
APPPHYS225 - Thursday 13 November 2008

We begin class today by reviewing the representation of symmetry transformations in
general, and of rotations of Cartesian 3-space in particular. These ideas will be
fundamental for the material of our next few classes.

Symmetry groups and group representations
Let’s begin by reviewing the algebraic notion of a group. A group consists of a set of
elements (of arbitrary type), together with a multiplication rule, which satisfy the
following properties:
1. The set must be closed under its multiplication rule. That is, if a and b are

elements of the group, ab and ba must also be in the group. If ab  ba for
every pair of elements, the group is called ‘Abelian’ (or ‘commutative’).

2. The multiplication rule must be associative, that is, abc  abc.
3. The set must contain an identity element e, such that ae  ea  a for all a.
4. Each element a must have an inverse a−1, such that a−1a  aa−1  e.
A simple example of an Abelian group is the pair of numbers −1,1 under normal
multiplication. Another example is the set of matrices

1 0
0 1

,
1 0
0 −1

,
−1 0
0 −1

,
−1 0
0 1

,

0 1
1 0

,
0 −1
−1 0

,
0 1
−1 0

,
0 −1
1 0

under matrix multiplication, which form a non-commutative group. Note that the pair of
matrices

0 1
1 0

,
1 0
0 1

form an Abelian group (under matrix multiplication) that is isomorphic to our first
example. The essential structure of a group is its multiplication ‘table,’ which for the
example a ↔ −1,e ↔ 1 is clearly

aa  e
ae  a
ea  a
ee  e

.

We see that the pair of matrices has exactly the same multiplication table, under the
obvious mapping
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a ↔
0 1
1 0

,e ↔
1 0
0 1

.

In this sense it is really a ‘representation’ of the same group, which by mathematical
convention is generally referred to as C2. We shall use the term linear representation
(or simply, representation) to mean an association (not necessarily one-to-one)
between each element a in a group and a matrix Da that preserves the multiplication
rule:

DaDb  Dab.
So far we have seen how C2 can be represented by 1  1 real matrices (numbers) and
2  2 real matrices. One often speaks of these as being representations ‘on’ the vector
spaces R1 and R2, respectively.

To emphasize the abstract nature of the concept, let’s think about the dihedral
group, denoted D2. Its multiplication table is

e a b c

e
a
b
c

e a b c
a e c b
b c e a
c b a e

.

This is clearly Abelian. With reference to the following figure [Wu-Ki Tung, Group
Theory in Physics (World Scientific, 1985)]

we can associate group elements with symmetries of the rectangle,
e leave the figure unchanged,
a reflect through the vertical axis 1 − 3,
b reflect through the horizontal axis 2 − 4,
c rotate (in the plane) about the center point by angle .

We can easily find a representation of this group on R2,
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e ↔
1 0
0 1

, b ↔
1 0
0 −1

,

a ↔
−1 0
0 1

, c ↔
−1 0
0 −1

.

Sometimes we find that a group representation ‘contains’ smaller representations
within it. For example, consider our representation of C2 on R2, with

a ↔
0 1
1 0

,e ↔
1 0
0 1

.

We first note that a linear change of basis for the representing vector space preserves
group representations, since under

Da  S−1DaS,
the mapping property

DaDb  Dab
transforms according to

S−1DaSS−1DbS  S−1DabS,
S−1DaDbS  S−1DabS,

DaDb  Dab.
Two representations related by such a similarity transform are said to be equivalent. If
in our example we switch to the basis

1
2

1
1

, 1
2

1
−1

,

for R2, our C2 representation maps to

a ↔
1 0
0 −1

,e ↔
1 0
0 1

.

This clearly still respects the C2 multiplication table

e a
a e

.

We see that the a ↔ −1,e ↔ 1 representation on R1 actually appears as the
lower-right ‘corner’ of the R2 representation, living in its own little subspace and
constituting a 1  1 subrepresentation of the 2  2 one. What about the upper-left
subspace? Here we find the degenerate representation a ↔ 1,e ↔ 1 of C2 on R1,
which is not a terribly useful representation but a valid one none-the-less.

In general, it is often possible to take an n  n representation and to find a basis in
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which all the constituent matrices assume block-diagonal form

Dna 

D1a 0 0 

0 D2a 0 

0 0 D3a 

   

,

where D1a has dimensions n1  n1, D2a has dimensions n2  n2, etc. and
n1  n2  n3   n. Each of the sets of matrices Dia then forms a
subrepresentation of the original one, which is therefore said to be reducible, and we
write

Dn  D1 ⊕ D2 ⊕ D3 ⊕,
i.e., each Dna is the direct sum of the Dia. A representation that cannot be broken
down in this way is called an irreducible representation, or irrep for short. Up to
equivalence transformations, the decomposition of a representation into irreps is
unique.

It is important to appreciate that we can use the direct sum to build larger
representations out of smaller ones. For example, working again with representations
of C2, and denoting our previous representations as d1 (on R1) and d2 (on R2), we
have

d1 ⊕ d1 : a ↔
−1 0
0 −1

,e ↔
1 0
0 1

,

d1 ⊕ d2 : a ↔
−1 0 0
0 0 1
0 1 0

,e ↔
1 0 0
0 1 0
0 0 1

,

d2 ⊕ d2 : a ↔

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

,e ↔

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

,

d1 ⊕ d1 ⊕ d1 : a ↔
−1 0 0
0 −1 0
0 0 −1

,e ↔
1 0 0
0 1 0
0 0 1

,

and so on.
Another important way to build larger representation is by taking the tensor

product (also known as direct product) of smaller ones. Recall that for a pair of
matrices

4



A 

a11 a12 a13 

a21 a22 a23 

a31 a32 a33 

   

, B 

b11 b12 b13 

b21 b22 b23 

b31 b32 b33 

   

,

the tensor product A ⊗ B is given by

a11B a12B a13B 

a21B a22B a23B 

a31B a32B a33B 

   

.

For 2  2 matrices, e.g., we can write more concretely

A ⊗ B 

a11b11 a11b12 a12b11 a12b12

a11b21 a11b22 a12b21 a12b22

a21b11 a21b12 a22b11 a22b12

a21b21 a21b22 a22b21 a22b22

.

We can verify that d2 ⊗ d2 for our C2 example still constitutes a valid representation,
which happens to be equivalent to d2 ⊕ d2.

a ↔

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

, e ↔

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

,

a2 

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0



1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 e.

General proofs regarding composite representations can be found in standard
textbooks on group representation theory (such as Tung, referenced above).

A useful theorem for recognizing irreducible representations is given by Schur’s
Second Lemma, which states that [Merzbacher, p. 421] if the matrices Da form an
irreducible representation of a group and if a matrix M commutes with all Da,

M,Da  0 for every a
then M is a multiple of the identity matrix. Hence, if for a given representation we can
find a commuting matrix C that is not simply proportional to the identity, we know that
the representation is reducible. In general (provided C is normal), there will be some
change of basis (corresponding to diagonalizing C) that takes C to a matrix of the form
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C 

c1I1 0 0 

0 c2I2 0 

0 0 c3I3 

   

,

where the Ii are identity matrices of dimension ni  ni. It follows that each of the
ni −dimensional subspaces (after the change of basis) constitutes an
subrepresentation.

Representations of the Rotation Group R3
It is easy to see that the set of all possible rotations in three-dimensional Euclidean
space form a group. Any particular member of the group may be specified by its angle
and axis of rotation, group multiplication corresponds to the successive application of
the two rotations, and the identity element can be chosen as any rotation by zero
angle (about any axis). For example, if we let Rn̂ denote a clockwise rotation by
angle  about the unit vector n̂,

RŷRx̂  Rẑ.
Closure and associativity clearly hold, and this group R3 is clearly not commutative.
For example,
Rx̂ − 2 Rx̂ 

2  Rŷ − 2 Rŷ 
2  1, Rx̂ − 2 Rŷ − 2 Rx̂ 

2 Rŷ 
2 ≠ 1.

Let us consider the association

n̂,  exp −i

n̂  J ,

where n̂, ∈ R3 is a rotation about axis n̂ by angle  (n̂ is assumed to be a unit
vector) and J is a vector of angular momentum operators Jx,Jy,Jz. Any set of three
operators Jx,Jy,Jz satisfying the fundamental commutation relations

Jx,Jy   iJz, Jy,Jz   iJx, Jz,Jx   iJy,
are legitimate angular momentum operators, with two familiar examples being
J  L  r  p (orbital angular momentum) and J  S (spin-1/2). The reason for this is
simply that any set of generators Jx,Jy,Jz satisfying the above commutation
relations can be used in the above association between rotations and Hilbert-space
operators to yield a valid representation of R3. Preservation of the appropriate
multiplication table is guarenteed by the commutation relations and the
operator-exponential structure of the association. The proof of this is straightforward
but quite tedious – see for example Cohen-Tannoudji, Diu, and Laloe Complement BVI
for a patient and careful treatment.

In the case of spin-1/2, we clearly have a 2  2 representation of R3 on C2 (the
two-dimensional complex vector space, not the two-element group!), as the
generators are simply proportional to the Pauli matrices
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Ji  
2 i, x 

0 1
1 0

, y 
0 −i
i 0

, z 
1 0
0 −1

.

Application of the association law yields

n̂, 
cos 

2 − inz sin

2 −inx − ny sin 

2

−inx  ny sin 
2 cos 

2  inz sin 
2

,

where n̂  nx,ny,nz. When the state of a spin-1/2 system is expressed in the z
basis, these unitary matrices are the Hilbert-space operators corresponding to
rotations in the 3D coordinate space.

Suppose we have two spin-1/2 particles A and B. Then the joint Hilbert space
HA ⊗ HB supports a tensor-product representation of the rotation group generated by
the angular momentum operators

Jx  JxA ⊗ 1B  1A ⊗ JxB, Jy  JyA ⊗ 1B  1A ⊗ JyB, Jz  JzA ⊗ 1B  1A ⊗ JzB.
It is straightforward to show that this set of operators satisfies the required
commutation relations.
Writing these out in matrix form, we have

Jx ↔ 
2

0 1
1 0

⊗
1 0
0 1

 
2

1 0
0 1

⊗
0 1
1 0

 
2

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 
2

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 
2

0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0

,

Jy ↔ 
2

0 −i
i 0

⊗
1 0
0 1

 
2

1 0
0 1

⊗
0 −i
i 0

 
2

0 0 −i 0
0 0 0 −i
i 0 0 0
0 i 0 0

 
2

0 −i 0 0
i 0 0 0
0 0 0 −i
0 0 i 0

 
2

0 −i −i 0
i 0 0 −i
i 0 0 −i
0 i i 0

,
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Jz ↔ 
2

1 0
0 −1

⊗
1 0
0 1

 
2

1 0
0 1

⊗
1 0
0 −1

 
2

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 
2

1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

 
2

2 0 0 0
0 0 0 0
0 0 0 0
0 0 0 −2

.

This allows us to compute the Casimir operator (the C in our above discussion of
Schur’s Lemma)
J2  Jx2  Jy2  Jz2

↔ 2

4

0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0

2



0 −i −i 0
i 0 0 −i
i 0 0 −i
0 i i 0

2



2 0 0 0
0 0 0 0
0 0 0 0
0 0 0 −2

2

 2

4

2 0 0 2
0 2 2 0
0 2 2 0
2 0 0 2



2 0 0 −2
0 2 2 0
0 2 2 0
−2 0 0 2



4 0 0 0
0 0 0 0
0 0 0 0
0 0 0 4

 2

2 0 0 0
0 1 1 0
0 1 1 0
0 0 0 2

.

We can easily read off the eigenvectors,

22 ↔

1
0
0
0

, 1
2

0
1
1
0

,

0
0
0
1

, 0 ↔ 1
2

0
1
−1
0

,

so the diagonalizing transformation is

S 

0 1 0 0
1
2

0 1
2

0

− 1
2

0 1
2

0

0 0 0 1

, J2  S −1J2S  2

0 0 0 0
0 2 0 0
0 0 2 0
0 0 0 2

.

Then we have also with this transformation
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Jx  

0 0 0 0
0 0 1

2
0

0 1
2

0 1
2

0 0 1
2

0

, Jy  

0 0 0 0
0 0 − i

2
0

0 i
2

0 − i
2

0 0 i
2

0

, Jz  

0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 −1

.

We now see that this is a reducible representation, with a trivial representation
DJx  DJy  DJz  0,

in the upper-left corner and a three-dimensional representation in the lower-right block.
Remembering that the eigenvalues of the J2 operator have the form

J2| j,m  jj  12| j,m,
we can confirm from the matrix representation of J2 in the diagonal basis that this is a
spin-1 irrep. Our notation here emphasizes the fact that this basis is simultaneously an
eigenbasis of J2 and Jz, with

Jz| j,m  m| j,m.
It follows that if we use this simultaneous eigenbasis of J2 and Jz,

| 0, 0 ↔ 1
2

0
1
−1
0

↔ 1
2
| A  ⊗ | −B  − | −A  ⊗ | B ,

| 1, 1 ↔

1
0
0
0

↔ | A  ⊗ | B , | 1,−1 ↔

0
0
0
1

↔ | −A  ⊗ | −B ,

| 1, 0 ↔ 1
2

0
1
1
0

↔ 1
2
| −A  ⊗ | B   | A  ⊗ | −B ,

then the representation of any rotation on our HA ⊗ HB will take the block-diagonal
form

n̂,  exp −i

n̂  J ↔

1 0 0 0
0 X X X
0 X X X
0 X X X

,
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where the one in the upper-left corner is the exponential of zero and the X ’s in the
lower-right block represent a 3  3 matrix that in general we must calculate. Most
important, however, is that if we write our states |AB  ∈ HA ⊗ HB in the simultaneous
eigenbasis of J2 and Jz,

|AB   c00| 0,0  c1−| 1,−1  c10| 1,0  c1| 1, 1,
then

exp −i

n̂  J |AB   c00| 0,0  c1−

′ | 1,−1  c10
′ | 1, 0  c1

′ | 1, 1,

where the set of three primed coefficients are linearly (unitarily) related to their
unprimed counterparts and

|c1− |2  |c10 |2  |c1 |2  |c1−
′ |2  |c10

′ |2  |c1
′ |2.

Put another way, if we define
0  | 0, 0〈0,0|, 1  | 1,−1〈1,−1|  | 1, 0〈1,0|  | 1, 1〈1,1|,

then

exp −i

n̂  J |AB   0|AB   1 exp −i


n̂  J 1|AB ,

exp −i

n̂  J exp i


n̂  J  00  1 exp −i


n̂  J 11 exp i


n̂  J 1.

Hence if we start with a state that lives entirely in the j  1 subspace of HA ⊗ HB there
is no rotation we can apply that will cause it to acquire components in the j  0
subspace, and vice versa.

For what follows it is important to note that the j  0 state is antisymmetric under
exchange of the two spin-1/2 particles, whereas the j  1 states are all symmetric.
Hence for any state of the form

|AB   c| A B   c−| A −B   | −A B   c−−| −A −B ,
we have

1|AB   |AB .
For factorizable pure states we see that

|A  ⊗ |B   a| A   a−| −A  ⊗ b| B   b−| −B 
 ab| A B   ab−| A −B   a−b| −A B   ab| −A −B ,

which will be contained entirely within the j  1 subspace of HA ⊗ HB if
ab−  a−b.

This is obviously satisfied if a  b, i.e., if |  |.

Encoding ‘unspeakable information’ in quantum states
In this section we follow the paper by N. Gisin and S. Popescu, “Spin Flips and
Quantum Information for Antiparallel Spins,” Phys. Rev. Lett. 83, 432 (1999).

Suppose Alice and Bob lack a shared Cartesian reference frame. However, Alice
has two spin-1/2 systems that she knows she can send to Bob without causing them
to suffer any physical perturbations in transit (their Hamiltonian vanishes exactly).
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Alice wants to use her two spin-1/2 systems to indicate a direction in physical space -
she wants to send Bob a ‘pointer’ of sorts. This kind of information is sometimes called
‘unspeakable’ because, for example, it cannot be conveyed over the phone between
parties who do not share a coordinate reference frame. So what state of the spins
should Alice prepare?

If Alice’s direction is represented by the unit vector n̂  nx,ny,nz in her own local
coordinate frame, one obvious strategy would be to prepare the state in which both
spins satisfy

〈Jx   
2 nx, 〈Jy   

2 ny, 〈Jz   
2 nz.

We use the Dirac ket | n̂ ; n̂ to denote this state. In fact, it has been pointed out by
Gisin and Popescu that it is provably better for Alice to prepare the state | n̂;−n̂, in
which the first spin satisfies the set of expectation values above while the second
satisfies

〈Jx   − 2 nx, 〈Jy   − 2 ny, 〈Jz   − 2 nz.

Classically it would seem that there should be no difference between using parallel or
antiparallel spins.

In order to understand this intriguing fact we first need to ask what sort of
measurement Bob should make in order to ‘decode’ the directional information carried
by Alice’s spins. Let us continue to use n̂ to denote the direction in space that Alice
has in mind, and let n̂g be the direction that Bob guesses on the basis of a
measurement he performs on the pair of spins. We imagine that Bob’s measurement
will have some outcome g drawn from a finite set, and that some optimal association
of measurement outcomes with corresponding directional guesses n̂g has been
computed. Of course in order to talk about optimality we must fix a figure of merit for
the accuracy of Bob’s guess, such as the average fidelity (assuming uniform prior for
Alice’s n̂ over the entire unit sphere)

F   dn̂∑
g

Pg | n̂ 1  n̂  n̂g
2 .

Here we imagine that Bob’s measurement is specified by a POVM Eg, so that
Pg | n̂  〈 |Eg |, where | is the state in which Alice prepares the spins. It turns
out that the optimal measurement for this purpose, assuming | takes the form | n̂ ; n̂,
has four elements of the form j ∈ 1…4

Ej  |j 〈j |, |j  
3
2 | n̂j; n̂j   1

2 |− ,

where |−  is the Bell singlet state and | n̂j; n̂j  is a spin state in which both spins point
in direction n̂j. The unit vectors (specified in Cartesian 3-space) are

n̂1  0,0,1, n̂2 
8
3 ,0,− 1

3 ,

n̂3 
− 2

3 , 2
3 ,− 1

3 , n̂4 
− 2

3 ,− 2
3 ,− 1

3 .

Note that these correspond to the vertices of a tetrahedron. Bob’s guessing procedure
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is to perform the Ej POVM on the spins he receives from Alice, and upon obtaining
outcome j he makes the guess n̂g  n̂j. It is stated in the paper that with this
procedure, F  3/4 for the parallel-spins encoding strategy.

With anti-parallel spins, Bob’s can use a guessing procedure that is basically the
same but with the modified POVM

Ej  |j 〈j |, |j    | n̂j;−n̂j  − ∑
k≠j

| n̂k;−n̂k ,

where   13/ 6 6 − 2 2 and   5 − 2 3 / 6 6 − 2 2 . The correspdonding
value of F is 5 3  33 / 3 3 3 − 1 2 ≈ 0.789, which clearly beats the average
fidelity in the parallel-spins protocol. The paper by Gisin and Popescu does not say
whether or not this POVM is optimal.

At a qualitative level, there is in fact a simple explanation of this difference
between parallel and anti-parallel spins. Note that Bob’s task can be viewed as one of
estimating a rotation operation that distinguishes Alices direction n̂ from some some
fiducial direction that Bob defines (for example) as his local x-axis (note that since we
are only talking about a single direction and not a full set of Cartesian axes, this is
technically an estimation problem in the coset R3/U1). The measurement that Bob
performs on the spins he receives gives him information about the identity of this
rotation. How much information? It cannot be any more than log24 bits of information
since the POVM he performs has only four outcomes, and indeed the joint quantum
state of the two spins lives in a four-dimensional Hilbert space. However in the
parallel-spins encoding strategy we note that in fact it cannot be more than log23 bits
of information, because a symmetric state such as | n̂ ; n̂ is contained entirely within
the j  1 subspace of the joint Hilbert space of the two spins. Therefore, no rotation
can cause it to acquire a j  0 component and the state space of the two spins is then
effectively three-dimensional. In contrast, a state such as | n̂ ;−n̂ spans both the j  0
and j  1 subspaces, and can therefore ‘fill out’ more of the joint Hilbert space under
the action of R3 rotations. Apparently it does so, by at least a little bit.

To see that | n̂ ;−n̂ spans both subspaces, we can adopt a coordinate system in
which the z-axis corresponds with n̂. Then

| n̂ ;−n̂  | A −B   1
2
| j  0,m  0  | j  1,m  0.

No matter what other coordinate frame you might prefer for performing your
calculations, the expression for | n̂ ;−n̂ in terms of your preferred basis states will be
related to the above by some R3 rotation operator that preserves the superposition
across the j  0 and j  1 subspaces!

12


