
APPPHYS225 - Tuesday 14 October 2008

Measurements on ensembles
Recall the notion of an ensemble of quantum states pk , k . We imagine that
someone has given us a quantum system that is guaranteed to have been prepared in
one of the states k. We don’t know which one for sure, but we know that the relative
probabilities are pk. Last time we considered a two-dimensional quantum system and
the two-membered ensemble

p0  1
2 , 0  | 〈 |,

p1  1
2 , 1  |− 〈− |,

where
|   cos| 0   sin| 1 .

By performing a measurement we can learn something about the identity of the state
that was prepared. That is, we can gain some information about whether the initial
preparation corresponded to 0 or 1.

How can we quantify this gain of information? One good way is by computing the
expected reduction of Shannon entropy

H ≡ −∑
k

pk lnpk.

For those not familiar with Shannon entropy from other contexts, it may suffice to note
that the maximum value of H for a pair of probabilities p, 1 − p is obtained when p  1

2 ,

H  − 1
2 ln 1

2 −
1
2 ln 1

2  − ln 1
2  ln2.

When p → 0 or p → 1, we have H → ln1  0. Hence H is a good measure of how ‘flat’
a probability distribution is, and thus of just how ignorant we really are. Incidentally, in
the classical probability setting we can define the Shannon entropy of a probability
distribution function m as

H  〈Lm ,
where Lm is a random variable derived from the probability distribution function via

Lmi  − lnmi.
For an arbitrary random variable X  ∑ j xjxj we can define

HX  −∑
j
〈xj  ln〈xj .

Getting back to our example, we have Hpre  ln2 before making any measurement
since p0  p1  1/2. If we perform the projective measurement
E0  |  〈  | , E1  | − 〈 − | , where

|    1
2
| 0   | 1 ,

1



we know that the outcome probabilities are:
k  0, |  : Pri  0  1

2 cos  sin2, Pri  1  1
2 cos − sin2,

k  1, |−  : Pri  0  1
2 cos − sin2, Pri  1  1

2 cos  sin2.

To compute the post-measurement probability distrubtion, we can use Bayes’ Rule

Pk | i   P i |k Pk
Pi

on the classical probability distribution p0,p1. We first compute the conditioned
probability distrubtion if the outcome i  0 is obained, then the distribution if i  1 is
obtained:

Pk  0 | i  0 
1
2 cos  sin2p0

1
2 cos  sin2p0  1

2 cos − sin2p1

 cos  sin2

2  1
2 cos  sin2,

Pk  1 | i  0 
1
2 cos − sin2p1

1
2 cos − sin2p0  1

2 cos  sin2p1

 1
2 cos − sin2,

Pk  0 | i  1 
1
2 cos − sin2p0

1
2 cos − sin2p0  1

2 cos  sin2p1

 1
2 cos − sin2,

Pk  1 | i  1 
1
2 cos  sin2p0

1
2 cos  sin2p0  1

2 cos − sin2p1

 1
2 cos  sin2.

In either case, the new Shannon entropy will be
Hpost → − 1

2 cos  sin2 ln 1
2 cos  sin2

− 1
2 cos − sin2 ln 1

2 cos − sin2

 −cos  sin2 lncos  sin  1
2 cos  sin2 ln2

− cos − sin2 lncos − sin  1
2 cos − sin2 ln2

 −cos  sin2 lncos  sin − cos − sin2 lncos − sin  ln2.
Hence the change in Shannon entropy is

ΔH ≡ Hpost − Hpre  −cos  sin2 lncos  sin − cos − sin2 lncos − sin.
As  → 0, ΔH → 0 since no information can be gained by any measurement. As
 → /4,
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ΔH → − 2
2

2

ln 2
2

 −2 ln21/2   − ln2,

which makes sense since we can determine the state with perfect certainty!
It is interesting to consider also the case of our ‘optimal’ tri-valued POVM,

E0  1
2 cos−2− ,

E1  1
2 cos−2 ,

E2  1 − tan20.
Last time we computed the table of probabilities P i |k ,

k  0 :  k  1 : −
i  0 :  2sin2 0
i  1 : − 0 2sin2

i  2 : ? 1 − 2sin2 1 − 2sin2

,

so we may again use Bayes’ Rule to find

Pk  0 | i  0  2sin2p0

2 sin2p0  0
 1,

Pk  1 | i  0  0,
Pk  0 | i  1  0,
Pk  1 | i  1  1,

Pk  0 | i  2 
1 − 2sin2p0

1 − 2sin2p0  1 − 2sin2p1
 1

2 ,

Pk  1 | i  2  1
2 .

Hence we find that the post-measurement Shannon entropy depends on the result
that is obtained. If i  0 or i  1, then Hpost  0, but if i  2 then Hpost  ln2. The
changes in entropy are then

ΔH0  − ln2, ΔH1  − ln2, ΔH2  0.
Averaging these different cases with their respective probabilities,

〈ΔH   ΔH0 Pri  0  ΔH1 Pri  1  ΔH2 Pri  2
 − ln2 sin2 − ln2 sin2

 −2 ln2 sin2.
As  → 0, 〈ΔH → 0 as it must, and as  → /4, 〈ΔH goes nicely to − ln2. Comparing
now the simple projective measurement to our fancy POVM, in terms of 〈ΔH, we get
the following graph:
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As usual, the x-axis corresponds to  in units of , and the vertical axis is now
−〈ΔH/Hpre, which we will take as our definition of the information gained in the
measurement (other definitions could be equally valid). For  ∈ 0,/4, we see that
the projective measurement (in red) is actually better than the POVM (in black)! Hence
it appears that although we did gain something by going to an indirect measurement
procedure (no false positives), the tri-valued POVM actually gives us less ‘information’
on average, measured as ΔH.

Selective vs. non-selective evolution; disturbance
Consider an indirect measurement procedure, having N possible outcomes, defined by
the operation elements A1…AN. For a given pre-measurement system state  the
outcome probabilities will be

Pri  Tr Ai
†Ai ,

and the post-measurement states are given by

outcome i :   i 
Ai Ai

†

Pri
.

Note that the division by Pri guarentees normalization of the i.
The evolution rule   i, which presumes that we have full knowledge of the

outcome of the measurement, is termed selective or conditional evolution. What
should our description of the post-measurement system state be, if we know that a
measurement described by A1…AN has been performed but we have no idea what
result was obtained? Following basic probabilistic intuition,

 ∑
i1

N

Prii ∑
i1

N

Ai Ai
†.

This rule is termed non-selective or unconditional evolution.
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To see explicitly how different these two cases can be, let’s look at a very simple
example. Consider the measurement 0 , 1  performed on a two-dimensional
quantum system, where  | 0  , | 1  is an orthonormal basis for the system Hilbert
space and

0  | 0 〈0 |, 1  | 1 〈1 |.
For the system pre-measurment state

|   1
2
| 0   | 1 ,

the outcome probabilities will clearly be
Pr0  Pr1  1

2 .

The post-measurement states for selective evolution are likewise clearly
0  | 0 〈0 |,

1  | 1 〈1 |.
If the measurement 0 , 1  is performed but for some reason we do not know the
outcome, then the unconditional post-measurement state will be

 ∑
i0,1

Prii

 1
2 |0 〈0 |  1

2 |1 〈1 |

 1
2 1.

That is, instead of being left with a pure state after the measurement we end up with
the maximally mixed state.

Note that in classical scenarios one can generally assume the existence of
‘non-invasive’ measurements, such that performing the measurement but ignoring the
result is equivalent to never having performed the measurement at all. In the formal
language of Bayesian statistics, the conditioning of a prior probability distribution Px
by a measurement result i is given by Bayes’ Rule

Px | i   P i |x Px
Pi

.

This plays an analogous role to the quantum selective evolution rule

i 
Ai Ai

†

Pri
.

In the classical case, the non-selective evolution is

∑
i

Px| i Pi ∑
i

P i |x Px ∑
i

P i , x   Px,

where P i , x  is the joint probability of i and x. That is, we find a post-measurement
probability distribution identical to the pre-measurement distribution. In the quantum
case we should already have a sense that for essentially any measurement Ai ,
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 ∑
i

Ai Ai
† ≠ 

for general . One exception to this is the class of measurements in which every
Ai  1, but these are measurements that yield no information about the system state!
A more subtle special case worth mentioning is one where the Ai are fine-tuned to
correspond to projectors onto eigenspaces of the original , but of course a
measurement of this type is only ‘non-disturbing’ for a restricted class of density
opertors.

Generally speaking, there are many possible ways to quantify the disturbance
induced by a measurement procedure. If we restrict our attention to pure initial states,
one good measure is the ‘discrepancy rate’

D ≡ 1 − pre |post |pre .

Let’s apply this to our ensemble examples from the first section. For the projective
measurement, the nonselective post-measurement states are

0  | 〈 |
 0| 〈 |0  1| 〈 |1,

1  |− 〈− |
 0|− 〈− |0  1|− 〈− |1.

The corresponding discrepancy rates are then
D0  1 − 〈 |0| 〈 |0  1| 〈 |1 | 

 1 − Pri  0 |k  02 − Pri  1 |k  02

 1 − 1
2 cos  sin2 2

− 1
2 cos − sin2 2

 1 − 1
4 1  2cos sin2 − 1

4 1 − 2cos sin2

 1
2 − 2cos2 sin2,

D1  1 − 〈− |0|− 〈− |0  1|− 〈− |1 |− 
 1 − Pri  0 |k  12 − Pri  1 |k  12

 1 − 1
2 cos − sin2 2

− 1
2 cos  sin2 2

 1
2 − 2cos2 sin2.

Since the discrepancy rate is equivalent for either initial state, we find that the rate is
〈D   1

2 − 2cos2 sin2

for the projective measurement scheme. As  → 0, 〈D  → 1
2 , and as  → /4,

〈D  → 0.
What about our fancy POVM? The non-selective post-measurement states will be
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0 
1
2 cos−2 −| 〈 | 1

2 cos−2 − 

1 − tan20| 〈 | 1 − tan20,

1 
1
2 cos−2 |− 〈− | 1

2 cos−2  

1 − tan20|− 〈− | 1 − tan20,
so

D0  1 − 1
2 cos−2 〈 |−| 2 − 1 − tan2〈 |0| 2

 1 − 8sin4cos2 − 1 − tan2cos4

 1 − 8sin4cos2 − cos4  sin2cos2,
D1  1 − 8sin4cos2 − cos4  sin2cos2,

hence
〈D   1 − 8sin4cos2 − cos4  sin2cos2.

We can again check the limits, and this time find that 〈D  → 0 as  → 0 and 〈D  → 0
as  → /4. Plotting the two average disturbances, we find:
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Again the x-axis is  in units of , the red curve is 〈D  for the projective measurement,
and the black curve is 〈D  for the POVM. It seems that the POVM does much better
at minimizing disturbance for small , but much worse in the range of  greater than
 /8. Hence we find some quantitative meaning to the notion that generalized
measurements allow one to play different inference-disturbance tradeoffs.

It is worth noting that we can ‘patch up’ our POVM in a sneaky way to improve its
disturbance properties. In the case that we obtain results i  0 (definitely not |− )
or i  1 (definitely not | ), we know the initial state with complete certainty. Thus,
although we know that our indirect measurement procedure will leave the state as
| −  or |   respectively, we can apply a unitary rotation
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i  0 : | −   | ,
i  1 : |    |− ,

before we declare ourselves ‘done’ with the measurement! Note carefully that we are
talking about two different unitary operators, to be applied depending on whether i  0
or i  1. Then in the cases where i ≠ 2, we see that the disturbances can be made
exactly zero. Our residual average disturbance will then be

〈D   1 − Pri  k − Pri  22

 1 − 2sin2 − 1 − tan2cos4

 1 − 2sin2 − cos4  sin2cos2.
We note that this is precisely one-half the value for the straight POVM, and the
comparison graph now looks like

0 0.05 0.1 0.15 0.2 0.25
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Here red is the projective scheme, black is the original POVM, and blue is the
modified POVM. The x-axis is still /, and the vertical axis is 〈D .

C. A. Fuchs and A. Peres, “Quantum-state disturbance versus information gain:
Uncertainty relations for quantum information,” Phys. Rev. A 53, 2038 (1996); C. A.
Fuchs and K. Jacobs, “Information-tradeoff relations for finite-strength quantum
measurements,” Phys. Rev. A 63, 062305 (2001).

Note that we have above considered two different ‘realizations’ of our optimal
three-element POVM,

E0  1
2 cos−2− , E1  1

2 cos−2 , E2  1 − tan20.

In the first we took the minimal assumption for the decompositions
Ei ∑

j

Ai j
†Ai j,
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by setting

E0  A0
†A0 → 1

2 cos
−

†
1

2 cos
− ,

E1  A1
†A1 → 1

2 cos


†
1

2 cos
 ,

E2  A2
†A2 → 1

1 − tan2
0

†
1

1 − tan2
0 .

In the second we used the alternative decomposition

A0
†A0 → U

1
2 cos

−
†

U
1

2 cos
− ,

A1
†A1 → U− 1

2 cos


†
U− 1

2 cos
 ,

where U is a unitary operator that rotates |−  to |  and U− is a unitary operator
that rotates |  to |− . It is easily seen that the unitary modifications to A0 and A1

do not effect E0  A0
†A0 or E1  A1

†A1, while they do have a significant effect on
0  A0A0

†, 1  A1A1
†.

This type of “feedback” modification, in which an additional operation is performed on
the system in a manner that depends on the measurement result, thus generally
changes the disturbance of the overall procedure without changing the information
gain.

Measurement with feedback can be a useful tool for engineering evolutions that
may be difficult to obtain via the Schrödinger Equation alone. For example, the
‘initializing’ state map

  |0 〈0 |,
which maps all possible initial states  to a single pure state |0 , obviously cannot be
implemented as a unitary evolution

 → UU †.
On the other hand, consider the measurement-feedback procedure described by the
operation elements

A0  0, A1  U1 ,
where

0  |0 〈0 |, 1  |1 〈1 |,
U  |0 〈1 |  |1 〈0 |,

and |0 , |1  span the system Hilbert space (we are considering a two-dimensional
example). Here we can verify
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U†U  |0 〈1 |  |1 〈0 ||0 〈1 |  |1 〈0 |
 |0 〈0 |  |1 〈1 |  1,

A0
†A0  A1

†A1  0  1  1.
Note that

A1  U1  |0 〈1 |  |1 〈0 ||1 〈1 |  |0 〈1 |.
Thus for an arbitrary initial density matrix  we have the (overall) nonselective
evolution

  A0A0
†  A1A1

†

 |0 〈0 | |0 〈0 |  |0 〈1 | |1 〈0 |
 |0 〈0 |〈0 | |0   〈1 | |1 .

Since the quantity in parenthesis is the trace of  (equal to one), we see that the
measurement-feedback procedure indeed realizes the desired initialization.
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