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Ensemble-dependent bounds for accessible information
As we have previously discussed, for an ensemble of quantum states pi,i (where
for pure-state ensembles we have i  |i 〈i |) we can compute the expectation
value of any observable A from the ensemble density matrix:

〈A ∑
i

pi Tr iA  Tr ∑
i

pi i A  Tr A,  ∑
i

pi i.

Since this holds for A an element of a POVM, we see that the ‘overall’ statistics of any
possible measurement performed on states drawn from an ensemble pi,i can be
predicted on the basis of the ensemble density matrix alone.

This is not to say that we never need to know the full ensemble specification! To
see this we need only review the concept of mutual information (and its relation to
channel capacity), e.g., from Wikipedia.

In the paper “Ensemble-Dependent Bounds for Accessible Information in Quantum
Mechanics,” [C. A. Fuchs and C. M. Caves, Phys. Rev. Lett. 73, 3047 (1994)] the
authors derive ensemble-dependent upper and lower bounds to the accessible
information, which is defined as the maximum over all measurements Eb of the
mutual information

I  H −∑
i1

n

piHi,

where the ensemble of signal states is pi,i and   ∑ i pii is the ensemble density
matrix. We have previously considered the case

0  |〈|  cos2| 0〈0|  sincos| 0〈1|  | 1〈0|  sin2| 1〈1|,

1  |−〈−|  cos2| 0〈0| − sincos| 0〈1|  | 1〈0|  sin2| 1〈1|,
with t  1

2 and therefore

  1
2 0 

1
2 1  cos2| 0〈0|  sin2| 1〈1|.

The Holevo bound on accessible information is
Iacc ≤ S − 1

2 S0 −
1
2 S1  −2cos2 lncos − 2sin2 lnsin,

where we have computed by inspection
S  −2cos2 lncos − 2sin2 lnsin,

S0  S1  0,
since the signal states are pure and  has been given in a diagonal form. Since the
signal states are pure states, the Holevo bound depends only on ; in the paper it is
noted that this is the best bound that can be expressed solely in terms of the
ensemble density matrix.

In class we noted that the optimal projective measurement is P,P−, where
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P  |〈|, |  1
2
| 0  | 1.

Hence with respect to this measurement
Tr P   〈 | |   1

2 〈0|  〈1|cos2| 0〈0|  sin2| 1〈1|| 0  | 1  1
2 ,

Tr P−   〈− | | −  1
2 〈0| − 〈1|cos2| 0〈0|  sin2| 1〈1|| 0 − | 1  1

2 ,

H  ln2,
and we previously calculated the entropies

H0  H1  ln2 − cos  sin2 lncos  sin − cos − sin2 lncos − sin,
and therefore

I  H − 1
2 H0 −

1
2 H1

 cos  sin2 lncos  sin  cos − sin2 lncos − sin.
Below we plot both the mutual information of the optimal projective measurement
(dashed, lower curve) and the Holevo bound.
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Note that points on the upper (solid) curve would actually be ‘achievable’ as the
mutual information of the optimal projective measurement for binary ensembles

p0  cos2, 0  | 0〈0|, p1  sin2, 1  | 1〈1|,
which have the same ensemble density matrix as our favorite case with |.
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Joint state space for two subsystems
Suppose we have two independent quantum systems. It seems clear that we can
separately consider the representation of their physical states in two independent
Hilbert spaces. Labelling the systems A and B, we can simply chose state vectors

|A  ∈ HA,
and

|B  ∈ HB.
What if we need to bring these systems together and let them interact?

The joint state space for two such systems corresponds to the tensor product of
HA and HB, denoted HAB  HA ⊗ HB.

Let NA be the dimension of HA, and NB the dimension of HB. If |1A , |2A , |3A ,… 
is a complete orthonormal basis for HA and |1B , |2B , |3B ,…  is a complete
orthonormal basis for HB, then HA ⊗ HB is the Hilbert space of dimension NAB  NANB
spanned by the vectors of the form | iA  ⊗ | jB .

Hence arbitrary states in HAB have the form

|AB  ∑
i1

NA

∑
j1

NB

cij | iA  ⊗ | jB .

As long as we fix an ordering for the new basis states | iA  ⊗ | jB , the set of NANB
complex coefficients can be used as a vector representation for kets in HAB.

The tensor product operation between vectors has the following properties:
1. Linearity:  |A  ⊗ |B    |A  ⊗ |B , where  is a complex number
2. Distributivity: |A  ⊗ |B

1   |B
2   |A  ⊗ |B

1   |A  ⊗ |B
2 .

3. ‘Commutativity’: formally, |A  ⊗ |B  is the same as |B  ⊗ |A . In
practice however, it is wise to use consistent ordering.

4. Adjoint: |A  ⊗ |B   〈A | ⊗ 〈B |.
5. Scalar product: 〈A

1 | ⊗ 〈B
1 ||A

2  ⊗ |B
2   〈A

1 |A
2 〈B

1 |B
2 .

It is important to note that basis kets | iA  ⊗ | jB  ∈ HAB thus inherit orthogonality from
their ‘factors’ in HA and HB.

Entanglement
The most profound consequence of this mathematical rule for representation of joint
states is that there exist |AB  ∈ HAB that cannot be expressed the tensor product of a
state |A  ∈ HA with a state |B  ∈ HB. Such ‘nonfactorizable’ states are said to be
entangled.

For example, let’s consider two two-dimensional systems. Say we have chosen
orthonormal bases |0A , |1A  for HA and |0B , |1B  for HB. Then HAB is spanned by
the four states

|0A  ⊗ |0B , |0A  ⊗ |1B , |1A  ⊗ |0B , |1A  ⊗ |1B .
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Factorizable (nonentangled) states in HAB are all of the form
AB

fac  c0
A|0A   c1

A|1A  ⊗ c0
B|0B   c1

B|1B 

 c0
Ac0

B|0A  ⊗ |0B   c0
Ac1

B|0A  ⊗ |1B 

 c1
Ac0

B|1A  ⊗ |0B   c1
Ac1

B|1A  ⊗ |1B .
That is, a certain relationship exists between the coefficients of the four basis states in
HAB.

A simple example of an entangled state, whose coefficients do not exhibit the
above relationship, is

|AB   1
2
|0A  ⊗ |0B   |1A  ⊗ |1B 

≠ |A  ⊗ |B .
When the joint state of two subsystems is entangled, there is no way to assign a
pure quantum state to either subsystem alone. As we shall see below, it is
possible to ascribe mixed quantum states to each of the subsystems considered
alone, but first we’ll need to have a look at operators on HAB.

Tensor products of operators
If A is an operator on HA and B is an operator on HB, then

A ⊗ B
is a valid operator on HAB. Its action on an arbitrary state

|AB  ∑
i,j

cij| iA  ⊗ | jB 

is defined by
A ⊗ B|AB  ∑

i,j

cijA| iA  ⊗ B| jB .

In the case where A and B are both normal, we may also write

A ⊗ B  ∑
i

i
AP i

A ⊗ ∑
j

j
BP j

B

∑
ij

i
Aj

B P i
A ⊗ P j

B.

Note that the usual relationship holds between projectors on the joint state space
and outer-products of joint state vectors:

|A  ⊗ |B 〈A | ⊗ 〈B |  |A 〈A | ⊗ |B 〈B |
 PA ⊗ PB.

Hence any complete set of joint projectors (summing to the identity operator on HAB)
specifies a complete measurement.
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As was the case with state vectors, linear combinations of tensor-product operators
are also valid opeators on HAB:

OAB ∑
m

cm Am ⊗ Bm.

Hence, not all operators on a joint state space are factorizable.
Given subsystem density operators A and B, we can form a tensor-product

density operator that describes a mixed ensemble of states in HAB:
AB  A ⊗ B.

In general, one can form convex combinations of such AB to construct new joint
density operators.

One can also construct joint density operators directly from ensembles of pure
states in HAB. For instance, the density operator corresponding to the entangled state
described above is

|AB   1
2
|0A  ⊗ |0B   |1A  ⊗ |1B 

AB  |AB 〈AB |

 1
2

|0A 〈0A | ⊗ |0B 〈0B |  |0A 〈1A | ⊗ |0B 〈1B |
|1A 〈0A | ⊗ |1B 〈0B |  |1A 〈1A | ⊗ |1B 〈1B |

,

and in general
AB ∑

i

pi |AB
i 〈AB

i |.

Note that operators on a tensor-product space can be expressed as complex matrices
okl:

OAB ∑
kl

okl|kAB 〈 lAB |,

where the summations both run over a complete set of NAB basis vectors.
Given matrix representations for subsystem operators A and B, it is customary to

choose an ordering for the basis states of the joint space such that

A ⊗ B ↔

a11B a12B a13B
a21B a22B a23B 

a31B a32B a33B
 

.

For example if |1A , |2A ,…  is the orthnormal basis for HA used in defining the matrix
representation of A, and similarly for HB, then
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|1AB  ↔ |1A  ⊗ |1B ,
|2AB  ↔ |1A  ⊗ |2B ,
|3AB  ↔ |1A  ⊗ |3B ,



|NB  1AB  ↔ |2A  ⊗ |1B ,



As a result, the common class of operators 1A ⊗ B will have block-diagonal
representations.

Working with tensor products
Let’s work with our favorite example of two two-dimensional Hilbert spaces HA and HB,
with given complete orthonormal bases |0A , |1A  and |0B , |1B . Let’s also choose
the simple tensor-product basis for HAB, |0A0B , |0A1B , |1A0B , |1A1B .

Suppose we are given vectors |A  ∈ HA and |B  ∈ HB:

|A   a0|0A   a1|1A  ↔
a0

a1
,

|B   b0|0B   b1|1B  ↔
b0

b1
.

Then |AB  ∈ HAB has the vector representation
|A  ⊗ |B   a0|0A   a1|1A  ⊗ b0|0B   b1|1B 

 a0b0 |0A0B   a0b1 |0A1B   a1b0 |1A0B   a1b1 |1A1B 

↔

a0b0

a0b1

a1b0

a1b1

.

Likewise,

〈AB | ↔ a0
∗b0
∗ a0

∗b1
∗ a1

∗b0
∗ a1

∗b1
∗ .

Moving on to operators, let’s compute a matrix representation for x
A ⊗ x

B, where
x  |0〈1|  |1〈0|. So
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x
A ⊗ x

B  |0A 〈1A |  |1A 〈0A | ⊗ |0B 〈1B |  |1B 〈0B |
 |0A0B 〈1A1B |  |0A1B 〈1A0B |  |1A0B 〈0A1B |  |1A1B 〈0A0B |

↔

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

.

Given the ordering we have chosen for the basis of HAB, we could have also used

A ⊗ B ↔
a00B a01B
a10B a11B

,

where in this case

A 
0 1
1 0

, B 
0 1
1 0

A ⊗ B ↔

0
0 1
1 0

1
0 1
1 0

1
0 1
1 0

0
0 1
1 0



0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

.

Partial projections
A particularly useful class of tensor-product operators are the partial projectors,

1A ⊗ P j
B

and
P i

A ⊗ 1B,
where P j

B is a projector onto some state in HB and likewise for P i
A. Note that such

operators are themselves projectors according to the usual definition, since
A1 ⊗ B1A2 ⊗ B2  A1A2 ⊗ B1B2.

Clearly, observables such as
Oq

A ⊗ 1B

can be spectrally decomposed using partial projectors.
If Pk

B  |kB 〈kB | (where |kB  is a basis vector), then
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1A ⊗ Pk
B|AB   1A ⊗ Pk

B∑
ij

cij| iA  ⊗ | jB 

∑
ij

cij| iA  ⊗ Pk
B | jB  ∑

i

cik| iA  ⊗ |kB   |A
k  ⊗ |kB .

Hence the effect of a partial projector on a joint state in HAB is to knock out all terms in
the superposition that are not consistent with subsystem B being in the kth basis state.

It is very important to appreciate that the action of a partial projector will in general
‘affect’ the state of both subsystems, unless the joint state is factorizable. For
example, if

|AB   |A  ⊗ |B ,

|B  ∑
j1

NB

cj
B| jB ,

then under 1A ⊗ Pk
B

|AB   |A  ⊗ ck
B |kB .

If on the other hand |AB  is entangled, e.g.
|AB   c1 |A

1  ⊗ | 1B   c2 |A
2  ⊗ | 2B ,

〈A
1 |A

2  ≠ 1,
then

1A ⊗ P2
B |AB   c2 |A

2  ⊗ | 2B .
Hence even quantities such as 〈Oq

A ⊗ 1B  will be changed.

Note that if∑ j P j
B  1B (and likewise for the P i

A)

∑
j1

NB

1A ⊗ P j
B  1A ⊗ 1B  1AB,

∑
i1

NA

P i
A ⊗ 1B  1A ⊗ 1B.

Hence one can speak of a ‘complete’ set of partial projectors (with respect to either HA
or HB), given by

1A ⊗ P0
B,1A ⊗ P1

B,… 

or
P0

A ⊗ 1B,P1
A ⊗ 1B,… .

Such sets of operators specify standard measurements on HAB – the projectors in the
set are mutually orthogonal and sum to the identity. In essence, this type of
measurement probes the state of one subsystem without regard for the other:

Prj  〈1A ⊗ P j
B ,
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or
Pri  〈P i

A ⊗ 1B .
But as noted above, the post-measurement state of both subsystems will generally be
affected by the outcome, since (for conditioning via the projection postulate)

|AB  
1A ⊗ P j

B |AB 

〈1A ⊗ P j
B 

or

|AB  
P i

A ⊗ 1B |AB 

〈P i
A ⊗ 1B 

.

The usual generalization holds for joint density operators.
Exercise: Suppose systems A and B are initially prepared in the joint pure state

|AB   1
2
| 0A  ⊗ |0B   | 1A  ⊗ |1B ,

and we perform a measurement of the A-system observable
SxA ⊗ 1B  

2 Px
A ⊗ 1B − 

2 Px−
A ⊗ 1B,

Px ≡ |x 〈x |, |x   1
2
| 0  | 1,

Px− ≡ |x− 〈x− |, |x−   1
2
| 0 − | 1.

What are the possible post-measurement states? What if the initial preparation is the
following mixed state?

AB  1
2 | 0A0B 〈0A0B |  | 1A1B 〈1A1B |.

Indirect measurements
We can build more general types of measurements by coupling our system of interest
to an ancillary quantum system prepared in a known initial state

|A  ∈ HA,
where HA is an NA −dimensional Hilbert space, and then performing a direct
measurement on the ancilla.

The general situation is as follows. We first take the system in its
pre-measurement state pre and combine it with the ancilla, such that their joint state
can be written

pre ⊗ |A 〈A | ∈ HS ⊗ HA.
The joint system then evolves under some (possibly time-dependent) interaction
Hamiltonian H intt for a fixed time interval, yielding

Ut pre ⊗ |A 〈A | Ut
†,
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where

Ut  T exp −i
 0

t
dt ′ H intt ′ .

At this point the interaction is turned off, and in principle the ancilla can be taken away
from the system. A projective measurement on the ancilla, whose statistics are
specified by some set of partial projectors i

A ⊗ 1S , will lead to

Pri  Tr i
A ⊗ 1S Ut pre ⊗ |A 〈A | Ut

†i
A ⊗ 1S ,

and we expect to have post-measurement states

post 
i

A ⊗ 1S Ut pre ⊗ |A 〈A | Ut
†i

A ⊗ 1S

Pri
.

Note that the set  i
A ⊗ 1S  qualifies as a complete set on the joint state space

HS ⊗ HA since

∑
i

i
A ⊗ 1S  ∑

i

i
A ⊗ 1S

 1A ⊗ 1S

 1A⊗S,
while the separability of these operators clearly indicates that this measurement can
be performed by actions involving the ancilla only.

The essential idea here is that the interaction Ut should generate entanglement
between the system and ancilla, such that their states become correlated. One
common example of such an interaction is

Ut  CSA ≡ | 0S 〈0S | ⊗ 1A  | 1S 〈1S | ⊗ | 1A 〈0A |  | 0A 〈1A |,
the controlled-not interaction between two two-dimensional quantum systems. If the
initial system state is

|S   c0| 0S   c1| 1S ,
and we choose |A   | 0A , then we have the sequence

|S   |S  ⊗ | 0A 

 CSA|S  ⊗ | 0A 

 c0| 0S  ⊗ | 0A   c1| 1S  ⊗ | 1A , or in density operator notation:
pre  |S 〈S |

 |S 〈S | ⊗ | 0A 〈0A |

 CSA |S 〈S | ⊗ | 0A 〈0A |CSA
†

 c0| 0S  ⊗ | 0A   c1| 1S  ⊗ | 1A c0
∗〈0S | ⊗ 〈0A |  c1

∗〈0S | ⊗ 〈0A |.
If now we measure the ancilla (projectively) in its | 0A , | 1A  basis, the probabilities
will be

Pr0  |c0 |2,
Pr1  |c1 |2.
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It can furthermore be seen that the post-measurement states are given by
post  | 0S  i  0,

 | 1S  i  1.
We thus find that this controlled-not procedure leads to an indirect measurement
whose statistics and post-measurement states are identical to those of a projective
measurement of the | 0S , | 1S  basis.

Next let us consider a similar procedure, but with
|A   a0| 0A   a1| 1A .

Then
|S   |S  ⊗ a0| 0A   a1| 1A 

 CSAc0a0| 0S  ⊗ | 0A   c0a1| 0S  ⊗ | 1A   c1a0| 1S  ⊗ | 0A   c1a1| 1S  ⊗ | 1A 

 c0a0| 0S  ⊗ | 0A   c0a1| 0S  ⊗ | 1A   c1a0| 1S  ⊗ | 1A   c1a1| 1S  ⊗ | 0A 

 c0a0| 0S   c1a1| 1S  ⊗ | 0A   c0a1| 0S   c1a0| 1S  ⊗ | 1A ,
and

Pr0  |c0a0| 0S   c1a1| 1S |2

 |c0a0 |2  |c1a1 |2,
Pr1  |c0a1| 0S   c1a0| 1S |2

 |c0a1 |2  |c1a0 |2.
We can verify that

Pr0  Pr1  |c0a0 |2  |c1a1 |2  |c0a1 |2  |c1a0 |2

 |c0 |2|a0 |2  |a1 |2  |c1 |2|a0 |2  |a1 |2

 1.
The post-measurement states are now

post 
c0a0| 0S   c1a1| 1S 

Pr0
i  0,


c0a1| 0S   c1a0| 1S 

Pr1
i  1.

Note that if a0  a1  1/ 2 the outcome probabilities are equal and independent of
|S , and both of the post-measurement states are equal to pre . Of course, our
previous case of the equivalent-to-projective measurement was a special case of this
one with a0  1, a1  0.

For our next trick, consider the modified interaction
C̃SA ≡ | 1S 〈0S | ⊗ 1A  | 0S 〈1S | ⊗ | 1A 〈0A |  | 0A 〈1A |.

It may be verified that this interaction is still unitary. With the general ancilla
preparation

|A   a0| 0A   a1| 1A 
this leads to
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|S   |S  ⊗ a0| 0A   a1| 1A 

 C̃SAc0a0| 0S  ⊗ | 0A   c0a1| 0S  ⊗ | 1A   c1a0| 1S  ⊗ | 0A   c1a1| 1S  ⊗ | 1A 

 c0a0| 1S  ⊗ | 0A   c0a1| 1S  ⊗ | 1A   c1a0| 0S  ⊗ | 1A   c1a1| 0S  ⊗ | 0A ,
 c1a1| 0S   c0a0| 1S  ⊗ | 0A   c1a0| 0S   c0a1| 1S  ⊗ | 1A ,

so that we still have
Pr0  |c0a0 |2  |c1a1 |2,
Pr1  |c0a1 |2  |c1a0 |2,

but now

post 
c1a1| 0S   c0a0| 1S 

Pr0
i  0,


c1a0| 0S   c0a1| 1S 

Pr1
i  1.

If we now set a0  1, a1  0, this reproduces like the statistics of a projective
measurement but with the opposite mapping of measurement result to
post-measurement system state!

Finally, let us consider
CAS ≡ 1S ⊗ | 0A 〈0A |  | 1S 〈0S |  | 0S 〈1S | ⊗ | 1A 〈1A |.

Then keeping |A   a0| 0A   a1| 1A  we have
|S   |S  ⊗ a0| 0A   a1| 1A 

 CASc0a0| 0S  ⊗ | 0A   c0a1| 0S  ⊗ | 1A   c1a0| 1S  ⊗ | 0A   c1a1| 1S  ⊗ | 1A 

 c0a0| 0S  ⊗ | 0A   c0a1| 1S  ⊗ | 1A   c1a0| 1S  ⊗ | 0A   c1a1| 0S  ⊗ | 1A ,
 c0a0| 0S   c1a0| 1S  ⊗ | 0A   c1a1| 0S   c0a1| 1S  ⊗ | 1A ,

so that
Pr0  |c0a0 |2  |c1a0 |2

 |a0 |2,
Pr1  |c0a1 |2  |c1a1 |2

 |a1 |2,
and

post 
c0a0| 0S   c1a0| 1S 

Pr0
 c0| 0S   c1| 1S  i  0,


c1a1| 0S   c0a1| 1S 

Pr1
 c0| 1S   c1| 0S  i  1.

We thus have a situation where the statistics of the measurement are independent of
|S , but depending on the measurement outcome the post-measurement system
state is either equal to the pre-measurement state or ‘flipped’ by the transformation

| 0S   | 1S , | 1S   | 0S .
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Our choice of the amplitudes a0 and a1 independently sets the relative likelihood of the
two outcomes!

In summary, we see that indirect measurements can be used to ‘mimic’ projective
measurements, but can also be used to construct measurement procedures in which
the transformation from pre- to post-measurement system states is more general than
a projection and can be decoupled from the information obtained about pre.

Higher-dimensional ancillas
It is crucial to note that the ancillary system in an indirect measurement can have
arbitrary dimension – that is, NA can be much larger than NS leading to a
measurement procedure on an NS −dimensional system with more than NS outcomes!

For example, still considering a two-dimensional system of interest, we could use
a three-dimensional ancilla to generate an indirect measurement with three distinct
outcomes. One possible interaction operator is

Cpermute ≡ | 0S 〈0S | ⊗ 1A  | 1S 〈1S | ⊗
0 0 1
1 0 0
0 1 0

A

,

which performs the permutation on HA

| 0A   | 1A , | 1A   | 2A , | 2A   | 0A ,
if and only if the system is in state | 1S . With

|A   a0| 0A   a1| 1A   a2| 2A ,
we thus have

|S   |S  ⊗ a0| 0A   a1| 1A   a2| 2A 

 Cpermute
c0a0| 0S  ⊗ | 0A   c0a1| 0S  ⊗ | 1A   c0a2| 0S  ⊗ | 2A 

c1a0| 1S  ⊗ | 0A   c1a1| 1S  ⊗ | 1A   c1a2| 1S  ⊗ | 2A 

 c0a0| 0S  ⊗ | 0A   c0a1| 0S  ⊗ | 1A   c0a2| 0S  ⊗ | 2A 

 c1a0| 1S  ⊗ | 1A   c1a1| 1S  ⊗ | 2A   c1a2| 1S  ⊗ | 0A ,
 c0a0| 0S   c1a2| 1S  ⊗ | 0A   c0a1| 0S   c1a0| 1S  ⊗ | 1A 

 c0a2| 0S   c1a1| 1S  ⊗ | 2A .
So the outcome probabilites are

Pr0  |c0a0 |2  |c1a2 |2,
Pr1  |c0a1 |2  |c1a0 |2,
Pr2  |c0a2 |2  |c1a1 |2,

with post-measurement states
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post 
c0a0| 0S   c1a2| 1S 

Pr0
i  0,


c0a1| 0S   c1a0| 1S 

Pr1
i  1,


c0a2| 0S   c1a1| 1S 

Pr2
i  2.

With appropriate choices for a0 ≠ a1 ≠ a2 such that |a0 |2  |a1 |2  |a2 |2  1 (for
example a0  1/2 , a1  1/3 , a2  1/6 ), we see that the probabilities and
post-measurement states associated with the three possible outcomes are all distinct.
It is important to note at this point, however, that the ‘amount’ of information obtained
in a measurement with NA  NS outcomes can never be greater than that which could
be obtained in an optimal NS −dimensional measurement. As we have seen
previously, one can use them to access different ‘kinds’ of information and to play
different strategies in the inference-disturbance tradeoff.

Partial trace and reduced density operators
Having defined partial projectors, we can now define the partial trace operation. Let
AB be a density operator on HAB:

AB ∑
ijkl

ijkl| iA  ⊗ | jB 〈kA | ⊗ 〈 lB |,

where the summations are take over orthonormal bases for HA and HB. Consider the
sum of partial projections,

∑
m1

NB

1A ⊗ Pm
B AB 1

A ⊗ Pm
B 

∑
m1

NB

1A ⊗ Pm
B  ∑

ijkl

ijkl| iA  ⊗ | jB 〈kA | ⊗ 〈 lB | 1A ⊗ Pm
B 

∑
m1

NB

∑
i,k1

NA

imkm| iA  ⊗ |mB 〈kA | ⊗ 〈mB |

∑
m1

NB

|mB 〈mB | ⊗∑
i,k1

NA

imkm| iA 〈kA |.

We define the partial trace of AB over the B subsystem to be

̃A ≡ TrB AB  ∑
m1

NB

∑
i,k1

NA

imkm| iA 〈kA | ∑
i,k1

NA

∑
m1

NB

imkm | iA 〈kA |

Here ̃A is called the ‘reduced density operator’ for subsystem A. It provides the best
possible representation of subsystem A within HA, when the joint state of A and B is
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entangled/nonfactorizable.
When would we need such a representation? Suppose systems A and B are

allowed to interact, and as a result end up in some entangled state |AB
ent . Then,

however, someone comes and removes subsystem B from our lab. Once B becomes
unavailable to us, we can only make measurements of the form

P0
A ⊗ 1B,P1

A ⊗ 1B,… .
The statistics of all such measurements are predicted by the reduced density operator:

Pr i   Tr AB P i
A ⊗ 1B 

 Tr ∑
j1

NB

1A ⊗ P j
B AB ∑

k1

NB

1A ⊗ Pk
B P i

A ⊗ 1B

 Tr ∑
j1

NB

1A ⊗ P j
BAB 1

A ⊗ P j
B P i

A ⊗ 1B

 Tr ∑
j1

NB

| jB 〈 jB | ⊗∑
k,l1

NA

kjlj|kA 〈 lA | P i
A ⊗ 1B2

 Tr ∑
j1

NB

| jB 〈 jB | ⊗∑
k,l1

NA

kjljP i
A |kA 〈 lA |P i

A

 Tr ∑
j1

NB

| jB 〈 jB | ⊗ ijij | iA 〈 iA |

∑
k1

NB

∑
l1

NA

〈 lA | ⊗ 〈kB | ∑
j1

NB

| jB 〈 jB | ⊗ ijij | iA 〈 iA | | lA  ⊗ |kB 

∑
j1

NB

ijij.

Likewise,

Tr ̃AP i
A   Tr ∑

k,l1

NA

∑
j1

NB

ijkj |kA 〈 lA |P i
A

 Tr ∑
k1

NA

∑
j1

NB

ijkj |kA 〈 iA |

∑
m1

NA

〈mA |∑
k1

NA

∑
j1

NB

ijkj |kA 〈 iA ||mA 
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∑
m1

NA

∑
k1

NA

∑
j1

NB

ijkj mk im

∑
j1

NB

ijij.

A notationally more convenient, but mathematically less precise way of computing
the partial trace is as follows:

TrB AB  ∑
m1

NB

〈mB |AB |mB  ∑
m1

NB

〈mB | ∑
ijkl

ijkl| iA  ⊗ | jB 〈kA | ⊗ 〈 lB | |mB 

∑
m1

NB

∑
i,k1

NA

imkm| iA 〈kA |.

It is perhaps useful to see a few examples of this type of manipulation.

Open quantum systems
Suppose we have a composite system HAB  HA ⊗ HB with Hamiltonian HAB. We
know that the overall dynamics is described by the SE

i d
dt |AB t  HAB |AB t.

Let’s say, however, that HA corresponds to a small, ‘compact’ physical system that we
are trying to study in the lab, whereas HB actually represents the degrees of freedom
of some environmental reservoir. If we are unable (as is always the case) to
completely isolate the system from the environment, then the Hamiltonian will not
separate: HAB ≠ HA ⊗ 1B  1A ⊗ HB, TABt, 0 ≠ TAt, 0 ⊗ TBt, 0. Hence, even for
pure initial states of the system |A0  ∈ HA, the above SE may (for some initial
states) induce evolution into entangled states of the system and environment.

In general we will be unable to perform complete measurements on the joint
Hilbert space HAB, because reservoirs are usually infinite-dimensional (hence HAB will
be also). So limiting our attention to the system HA, it appears that we must settle for a
density-operator description obtained by tracing over the environmental degrees of
freedom:

̃At  TrB|ABt 〈ABt |.
From what we have learned about entanglement in previous lectures, we may expect
that this type of evolution (formation of entanglements with an unobservable reservoir)
will lead to loss of purity for the system state. Such phenomena are generally referred
to as ‘decoherence.’

Under certain assumptions about the nature of HAB and of the environment HB, it
is sometimes possible to derive a closed-form evolution equation for the reduced
density operator ̃At. In a ‘Master Equation’ of this type, operators and states for HB
do not appear explicitly because they have been analytically traced-out of the
equations of motion. This type of approach is particularly useful for understanding
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things like dissipation and thermal fluctuations in a quantum-mechanical setting, and
the overall field of studying these things has come to be known as the theory of open
quantum systems.
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