
APPPHYS225 - Thursday 4 December 2008

Today’s notes develop some ideas from the paper by Hardy (homework reading for
today). Earlier in the term we have seen that there is a one-to-one correspondence
between density matrices  and Bloch vectors 〈x  〈y  〈z  ,

 ↔ 1
2 I  〈x x  〈y y  〈z z.

Since the Pauli matrices are traceless and satisfy
Tr ij   2 ij,

we easily verify that Tr   1 and that Tr x  pulls out the ‘parameter’ 〈x , et cetera.
From this parameterization we recognize the idea that given many spin-1/2

particles (qubits), all of which have been prepared in the same unknown state, we can
determine the density matrix  by measuring the x, y and z components of spin. This
doesn’t quite match up to Hardy’s setup, however, as he wants us to measure
probabilities of outcomes. We can make the connection simply by noting (using
spectral decomposition) the following correspondences:

x ↔ x,−x, y ↔ y,−y, z ↔ z,−z,

〈x   Prx − Pr−x, 〈y   Pry − Pr−y, 〈z   Prz − Pr−z,
where x is a projector onto the eigenvector of x with eigenvalue 1, et cetera.
Hence we can think of Hardy’s measurement machine with settings x, y and z, with
outcomes 1 and −1, and we would for example determine the parameter 〈x  by
making many measurements with the setting x and using frequency to determine the
probabilities Prx and Pr−x. We furthermore note that

−x  1 − x, −y  1 − y, −z  1 − z,
from which it follows that we could completely determine  from knowledge of just
three probabilities, such as

p1  〈x , p2  〈y , p3  〈z .
We know that there one can only distinguish two states in a spin-1/2 Hilbert space with
zero probability of error, and we have just established that three probabilities are
required to determine an abritrary state. Hence in Hardy’s notation, N  2 and
K  3  N 2 − 1.

Once thing to note here is that the procedure we have specified for determining
the state of the particles with Hardy’s machine seems perhaps less clean than it could
be. In particular, there are three different settings with two outcomes each involved in
this method of state estimate (‘tomography’), all for the sake of determining three
parameters. Can we do better? One thing we cannot do is construct a POVM that
simply reads out a sufficient set of probabilities directly. For example,
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which is clearly not proportional to the identity. Hence we cannot simply construct a
POVM with three elements proportional to the x, y and z projectors.

But perhaps we can find a different sort of POVM to do the trick with a minimal
number of possible outcomes. Note that if we want to determine three independent
parameters we actually need a POVM with four possible outcomes, because of the
normalization constraint—a three-outcome POVM only has two independent
probabilities. Generally speaking there do exist a variety of such
‘informationally-complete’ POVM’s for quantum systems living in Hilbert spaces of
arbitrary dimension, but recent attention has focused on a class of so-called
‘symmetric informationally complete’ (SIC) POVM’s. It will be interesting for us to have
a look at the SIC POVM’s for dimension 2, as the notion of covariance pops up again
in a nice way. In what follows we will largely follow the discussion of D. M. Appleby, H.
B. Dang and C. A. Fuchs in their paper “Physical Significance of Symmetric
Informationally-Complete Sets of Quantum States” [arXiv:0707.2071v1].

In at least some dimensions, SIC POVM’s can be constructed as covariant POVM’s
with respect to representations of dsicrete Weyl-Heisenberg groups. While there
doesn’t seem to be a proof that Weyl-Heisenberg SIC POVM’s can be constructed in
any dimension, examples have been discovered numerically in dimension up to 45 [J.
M. Rennes et al., “Symmetric informationally complete quantum measurements,” J.
Math. Phys. 45, 2171 (2004)], and it is conjectured that they exist in every dimension.

The Weyl-Heisenberg transformations are defined by
Dr  r1r2Xr1Zr2 ,

where in a Hilbert space of dimension d,
  −expi/d,

Z | j   j| j,  ≡ exp2i/d,
X | j  | j  1modd .

In dimension d  2 we thus have
 → −i,

Z | j → −1 j| j  z| j,
X | j → | j  1mod2   x| j.

Hence, with r1 ∈ 0,1 and r2 ∈ 0,1 we have
D00  1, D01  z, D10  x, D11  −ixz  y.

Using the representation rule we have learned previously,
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n̂,  exp −i

n̂  J ↔
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,

we see that

D01  z ↔
1 0
0 −1

 iexp −i

ẑ  J ,

D10  x ↔
0 1
1 0

 iexp −i

x̂  J ,

D11  y ↔
0 −i
i 0

 iexp −i

ŷ  J .

Hence the Weyl-Heisenberg transformations correspond (up to an overall phase) to
doing nothing, rotation by  around the z-axis, rotation by  around the x-axis, and
rotation by  around the y-axis.

The possible fiducial vectors for d  2 are [J. M. Rennes et al.], in the basis of
eigenvectors of z,
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We can calculate the corresponding Bloch vectors. For the first fiducial vector,

〈x   1
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,

〈y   1
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〈z   1
6 3  3 e−i/4 3 − 3
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We thus see that this is a normalized Bloch vector along the 1,1,1 direction.
Applying the WH transformations, we clearly generate
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If we compute the projectors in this “SIC” POVM,

|〈| ↔ 1
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,
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y|〈|y ↔ 1
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Adding these together,
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,

|〈|  z|〈|z  x|〈|x  y|〈|y ↔ 1
2 3

4 3 0
0 4 3

 2I.

It thus follows that the set  1
2 |〈|, 1

2 z|〈|z, 1
2 x|〈|x, 1

2 y|〈|y
constitutes a valid POVM (we are also using the straightforward observation that each
operator in this set has eigenvalues 1

2 and 0).
Having established that this is a symmetric POVM, let us finish by showing that it

is indeed informationally complete. For an arbitrary density matrix
 ↔ 1

2 I  〈x x  〈y y  〈z z,

and adopting the notation Ar1r2  1
2 Dr1r2 |〈|Dr1r2 for the POVM elements, we have
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PrA00   Tr 1
2 |〈| 1

2 I  〈x x  〈y y  〈z z

 1
4 Tr |〈|  〈x Tr |〈|x   〈y Tr |〈|y   〈z Tr |〈|z 

 1
4 1  〈x / 3  〈y / 3  〈z / 3 ,

where we use results regarding the Bloch vector for | from above. Similarly,

PrA01   Tr 1
2 z|〈|z 1

2 I  〈x x  〈y y  〈z z

 1
4 Tr z|〈|z   〈x Tr z|〈|zx   〈y Tr z|〈|zy   〈z Tr z|〈|zz 

 1
4 1 − 〈x / 3 − 〈y / 3  〈z / 3 ,

PrA10   Tr 1
2 x|〈|x 1

2 I  〈x x  〈y y  〈z z

 1
4 1  〈x / 3 − 〈y / 3 − 〈z / 3 ,

PrA11   Tr 1
2 y|〈|y 1

2 I  〈x x  〈y y  〈z z

 1
4 1 − 〈x / 3  〈y / 3 − 〈z / 3 .

We thus have

〈x   2 3 PrA00   PrA11  − 1
2 ,

〈y   2 3 PrA00   PrA10  − 1
2 ,

〈z   2 3 PrA00   PrA01  − 1
2 .

Hence our POVM is symmetric by construction, and informationally complete.
In general in d dimensions with SIC POVM Ei  1

d i there is a decomposition
[Appleby, Dang and Fuchs]

 ∑
i

d  1pi − 1
d i, pi ≡ Tr Ei .

This general correspondence shows that we can represent an arbitrary quantum state
(d  d density matrix) by a set of d 2measurement probabilities pi, but one should be
careful to note that not every normalized set of pi actually generates a valid
(non-negative) density matrix. As discussed in the paper, one can actually find a pair
of formulae that must be satisfied by pure states (rank-1 projectors) in this
representation, and the full set of quantum states can then be generated by convex
combination.

Appleby, Dang and Fuchs discuss an interesting geometric significance of SIC
POVM’s as the closest approximation that can be constructed in a quantum state
space to projective measurement in an informationally-complete orthnormal basis
(note that a true orthonormal basis measurement has only N − 1 independent
parameters, not K  N 2 − 1). In the case of classical probability we have K  N − 1 and
therefore we can have informationally complete orthonormal measurements; states
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thus appear naturally as probability distributions over the elementary configurations,
and pure states have definite measurement outcomes. In the quantum case the
elements of the IC POVM are not mutually orthogonal, meaning that there are no pure
states that definite outcomes.
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