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Suppose we are given a set of possible quantum states, ℵ  1,2,… ,N, for an
input system A. A cloning map EC is a map on the input system A and a target system
B, such that for a fixed initial target state B we have

ECiA ⊗ B  iA ⊗ iB.
We will see that such cloning is impossible unless ℵ contains only mutually orthogonal
states.

A broadcasting map EB is a map on the input system A and a target system B,
such that for a fixed initial target state B we have

EBiA ⊗ B  ̃iAB,
where

TrA̃iAB   iB, TrB̃iAB   iA.
It turns out that broadcasting is only possible when ℵ contains only states that
commute with each other.

Note that we can define classical cloning and broadcasting by restricting the input
states to density matrices that are all diagonal in a fixed basis. In general, in order to
be physical (allowed by quantum mechanics), cloning/broadcasting maps must be
implementable via

EC/BiA ⊗ B  TrC UiA ⊗ B ⊗ CU† ,

where C is an ancillary system prepared in the initial state C and U is a unitary
operator that jointly evolves all three systems. In what follows we will restrict our
attention to input sets ℵ that contain only two states, but the conclusions can easily be
extended to larger sets.

Pure state cloning in quantum and classical models
In this section we follow the discussion of H. P. Yuen, “Amplification of quantum states
and noiseless photon amplifiers,” Phys. Lett. 113A, 405 (1986).

Restricting our attention first to two pure input states ℵ  |1 〈1 |, |2 〈2 | and
true cloning, we search for conditions under which the following transformation is
possible:

|iA  ⊗ |1B  ⊗ |1C   |iA  ⊗ |iB  ⊗ |iC ,
|iA  ⊗ |iB  ⊗ |iC   U |iA  ⊗ |1B  ⊗ |1C .

Here A is the input system, B is the target system, and C is an ancillary system that
may be used to assist in the cloning operation. The unitary operator U describes joint
evolution of systems A, B and C under the influence of some (possibly
time-dependent) coupling Hamiltonian. Note that the target system is prepared in
some initial state |1B  that must be independent of the input state, and that the ancilla
may in general be left in some ‘side-effect’ state |iC  that could depend on the input
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state. Note that initial entanglement between the target state and ancilla can be
lumped into U.

The proof that only orthogonal pure states are clonable follows from taking a
simple inner product. Working on the right-hand side of the above equation,

U |2A  ⊗ |1B  ⊗ |1C †U |1A  ⊗ |1B  ⊗ |1C   〈2 |1 ,
while on the left-hand side,

|2A  ⊗ |2B  ⊗ |2C †|1A  ⊗ |1B  ⊗ |1C   〈2 |1 2〈2 |1 .
Hence we require

〈2 |1 2〈2 |1   〈2 |1 ,
which means that either 〈2 |1   0, in which case the input states are orthogonal,

〈2 |1 〈2 |1   1.
Since both inner products have magnitude less than or equal to 1, this can only be
satisfied if |〈2 |1 |  |〈2 |1 |  1 and arg〈2 |1   arg〈2 |1   0. But if
|〈2 |1 |  1 then |1  and |2  represent the same state. Hence we find that pure
states can be cloned only if they are either identical (completely indistinguishable) or
orthogonal (perfectly distinguishable).

It is similarly straightforward to prove that orthogonal pure states can always be
cloned by a unitary transformation. In fact the ancillary system is unnecssary as the
required mapping can be achieved via

|iA  ⊗ |iB   U |iA  ⊗ |1B .
So what is this magic operator U? We can start by guessing

Ũ  |1A 〈1A | ⊗ |1B 〈1B |  |2A 〈2A | ⊗ |2B 〈1B |,
where without loss of generality we can assume |1B  ∈ span|1B , |2B , but we find
that this candidate is not actually unitary:

Ũ†  |1A 〈1A | ⊗ |1B 〈1B |  |2A 〈2A | ⊗ |1B 〈2B |,

Ũ†Ũ  |1A 〈1A | ⊗ |1B 〈1B |  |2A 〈2A | ⊗ |1B 〈1B |,

ŨŨ†  |1A 〈1A | ⊗ |1B 〈1B |  |2A 〈2A | ⊗ |2B 〈2B |.
Based on this however we can guess that a simple augmentation is required,

U  |1A 〈1A | ⊗ |1B 〈1B |  |2A 〈2A | ⊗ |2B 〈1B |
 |1A 〈1A | ⊗ |2B 〈2B |  |2A 〈2A | ⊗ |1B 〈2B |,

where 〈2B |1B   0 and |2B  ∈ span|1B , |2B . Then we have
U†  |1A 〈1A | ⊗ |1B 〈1B |  |2A 〈2A | ⊗ |1B 〈2B |

 |1A 〈1A | ⊗ |2B 〈2B |  |2A 〈2A | ⊗ |2B 〈1B |,

U†U  |1A 〈1A | ⊗ |1B 〈1B |  |2A 〈2A | ⊗ |1B 〈1B |
 |1A 〈1A | ⊗ |2B 〈2B |  |2A 〈2A | ⊗ |2B 〈1B |,

UU†  |1A 〈1A | ⊗ |1B 〈1B |  |2A 〈2A | ⊗ |2B 〈2B |
 |1A 〈1A | ⊗ |2B 〈2B |  |2A 〈2A | ⊗ |1B 〈1B |.
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Since span|1B , |2B   span|1B , |2B , we have
|1A 〈1A |  |2A 〈2A |  1A,
|1B 〈1B |  |2B 〈2B |  |1B 〈1B |  |2B 〈2B |  1B,

and thus U is indeed unitary.
We recognize from the form of our cloning unitary transformation that the following

measurement-based procedure would also do the trick. First perform a projective
measurement with operation elements A1  |1A 〈1A |, A2  |2A 〈2A | on the
input system. If the result corresponding to A1 is obtained prepare the target system in
state |1B , and if the result corresponding to A2 is obtained prepare the target system
in state |2B . Clearly this kind of approach is possible if and only if the input states
are orthogonal. We also note in this context that it’s a good thing (for the consistency
of quantum probability theory) that non-orthogonal states can’t be cloned, because if
they could you would have an easy way of distinguishing non-orthogonal input states
with arbitrarily small probability of error—simply clone the input system a large number
of times, and repeat (for example) an optimal projective measurement on successive
copies until your overall probability of error is as small as you like.

If 〈2A |1A   0 then |1A , |2A  represent an orthonormal basis for a
two-dimensional subspace of the A Hilbert space. It follows that in this basis, the
density operators have matrix representations

|1A 〈1A | ↔
1 0
0 0

, |2A 〈2A | ↔
0 0
0 1

.

The state matrices thus look like those of a classical probability model with
A  1A,2A. Clearly we can ‘clone’ pure states of any classical model by first
measuring the configuration of A precisely and then preparing B in the identical
configuration. Of course the quantum cloning scenario, even with ℵ containing only
orthogonal pure states, cannot actually be mapped to an equivalent classical
probability model because we place no restrictions on the class of observables that
might be measured after the cloning map is applied.

Classical broadcasting
What about mixed states of a classical probability model? Recall that in the classical
context a pure state is represented by a probability distribution function m that takes
value 1 on one configuration and 0 on the others; a mixed state is any other function
m such that m2 ≠ m. We’ll see below that arbitrary classical mixed states
cannot be cloned, but it is in fact possible to broadcast arbitrary classical mixed states.
We have actually already seen a procedure that accomplishes this, in our earlier
discussion of classical teleportation.

We consider an input system with A  1A,2A, a target system with
B  2A,2B and an ancillary system with C  1C,2C. Let the input system be
prepared in an arbitrary mixed state,

mA1A  p1A, mA2A  p2A.
We start by preparing the target and ancillary systems in the correlated state
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mBC1B  1C  mBC2B  2C  1
2 ,

mBC1B  2C  mBC2B  1C  0,
so that our set of three systems start out in the joint state

mABCiA  jB  kC  mAiAmBCjB  kC.
We measure the random variable AC on A  C, defined by

AC1A  1C  AC2A  2C  1,
AC1A  2C  AC2A  1C  −1.

As we have previously shown and explained in the class notes from 10/31, if we obtain
AC  1 we are left with the conditional joint state

m1A  1B  1C  mA1A, m2A  2B  2C  mA2A,
miA  jB  kC  0, i ≠ j ≠ k.

If AC  −1 we have
m−1A  2B  2C  mA1A, m−2A  1B  1C  mA2A,
m−iA  jB  kC  0, otherwise,

and we note that we can convert m− to m by applying the transformations
1B ↔ 2B and 1C ↔ 2C (think of turning coins over without looking at them).
Looking at the joint state m then, we note that the marginal distributions for A and B
are both equal to mA.

MAiA ≡ ∑
 jB,kC

miA  jB  kC  mAiA,

MBjB ≡ ∑
 iA,kC

miA  jB  kC  mAjB,

where we have implicitly extended the definition
mA1B  mA1A  p1A, mA2B  mA2A  p2A.

Note that this is really a broadcasting map and not a cloning map, as the latter would
have to give us

mABCiA  jB  kC  mAiAmAjB,
which would in general have non-zero probability for both 1A  1B and 1A  2B, for
example.

In this classical context we can easily see that broadcasting will not get us in
trouble in terms of the distinguishability or measurability of mixed states. If someone
gives a classical system with A  1A,2A prepared with an arbitrary probability
distribution function mA, we should not be able to determine mA by making
measurements on the physical system. Any measurement we make can at most yield
one bit of information (whether the configuration is 1A or 2A), whereas it can take an
arbitary number of bits to specify mA exactly (since mA1A and mA2A are real
numbers). Even after broadcasting, however, we note that no measurement on the
A  B  C system can yield more than one bit of information since the three
systems are perfectly correlated. If true cloning were possible this would not be true,
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since with something like
mABCiA  jB  kC  mAiAmAjB,

we could actually obtain two bits of information by measuring A and B independently.

Cloaning and broadcasting of quantum mixed states
In this section we follow the discussion of H. Barnum et al., “Noncommuting Mixed
States Cannot be Broadcast,” Phys. Rev. Lett. 76, 2818 (1996).

Fidelity is a measure of distinguishability for mixed states,

F1,2  Tr 1
1/221

1/2 ,

which reduces to the familiar inner product when both states are pure:

Tr 1
1/221

1/2 → Tr |1 〈1 ||2 〈2 ||1 〈1 |

 |〈1 |2 | Tr |1 〈1 |

 |〈1 |2 | .
In the above expressions, for any positive (Hermitian with non-negative eigenvalues)
operator O the square root O or O1/2 denotes the unique positive square-root of O,
which is the unique matrix T such that TT  O and T is itself positive. We thus infer
that F1,2  1 indicates that the two mixed states are indistinguishable, while
F1,2  0 indicates that they are orthogonal. For today’s purposes, it is important to
note that fidelity has an operational significance as the minimum overlap between the
probability distributions for measurement results of a POVM applied to either 1 or 2:

F1,2  min
Eb
∑

b

Tr 1Eb  Tr 2Eb  .

Clearly if 1 and 2 are indistinguishable by means of a given POVM Eb, the
outcome probabilities appearing under the radicals will be identical and therefore the
sum over b will simply yield 1. If 1 and 2 are perfectly distinguishable by means of a
given POVM then the outcome probabilities must be orthogonal, in the sense that only
one of Tr 1Eb  or Tr 2Eb  can be non-zero for each b, and the sum over b must
therefore yield 0.

Recall that we above derived the impossibility of cloning non-orthogonal pure
states by comparing the inner product of cloned states
|2A  ⊗ |2B  ⊗ |2C †|1A  ⊗ |1B  ⊗ |1C  with its ‘implementation’ equivalent
U |2A  ⊗ |1B  ⊗ |1C †U |1A  ⊗ |1B  ⊗ |1C . In the mixed-state case, fidelities
take center stage in place of the inner products. Recall the abstract setup for
broadcasting or cloning of mixed states,

EC/BiA ⊗ B  TrC UiA ⊗ B ⊗ CU† ≡ ̃iAB.

For cloning we require that ̃iAB  iA ⊗ iB while for broadcasting we have the relaxed
requirement
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TrB̃iAB   iA, TrA̃iAB   iB.
The authors of the paper cited at the beginning of this section derived a
cloning/broadcasting fildelity relation

FA1,2  F̃1, ̃2  FB1,2,
where F̃1, ̃2 is simply the fidelity between the joint states produced by a cloning or
broadcasting operation, and FA1,2 and FB1,2 are defined as follows:

FA1,2 ≡ ∑
b

Tr ̃1ABEb
A ⊗ 1B Tr ̃2ABEb

A ⊗ 1B ,

FB1,2 ≡ ∑
b

Tr ̃1AB1
A ⊗ Eb

B Tr ̃2AB1
A ⊗ Eb

B .

Here Eb is taken to be the optimal POVM for distinguishing states 1 and 2, as in
the operational definition of fidelity that we discussed above. Note that in the cloning
scenario, in which ̃iAB  iA ⊗ iB, we immediately obtain a result from the fidelity
relation:

FA1,2 ∑
b

Tr 1A ⊗ 1BEb
A ⊗ 1B Tr 2A ⊗ 2BEb

A ⊗ 1B

∑
b

Tr 1AEb
A  Tr 2AEb

A 

 F1,2,

F̃1AB, ̃2AB  F1A ⊗ 1B,2A ⊗ 2B  F21,2,
where the final equality follows from elementary properties of the tensor product. We
thus require for cloning to be possible that F1,2  F21,2, which means that
either F1,2  0 or F1,2  1. This reproduces the identical-or-orthogonal
criterion that we obtained in the pure state case, with orthogonality here generalized in
the mixed-state scenario to perfect distinguishability (via some POVM, as in our
discussion of the operational definition of fidelity).

For broadcasting, as opposed to true cloning, the paper we cited above contains a
proof that the cloning/broadcasting fidelity relation can only be satisfied if 12  21,
that is, if the states in ℵ commute. Recall that when this condition is satisfied we can
find a basis in which the matrix representations of the states are simultaneously
diagonalized. In this basis, specified by a set of orthonormal eigenvectors |b, we
have the spectral decompositions

1 ∑
b

1b|b〈b|, 2 ∑
b

2b|b〈b|.

We may then construct the broadcasting scheme:
iA ⊗ B  UiA ⊗ BU†,

where
B  | 1B 〈1B |

and
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U  | 1A 〈1A | ⊗ 1B ∑
b1

|bA 〈bA | ⊗ |bB 〈1B |  | 1B 〈bB |  ∑
b′∉1,b

|bB
′ 〈bB

′ | ,

U†  U.
It is easy to see that the relevant action of U is to swap | 1B  with |bB  when system A is
in the state |bA  (it is somewhat like a multi-dimensional controlled-NOT). We first
verify that
U2  | 1A 〈1A | ⊗ 1B

∑
b1

|bA 〈bA | ⊗ |bB 〈1B |  | 1B 〈bB |  ∑
b′∉1,b

|bB
′ 〈bB

′ | |bB 〈1B |  | 1B 〈bB |  ∑
b′′∉1,b

|bB
′′ 〈bB

′′ |

 | 1A 〈1A | ⊗ 1B ∑
b1

|bA 〈bA | ⊗ |bB 〈bB |  | 1B 〈1B |  ∑
b′∉1,b

|bB
′ 〈bB

′ |

∑
b1

| 1A 〈1A | ⊗ 1B ∑
b1

|bA 〈bA | ⊗ 1B

 1A ⊗ 1B.
We then check the action of U,

UiA ⊗ BU†  U ∑
b

ib|bA 〈bA | ⊗ | 1B 〈1B | U†

 ∑
b

ib|bA 〈bA | ⊗ |bB 〈1B | U†

∑
b

ib|bA 〈bA | ⊗ |bB 〈bB |.

It is easy to see that this correlated joint state satisfies the broadcasting criterion,
since we can take our partial traces in the |b bases:

TrB ∑
b

ib|bA 〈bA | ⊗ |bB 〈bB | ∑
b′
〈bB

′ | ∑
b

ib|bA 〈bA | ⊗ |bB 〈bB | |bB
′ 

∑
b

ib′ |bA
′ 〈bA

′ |,

and likewise for the partial trace over A.
The proof of the impossibility of perfect broadcasting for states that do not

commute is rather technical, so we do not repeat it here. With what you have learned
in this class so far you should find the technical content of the paper reasonable
accessible, however, so you are encouraged to have a look. In particular, the paper
contains a nice derivation of the operational significance of mixed-state fidelity, which
sets up a subsequent proof of the impossibility of broadcasting non-commuting mixed
states.

Some more recent treatments of the ‘no-broadcasting rheorem’ have appeared in
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the literature:
 H. Barnum et al., “Generalized No-Broadcasting Theorem,” Phys. Rev. Lett. 99,

240501 (2007).
 A. Kalev and I. Hen, “No-Broadcasting Theorem and Its Classical Counterpart,”

Phys. Rev. Lett. 100, 210502 (2008).
The first of these makes connections with an interesting new research direction of
considering probability theories that are neither quantum nor classical, and shows that
the possibility of broadcasting mixed states is in some sense unique to classical
probability (as opposed to the impossibility of broadcasting being unique to quantum
probability). The second paper utilizes a more information-theoretic approach to
proove the no-broadcasting theorem, based on relative entropy.
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