2 , so the corresponding quantum probability model involves a
simple two dimensional Hilbert space. The observables we’ll need correspond to the z-
and x-components of the atomic spin:

Sz  
2

1 0
0 −1

, Sx  
2

0 1
1 0

, Sy  
2

0 −i
i 0

.

(For completeness we have also written the observable corresponding to the
y-component of spin, but we won’t need to use it here.)

The action of the first magnet is to split the atomic beam into two components, one
of which contains atoms whose internal spins are prepared in the state |z  while the
other contains atoms whose internal states are perpared in the state |z− . In terms of
the matrix notation we have used for specifying the observables,
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|z  →
1
0

, |z−  
0
1

.

It is easy to see that |z  is the eigenstate of Sz with eigenvalue /2, while |z−  is
the eigenstate of Sz with eigenvalue −/2. This splitting occurs because the magnetic
field between the two pole pieces of the specially-configured magnet is oriented in the
z direction and the flux density has a gradient along z. Atoms whose magnetic
moments point downwards thus experience an impulse in one direction as they pass
through the magnet, while atoms whose magnetic moments point up experience an
opposite impulse. Since magnetic moment is proportional to spin, it follows that we
can actually think of the specially-configured magnet as performing a measurement of
the observable Sz. As long as we are just doing theory, it is reasonable to model this
as an ideal measurement in the sense that we can use the projection postulate for
conditioning the state of each atom based on this measurement of Sz. Hence we can
assign each atom a spin state that is simply determined by which branch of the atomic
beam it ends up in, in the manner stated above. (Note that it would be hard to do this
perfectly in practice since the magnet would have some fringe fields, the atoms would
be travelling at different velocities, et cetera.)

According to the schematic diagram, we dump the branch of the atomic beam in
which the spins have state |z−  and direct the atoms in state |z  towards the
second magnet. If the second magnet has the same orientation as the first magnet, it
will perform exactly the same splitting action. That is, it should re-measure Sz and
divide up the beam according to the result. It should be clear from the basic rules we
have already discussed that we should expect not to see any branching of the beam in
this configuration.

If the orientation of the second magnet is perpendicular to that of the first,
however, we need to do a little calculation. Let the second magnet be oriented along
the x axis, so that it splits the beam according to a measurement of Sx. We note that

〈z |Sx |z   1 0 
2

0 1
1 0

1
0

 
2 1 0

0
1

 0.

What does this mean? Getting a little more sophisticated, we note the spectral
decomposition of Sx :

Px  1
2

1
1

1 1  1
2

1 1
1 1

,

Px−  1
2

1
−1

1 −1  1
2

1 −1
−1 1

,

Sx  
2 Px − 

2 Px−.

It follows that the probabilities for each atom (starting in the state |z ) to end up in
either branch after the Sx measurement are equal:
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〈z |Px |z   1 0 1
2

1 1
1 1

1
0

 1
2 1 0

1
1

 1
2 ,

〈z |Px− |z   1 0 1
2

1 −1
−1 1

1
0

 1
2 1 0

1
−1

 1
2 .

So in the end it is easy to see why the atomic beam is split in half if the second
magnet is oriented along x. Hence we have intrinsic uncertainty in predicting the result
of a measurement of the observable Sx for atoms prepared in the pure spin state
|z .

Mixed ensembles of quantum states
Let’s say we’re working in a nice, simple two-dimensional Hilbert space and that we’ve
chosen orthonormal basis kets |x  and |y . For the following discussion, we’ll need to
define two state vectors

|A   ax|x   ay|y ,
|B   bx|x   by|y .

Suppose I ask you to perform a series of N measurements on this system (here N is
just a large integer), corresponding to the projectors

Px  |x 〈x |,
Py  |y 〈y |.

The trick is, in this series of measurements I will sometimes prepare the initial state
|A  (with probability p) and sometimes |B  (with probability 1 − p). That is, I will be
giving you a mixed ensemble of quantum states.

How shall we predict the overall number of times nx we expect to obtain the
measurement outcome x? According to simple probability theory,

nx  NPrAPrx |A  PrBPrx |B

 Np 〈A |Px|A   1 − p〈B |Px|B 

 Np |ax |2  1 − p|bx |2 .

Note that since 0 ≤ p ≤ 1, the quantity nx/N is bounded from below by the smaller of
|ax |2 and |bx |2. In particular, if both of these quantities are nonzero than nx must also
be greater than zero.

A very different expression for nx would be obtained if, instead of a mixed
ensemble, I were to present you with a ‘coherent superposition’ of the states |A  and
|B , corresponding to the ‘pure’ state |pA,pB

|pA,pB  pA |A   pB|B 

 pAax  pBbx|x   pAay  pBby|y .
(Note that we should be careful in choosing pA and pB such that |pA,pB is
normalized.) In this case, we would predict
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nx  N 〈pA,pB |Px|pA,pB 

 N |pAax  pBbx |2.
Note that in certain cases, e.g. pAax  −pBbx ≠ 0, it is possible to choose pA,pB such
that nx  0  |ax |2,|bx |2 through the phenomenon of destructive interference. This is the
truly important distinction between coherent superpositions (of the type that produce a
single pure state) and incoherent admixtures (of the type that produce a mixed
ensemble of quantum states).

To provide a really simple example, consider the following two states:
|A   1

2
|0  |1,

|B   1
2
|0 − |1.

Clearly each of these states has 〈P1   1
2 , where P1 ≡ | 1〈1|. Even in a situation

where we are not sure which of these two quantum states has been prepared, we are
sure that 〈P1  should still be 1

2 . In other words, the two possible scenarios should not
‘interfere’ with one another when we make predictions about measurement results.
Suppose we know that |A  and |B  are prepared with equal probability. Let’s
convince ourselves that this does not correspond to a coherent superposition of |A 
and |B :

|coh   1
2
|A   |B 

 1
2 |0  |1  |0 − |1

 |0.
Coherent superpositions do exhibit interference, and this is why we can’t use them to
represent extrinsic uncertainty about the preparation of a quantum system.

If we want to combine the list of kets and probabilities in a mixed ensemble of
quantum states in order to form a more compact representation, we turn to the density
matrix. For the scenario we are considering,

  p |A 〈A |  1 − p|B 〈B |.
We can conveniently represent ensemble-averaged quantities such as Prx in terms
of :

Prx  Tr Px 

 Tr Px.
To see that this is true we simply write out the trace,

Tr Px   〈x |Px |x   〈y |Px |y 
 〈x | |x 
 p 〈x ||A 〈A ||x   1 − p 〈x ||B 〈B | |x 
 p |ax |2  1 − p|bx |2.

In general, the probability of obtaining the outcome x in a measurement of Px,…  on
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a mixed ensemble with density operator  ↔ pi , |i  is given by
Prx ∑

i

PriPrx | i

∑
i

pi 〈i |Px|i 

∑
ij

pi 〈i |Px| j 〈 j ||i 

∑
ij

pi 〈 j ||i 〈i |Px| j 

∑
j
〈 j |∑

i

pi|i 〈i |Px| j 

 Tr Px ,
where

 →∑
i

pi|i 〈i |.

(Note that  is technically an operator on the Hilbert space, and has the form of a
linear combination of projection operators. However, the ensemble representation
used to define a density operator is not necessarily also a spectral decomposition, as
the various |i  that constitute an ensemble do not need to be mutually orthogonal.)
For a two-member ensemble it is not entirely clear that  is any more convenient than
working directly with api , |i . But what if we have, e.g., a fifty-member ensemble?
We can either compute fifty expectation values every time someone gives us a
projection operator, or we can simply take the trace of that projector with the 2  2
density operator

 ∑
i1

50

pi|i 〈i |.

Surely  is a more compact representation of our knowledge about the system state!
We need only compute it once, after all, to simplify an arbitrarily large number of
statistical predictions. The same advantage applies when we want to evolve the
system state dynamically according to the Schrödinger Equation (see below).

What about the post-measurement state? For pure quantum states the projection
postulate reads

|i  
Px|i 

〈i |Px|i 
,

and for density operators

 
PxPx

Tr Px 
.

Once again, the role of the projection operator is to enforce consistency of the
post-measurement state with the actual outcome of the measurement; the
denominator ensures that the post-measurement state is still normalized (i.e.
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Tr   1). Note that any of the states |i  in the original list that are not consistent
with the measurement result will be eliminated, and others will have their probabilities
renormalized.

Many different ensembles have the same density operator. For example, both

p1  1
2 , |1  ↔

1
0

, p2  1
2 , |2  ↔

0
1

,

and

p1  1
2 , |1  ↔ 1

2
1
1

, p2  1
2 , |2  ↔ 1

2
1
−1

,

have the same density operator

 ↔ 1
2

1 0
0 1

.

What this tells us is that there is no measurement that can distinguish between two
mixed ensembles of quantum states that have exactly the same density operator. In
fact the density operator is a sufficient statistic for computing the probabilities of the
outcomes for any POVM, because of the linear structure of the probability rule
Pri  Tr Ei . It likewise determines the expectation value for all observables and
therefore specifies the state in the technical sense we discussed earlier in the term.
This is not to say that there are not some situations in which it helps to know not only
the ensemble density matrix but also the full list of states and probabilities - see for
example C. A. Fuchs and C. M. Caves, “Ensemble-Dependent Bounds for Accessible
Information in Quantum Mechanics,” Phys. Rev. Lett. 73, 3047 (1994).

Density matrix representation of mixed quantum states
At this point we should note that there are actually a number of fairly distinct reasons
why density operators appear in quantum probability models, and mixed preparations
such as the one we discussed above are only one of them. Another context in which
density operators must be used is the representation of thermal states such as the
spin state of the Ag atoms emerging from the oven in our Stern-Gerlach example from
last week. Recall that the observables representing Cartesian components of the
atomic spin are given by

Sz  
2

1 0
0 −1

, Sx  
2

0 1
1 0

, Sy  
2

0 −i
i 0

,

and that one empirically finds that half of the atoms have eigenvalue /2 for Sz after
emerging from the oven. If we insist on representing the spin state of the atoms as a
state vector, we must therefore choose
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|  →
u
l

, |u |2  〈Pz   | l |2  〈Pz−   1
2 .

We can write any such vector as

|   1
2

expiu

expil
, u,l ∈ R,

with the consequence that

〈Sx   
4 exp−iu exp−il

0 1
1 0

expiu

expil

 
4 e

il−u   e−il−u   
2 cosl − u,

〈Sy   
4 exp−iu exp−il

0 −i
i 0

expiu

expil

 
4 −ie

il−u   ie−il−u   
2 sinl − u.

However one can empirically determine 〈Sx   〈Sy   0 for atoms emerging from the
oven (meaning that Stern-Gerlach-type measurements reveal 50/50 distributions for
the /2 eigenvalues of both Sx and Sy), which cannot be reproduced by any possible
assignment of l − u in the state vector considered above!

We conclude that the thermal spin state cannot be represented by a state vector.
Although we won’t get to talk about it this term, basic considerations of quantum
statistical mechanics lead naturally to representations of thermal states via density
operators.

Generally speaking, valid density operators must be Hermitian and have the
property

Tr   1.
Here Tr denotes the ‘trace’ operation

Tr ∑
k
〈k | |k ,

where |k  is any orthonormal basis for the Hilbert space – the numerical result is
independent of choice of basis. In particular, since  is Hermitian we can chose to take
the trace in its own eigenbasis, which makes it clear that

Tr ∑
i

i
,

where i
 are the eigenvalues of . Note that if  happens to be available in matrix

form, we can further make use of the fact that the sum of the eigenvalues of a matrix
is equal to the sum of its diagonal elements.

We can easily derive some of the important properties of the eigenvalues and
trace of a density operator in the case where it happens to represent a given mixed
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ensemble,
 ∑

k

pk|k 〈k | ∑
k

pkPk.

(Note however that the properties must hold for density matrices of arbitrary ‘origin.’)
Here Pk is the projector onto |k , which itself is a normalized pure state that occurs
in the ensemble with relative probability pk. For any arbitrary normalized state |  in
the entire Hilbert space,

〈 | |  ∑
k

pk〈 |Pk | .

Since all of the pk and 〈 |Pk |  must be between 0 and 1, it follows that
0 ≤ 〈 | |  ≤ 1

for absolutely any (normalized) choice of the state | . This includes, in particular, the
eigenstates of , for which we have the deduction

 |j   j|j ,
〈j | |j   j,

0 ≤ j ≤ 1.
If we furthermore consider the trace for a density matrix representing a mixed
ensemble,

Tr   ∑
k
〈k ||k  ∑

k
〈k | ∑

j

pj|j 〈j | |k 

∑
k
∑

j

pj 〈k |j 〈j |k 

∑
k
∑

j

pj 〈j |k 〈k |j 

∑
j

pj 〈j | ∑
k

|k 〈k | |j  ∑
j

pj 〈j |j  ∑
j

pj  1.

Density operators can represent either pure states,
  | 〈 |,

or mixed states
 ∑

i

pi|i 〈i |

where there is more than one pi  0. Note that in the former (pure state) case  is a
true projection operator, so

pure : 2  .
In particular, Tr2  1 for a pure state.

For a mixed state, however, we can use the spectral decomposition to show that
Tr2  1. We start by writing

12



2  ∑
i

i
P i


2

∑
i

i
2P i

,

and note that since Tr  ∑ i i
  1, each of the i

 must be strictly less than one for
a mixed state. Hence the eigenvalues of 2, which are equal to the i

2, must add up
to less than one.

Cyclic property of the Trace operation
For any pair of operators A and B,

Tr AB  Tr BA.
To see this, let’s pick a complete orthonormal basis for the relevant Hilbert space and
write matrix representations:

A ∑
ij

aij| i 〈 j |, B ∑
ij

bij| i 〈 j |.

By definition of the trace,
Tr AB ∑

i
〈 i |AB | i ,

but we can insert a ‘closure relation’

∑
j

| j 〈 j |  1

in the middle to obtain
Tr AB ∑

ij
〈 i |A | j 〈 j |B | i  ∑

ij

aij bji ∑
ji

bijaji  Tr BA.

Just for amusement, let’s look at an alternative proof that holds when either A or B is
Hermitian. Let’s say that A is Hermitian, and therefore has real eigenvalues and a
complete set of orthogonal eigenvectors:

A |m   m|m , 〈m |A  m〈m |.
We can therefore choose to take our trace in the eigenbasis of A, so

Tr AB ∑
m

〈m |AB |m  ∑
m

m 〈m |B |m  ∑
m

〈m |BA |m   Tr BA.

An analogous proof holds when B is Hermitian. Since the product of operators is still
an operator,

Tr ABC D  Tr D ABC,
Tr A BCD  Tr BCD A,

and so on and so forth... Hence one says that the trace operation is cyclic.

The Schrödinger Equation
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The physical dynamics of a quantum system are specified by a Hermitian operator H,
called the Hamiltonian. Just as the (initial) state vector is the mathematical
representation of what we know about the preparation of a system, the Hamiltonian is
the mathematical representation of what we know about its physical dynamics.
Time-evolution of quantum states under such dynamics is then given by the
Schrödinger Equation,

i d
dt |   H | ,

where   h/2 and h ≃ 6.6261  10−34 [J sec] is Planck’s constant. For
finite-dimensional systems this is just a system of coupled linear ordinary differential
equations. If the physical system is truly isolated (autonomous), then H must be
constant and we may write the formal solution

|t   exp −i


H t |0 .

(Something similar can be done even f the Hamiltonian is time-dependent, but one has
to be careful - we’ll return to this topic later.) In some cases it is actually possible
analytically to compute the operator exponential, which is defined (as usual) via Taylor
expansion:

expiO  1  iO − 2

2 O2 − i 
3

3! O3  4

4! O4  .

Here  is an arbitrary (real) scalar. Note that if O is a Hermitian operator,

expiO  1 − iO − 2

2 O2  i 
3

3! O3  4

4! O4 

and
expiO expiO  expiO expiO  1.

That is, expiO is a unitary operator.
In the case of the Schrödinger Equation, we write

Tt2, t1  exp −i


H t2 − t1

and refer to Tt2, t1 as the system’s unitary “time development operator” from time t1
to t2. Note that

Tt2, t1−1  Tt2, t1  Tt1, t2

can be thought of as an operator that evolves a state backwards in time.
Recall that unitary operators may be thought of as the complex generalization of

rotation operators in a real vector space. Hence quantum evolution for an isolated
system corresponds to a “rigid rotation” of the state space. As a consequence,
time evolution preserves the norms of individual state vectors, and preserves the inner
product (angle) between arbitrary pairs of state vectors.

Note that by taking the Hermitian conjugate of the entire Schrödinger Equation, we
get a time evolution equation for bras:

− i d
dt 〈 |  〈 |H,

〈t2 |  〈t1 |Tt1, t2.
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Accordingly,
〈at2 |bt2   〈at1 |Tt1, t2Tt2, t1 |bt1   〈at1 |bt1 ,

as noted above.
For a density matrix representing an ensemble of pure states,

t1 ∑
i

pi |it1〈it1|,

we note that
|it2〈it2|  Tt2, t1|it1〈it1|Tt1, t2,

t2 ∑
i

pi Tt2, t1|it1〈it1|Tt1, t2

 Tt2, t1 ∑
i

pi |it1〈it1| Tt1, t2

 Tt2, t1t1Tt1, t2.

15


